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Abstract We carry out a detailed analysis of the effects of different dynamic variable and value ordering heuristics

on the search space of Sudoku when the encoding method and the filtering algorithm are fixed. Our study starts

by examining lexicographical variable and value ordering and evaluates different combinations of dynamic variable

and value ordering heuristics. We eventually build up to a dynamic variable ordering heuristic that has two rounds

of tie-breakers, where the second tie-breaker is a dynamic value ordering heuristic. We show that our method

that uses this interlinked heuristic outperforms the previously studied ones with the same experimental setup.

Overall, we conclude that constructing insightful dynamic variable ordering heuristics that also utilize a dynamic

value ordering heuristic in their decision making process could improve the search effort for some NP-Complete

problems.

Keywords: Backtracking-Search, Constraint Satisfaction Problems, Dynamic Variable Ordering Heuristics,

NP-Completeness, Phase-Transition, Sudoku

1 Introduction

The manner in which the search space of a problem that has been modeled as a CSP (Constraint Satis-
faction Problem) is explored depends on the various techniques that are built into the given CSP solver.
These techniques might include filtering algorithms such as arc-consistency and path-consistency, random-
restarts, back-jumping as well as dynamic variable ordering and dynamic value ordering heuristics.0 All
of these methods are important in their own right, but dynamic variable ordering and dynamic value
ordering heuristics are especially important since they guide the backtracking search. In other words,
combination of these heuristics could choose a variable and value pair that direct the search along a path
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where it is hard to recognize that no solution exists. Therefore, it is very important that these heuristics
choose a variable and value pair that is more likely to either, direct the search along a path that is easy
to determine that no solution exists, or direct the search along a path where a solution exists.

The study of dynamic variable ordering heuristics began with the dom heuristic of [3] that picks the
next variable with the smallest domain size. A tie-breaker was introduced for the dom heuristic in [4]
that breaks ties by picking the next variable with the highest initial degree, the number of unassigned
neighbors. A more sophisticated version of this heuristic was already in use for graph coloring [5]. This
heuristic breaks ties for the dom heuristic by picking the next variable with the current highest degree.1

A variant of this heuristic was proposed in [6], where the next variable with the minimum value of current
domain size over current degree is selected. This heuristic works well for instances where the variables
have wide range of degree in combination with small variance in their domain sizes, since dom/deg gives
equal importance to domain size and degree. On the other hand, there has not been much attention given
to dynamic value ordering. The most prominent work on this front was the lvo heuristics of [4] with four
different ranking functions that employ forward-checking.

In this paper, we investigate various dynamic variable and value ordering heuristics with respect to
Sudoku modeled as a CSP. Sudoku was first studied as a CSP in [7] and has been been getting a lot
of attention in this field since then [8, 9, 10, 11, 12, 13], because it is a highly constrained challenging
combinatorial search problem. We generated numerous Sudoku puzzles of size 16 by 16 (order-4), 25 by
25 (order-5) and 36 by 36 (order-6) using the setup outlined in [9]. We encoded the Sudoku puzzles as a
CSP using the modeling technique from [11, 12] and also employed their arc-consistency algorithm. We
observed the mean depth, mean number of explored variables and mean number of instantiations within
a fixed time as well as the percentage of solved puzzles and mean time. We did this for seven different
heuristics, including dom [3], an interpretation of dom+deg [5] and sd-lrv-mfv [11]. We refrained from
investigating dom/deg [6]heuristic since it was already shown to not perform well for multiple permutation
problems such as Latin Squares in [14] and Sudoku in [11].

We showed that lexicographically choosing the next variable performs better than randomly choosing
the next variable. We demonstrated that using a dynamic variable ordering heuristic performs better
than either randomly or lexicographically selecting the next variable. We also showed that the width of
the search tree decreased when the dynamic variable ordering heuristic was used, which agrees with the
results in [3, 15] and [16]. We demonstrated that adding a dynamic value ordering heuristic on top of a
dynamic variable ordering heuristic does not necessarily improve the search effort, but instead adding a
tie-breaker for the dynamic variable ordering heuristic does in fact improve the search effort. We showed
that combining a dynamic value ordering heuristic with a dynamic variable ordering heuristic, that already
utilizes a tie-breaker, might actually hinder the performance. We demonstrated that adding a dynamic
value ordering heuristic as a second round of tie-breaker for the dynamic variable ordering heuristic
enhances the search effort. We also detected the easy-hard-easy “phase-transition” as was previously
observed with Sudoku puzzles in [9, 11, 12] and [13]. This is a phenomenon with all NP-Complete
problems.

As far as we know, there has been no dynamic variable ordering heuristic that utilizes a dynamic value
ordering heuristic as a tie-breaker, of course other than the ones introduced in [11]. Our experiments
showed that even if we use a well-known dynamic variable ordering heuristic that employs a tie-breaker,
such as dom+deg, that there could still be more ties and employing a dynamic value ordering heuristic
as a second round of tie-breaker has a positive affect in the outcome of the search effort. Overall, we
demonstrated that coming up with insightful dynamic variable ordering heuristics that also use dynamic
value ordering heuristic in their decision making process, can help to guide the search effort for some
NP-Complete problems. In fact, the performance achieved at the critical point by our most sophisti-
cated heuristic is far better than the performance of the methods utilized in [9] and [13] with the same
experimental setup.

0An excellent resource for most of these CSP techniques and many more is [1]. An excellent introduction written in
Spanish is [2].

1This heuristic was initially called the Brelaz heuristic, then dom+futdeg heuristic and finally dom+deg heuristic. We
should also note that in earlier papers the heuristic in [4] was called the dom+deg heuristic and the heuristic in [5] was
called the dom+futdeg heuristic.
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2 Methods

2.1 Encoding

We encode the Sudoku puzzles as a constraint satisfaction problem by using the natural combined model
from [11, 12].

2.1.1 Natural Combined Model

The Sudoku puzzle is formulated on a 3D S(k ∗ k) ∗ (k ∗ k) ∗ (k ∗ k) Boolean matrix, where n = (k ∗ k).
We say that a Sudoku puzzle of order k is an n by n Sudoku puzzle.

The primal variable xi,j is represented by the slice {S(i, j, v)|1 ≤ v ≤ n}. The initial domain of xi,j

is denoted D(xi,j) and is {v|S(i, j, v) = True, 1 ≤ v ≤ n}.
The box dual variable bv,p,q where di/ke = p, dj/ke = q is represented by the slice {S(i, j, v)|((p− 1) ∗

k + 1) ≤ i ≤ p ∗ k, ((q − 1) ∗ k + 1) ≤ j ≤ q ∗ k}. The initial domain of bv,p,q is denoted D(bv,p,q) and, is
{i, j|S(i, j, v) = True, ((p− 1) ∗ k + 1) ≤ i ≤ p ∗ k, ((q − 1) ∗ k + 1) ≤ j ≤ q ∗ k}.

The column dual variable cv,j is represented by the slice {S(i, j, v)|1 ≤ i ≤ n}. The initial domain of
cv,j is denoted D(cv,j) and is {i|S(i, j, v) = True, 1 ≤ i ≤ n}.

The row dual variable rv,i is represented by the slice {S(i, j, v)|1 ≤ j ≤ n}. The initial domain of rv,j
is denoted D(rv,j) and is {j|S(i, j, v) = True, 1 ≤ j ≤ n}.

Then the 6= constraints are enforced as follows: 1) on pairs of primal variables within each box, column
and row. 2) on pairs of box dual variables of each value. 3) on pairs of column dual variables of each
value. 4) on pairs of row dual variables of each value.

2.2 Filtering Algorithms

The following filtering algorithms were introduced in [11, 12] and work together with the natural combined
model. Although the backtracking-search is being conducted on the primal variables, consistency checks
on the other three view-points of the problem are performed whenever deemed necessary.

2.2.1 Redundantly Modeled Forward Checking Algorithm (RFC)

The RFC algorithm verifies whether or not assigning a value to a variable is consistent with respect to
it’s constraints. It also modifies the domains of the constrained variables accordingly. These checks and
modifications are performed with respect to primal variables as well as the box, column and row dual
variables.

Algorithm 1 Redundantly Modeled Forward Checking

Input: (S, n, i, j, v)2

Output: Is {S(i, j, v) == True} consistent?
1: Stemp ← S
2: if (Remove-All-Except-v == True) then
3: if (Remove-All-Other-v == True) then
4: S ← Stemp

5: return True
6: end if
7: end if
8: return False

9: function Remove-All-Except-V
10: for k = 1...n do
11: if (Stemp(i, j, k) == True ∧ k 6= v) then
12: if (Exists-In-Box(i, j, k) == False) then
13: return False
14: end if
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15: if (Exists-In-Col(i, j, k) == False) then
16: return False
17: end if
18: if (Exists-In-Row(i, j, k) == False) then
19: return False
20: end if
21: Stemp(i, j, k)← False
22: end if
23: end for
24: return True
25: end function

26: function Exists-In-Row(p, q, r)
27: for k = 1...n do
28: if (Stemp(p, k, r) == True ∧ k 6= q) then
29: return True
30: end if
31: end for
32: return False
33: end function3

34: function Remove-All-Other-V
35: if (Remove-V-From-Box == False) then
36: return False
37: end if
38: if (Remove-V-From-Col == False) then
39: return False
40: end if
41: if (Remove-V-From-Row == False) then
42: return False
43: end if
44: return True
45: end function

46: function Remove-V-From-Row
47: for k = 1...n do
48: if (Stemp(i, k, v) == True ∧ k 6= j) then
49: t← False
50: for l = 1...n do
51: if (Stemp(i, k, l) == True ∧ l 6= v) then
52: t← True
53: end if
54: end for
55: if t == False then
56: return False
57: end if
58: if (Exists-In-Box(i, k, v) == False) then
59: return False
60: end if
61: if (Exists-In-Col(i, k, v) == False) then
62: return False
63: end if
64: Stemp(i, k, v)← False
65: end if
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66: end for
67: return True
68: end function4

2.2.2 Redundantly Modeled Arc-Consistency Algorithm One (RAC-1)

The RAC-1 algorithm takes the RFC algorithm one step further. Instead of just examining the constrained
primal and dual variables of the instantiated variable, it checks all of the primal as well as all of the dual
variables. It then verifies that they are consistent with the given assignment. Furthermore, it performs
instantiations whenever the domain of some primal or dual variable becomes singleton, which forces it
to repeat the whole process again. If the RAC-1 algorithm successfully executes, that is without finding
an inconsistency, then the given puzzle is arc-consistent with respect to the primal and the box, column
and row dual variables.

Algorithm 2 Redundantly Modeled Arc-Consistency One

Input: (S, n) 5

Output: Is S arc-consistent?
1: Stemp ← S
2: t← 1
3: while t 6= 0 do
4: t← 0
5: if (Check-Primal-Variables == False) then
6: return False
7: end if
8: if (Check-Box-Variables == False) then
9: return False

10: end if
11: if (Check-Col-Variables == False) then
12: return False
13: end if
14: if (Check-Row-Variables == False) then
15: return False
16: end if
17: end while
18: S ← Stemp

19: return True

20: function Check-Primal-Variables
21: for i = 1...n do
22: for j = 1...n do
23: if Stemp(i, j, 0) == 0 then6

24: c← 0
25: v ← 0
26: for k = 1...n do
27: if Stemp(i, j, k) == True then
28: c← c + 1
29: v ← k
30: end if
31: end for
32: if c==0 then

2S, n, i, j, v and Stemp are global variables and accessible by all functions.
3Exists-In-Box(p, q, r) and Exists-In-Col(p, q, r) functions behave similarly.
4Remove-V-From-Box and Remove-V-From-Col functions behave similarly.
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33: return False
34: else if c==1 then
35: if RFC(Stemp, n, i, j, v) == True then
36: t← 1
37: else
38: return False
39: end if
40: end if
41: end if
42: end for
43: end for
44: return True
45: end function7

2.3 Search Heuristics

The following heuristics are utilized with respect to primal variables.

2.3.1 Heuristic-1 (RAN&LEX)

Randomly select the unassigned variable; and lexicographically select the values in its domain.

2.3.2 Heuristic-2 (LEX&LEX)

Lexicographically select the unassigned variable; and lexicographically select the values in its domain.

2.3.3 Heuristic-3 (SD&LEX)

Lexicographically select the unassigned variable with the smallest domain size; and lexicographically
select the values in its domain.

2.3.4 Heuristic-4 (SD&MFV)

Lexicographically select the unassigned variable with the smallest domain size; and order the values in
it’s domain that occur from most frequently to least frequently in the domains of all of the assigned
variables.

2.3.5 Heuristic-5 (SD-LRV&LEX)

Among the variables with the smallest domain size, lexicographically select the variable that has the least
number of fixed variables among those with which it shares a constraint; and lexicographically select the
values in its domain.

2.3.6 Heuristic-6 (SD-LRV&MFV)

Among the variables with the smallest domain size, lexicographically select the variable that has the least
number of fixed variables among those with which it shares a constraint; order the values in its domain
that occur from most frequently to least frequently in the domains of all of the assigned variables.

5S, n and Stemp are global variables and accessible by all functions.
7Check-Box-Variables, Check-Col-Variables and Check-Row-Variables functions behave similarly.
6We assume that the integer puzzle is located at v = 0 of S(i, j, v) for simplicity.
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2.3.7 Heuristic-7 (SD-LRV-MFV&MFV)

Among the variables with the smallest domain size that also have the least number of fixed variables
among those with which it shares a constraint, lexicographically select the one that contains a value in
its domain that occurs the most frequent times in the domains of all of the assigned variables; order
the values in its domain that occur from most frequently to least frequently in the domains of all of the
assigned variables.

Heuristic-1 serves the purpose of understanding how the backtracking search performs when the next
variable to be assigned is chosen uniformly at random. Heuristic-3 is clearly the dom heuristic of [3].
Heuristic-4 serves the purpose of understanding how a dynamic variable ordering heuristic works with no
tie-breaker, but with a value ordering heuristic. Heuristic-5 can actually be viewed as an interpretation
of the Brelaz (dom+deg) heuristic of [5]. Heuristic-6 serves the purpose of examining how a dynamic
variable ordering heuristic that has a tie-breaker works with a value ordering heuristic.

We should also note that we did experiment with the opposite tie-breaker, as was done in [11], the
most number of constrained variables (MRV) and the opposite dynamic value ordering heuristic, order
the values in it’s domain that occur from least frequently to most frequently in the domains of all of the
assigned variables (LFV). However, none of the three possible combinations of these tie-breakers (LRV
and MRV) and dynamic value ordering heuristics (MFV and LFV) worked as well as Heuristic-7.

3 Experimental Setup

We implemented the modeling method, the filtering algorithm and the search heuristics in C++. Then
we generated the test instances by following the methodology that was outlined in [9] for Sudoku puzzles.
We first randomly filled 5%-25% percent of the empty puzzle board without invalidating the puzzle and
then randomly chose one of our algorithms to complete the puzzle. We generated 100 fully solved Sudoku
puzzles of order 4, 5 and 6, which correspond to 16 by 16, 25 by 25 and 36 by 36 size Sudoku puzzles,
respectively.

Then we removed a cell from a given fully solved puzzle with probability p, where p = 0 implies a
fully solved puzzle and p = 1 implies an empty one. We did this for all of the 100 fully solved puzzles of
order 4 and 5 for each probability p, from p = 0.05 through p = 0.95 with 0.05 increments. We used the
Mersenne Twister Pseudo-Random generator mt19937 in C++ for generating our random numbers, that
were uniformly distributed between 0 and 1. A total of 1900 puzzles were generated for Sudoku puzzles
of order 4 and 5. We only generated 100 Sudoku puzzles of order 6 at the hard region so that we can
verify our observations carry over to larger puzzles.

All of the puzzles we generated are guaranteed to have a solution, but they can have more than one
solution. It would take a tremendous amount of time to verify that each puzzle has a unique solution,
because we would have to check the possibility of a solution at every single path. Furthermore, the
puzzles become so sparse at higher probabilities that it is impossible to guarantee that they have a
unique solution.

We set the time limit to 30 seconds for Sudoku puzzles of order 4 and to 360 seconds for Sudokdu
puzzles of order 5 since these were the time limits used in [9] and [13]. We set the time limit to 720
seconds for Sudoku puzzles of order 6.

We kept track of six different parameters at each probability p: 1) Percentage of puzzles solved 2)
Mean time 3) Mean depth of the search tree 5) Mean number of explored variables 6) Mean number
of instantiations. If no solution was found within the allocated time then the given time limit and
the calculated values for each parameter up to that time limit were used in the calculations. We used
a computer that possesses an Intel Dual Core (Four Threads) I3-3227U CPU at 1.90GHZ x64 based
processor with 4GB of RAM to run our simulations.
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4 Empirical Analysis

4.1 Order 4 Puzzles

The performance of our seven heuristics when solving order 4 puzzles at different probabilities are pre-
sented in tables 1 2 and 3 as well as in the corresponding graphs. The results of the methods in [9] and
[13] are also included as graphs that show the percentage of solved puzzles at each probability versus
mean time in seconds.

We observe that Heuristic-1 performed the worst with respect to being able to solve all of the instances
at each probability within the allocated time. Heuristic-1 is followed by Heuristic-2 and Heuristic-3 where
they also had an overall worse performance than the methods in [9] and [13]. However, when they were
able to solve the given instances, they did so much faster than the methods in [9] and [13]. This can be
seen in the corresponding graphs that show the mean time in seconds. On the other hand, Heuristic-5
and Heuristic-7 were able to solve all of the instances at each probability within the allocated time. And
they did so in a very fast manner as can be seen by the corresponding graphs that show the mean time
in seconds.

When a heuristic at some probability has the same or almost the same average depth, average number
of explored nodes and average number of instantiations, it means that the search backtracked few times
or it did not backtrack at all. This is the case at all of the probabilities for Heuristic-5 and Heuristic-7
and most of the probabilities for Heuristic-4 and Heuristic-6. The reason for this occurrence cannot
really be attributed to the choice of a dynamic variable and value ordering heuristics, but it is due to
the modeling choice as well as the constraint propagation algorithm that is being employed. In fact,
the reason that the first three heuristics actually performed this well is due to this. In other words,
the constraint propagation algorithm along with the encoding method overpowered the variable ordering
aspect of our solver when solving order 4 puzzles.

Another observation is that the average number of instantiations that are roughly double the average
number of explored nodes starting from Heuristic-3 and on. This is due to using the smallest domain
heuristic in variable selection that allows the width of the search tree to be narrower and consequently
results in a deeper search-tree. This observation concurs with the results in [3, 15] and [16] that the width
of the search-tree decreases when the smallest domain heuristic is utilized. This difference will be more
striking with order 5 puzzles.

4.2 Order 5 Puzzles

The performance of our seven heuristics when solving order 5 puzzles at different probabilities are pre-
sented in tables 4 5 and 6 as well as in the corresponding graphs. The results of the methods in [9] and
[13] are also included as graphs that show the percentage of solved puzzles at each probability versus
mean time in seconds.

Heuristic-1 cannot solve any instances at probabilities 0.55, 0.6, 0.65 and 0.8 within the allocated time.
Heuristic-2 performs some what better than Heuristic-1, but it still performs worse than the methods in
[9] and [13]. On the other hand, the difference in performance between Heuristic-2 and Heuristic-3 is quite
striking at each probability as can be observed from the corresponding graphs and tables. Heuristic-3
allowed the search effort to go further down in the search tree, which as a consequence resulted in more
nodes being explored in the allocated time if no solution was found; or a solution was found with less
number of explored nodes. This was also true with respect to the instantiations at each probability. As
a result, the search was not stuck at a certain depth and more puzzles were solved at each probability
within the given time limit. As we also observed with order-4 puzzles, the width of the search tree was
minimized when Heuristic-3 was employed. This can be recognized with respect to the ratio between the
average number of instantiations over the average number of explored nodes at each probability, which
was approximately three with Heuristic-2 and two with Heuristic-3. This observation, once again, concurs
with the results in [3, 15] and [16] that the width of the search-tree decreases when the smallest domain
heuristic is utilized.

We also witness the easy-hard-easy “phase-transition” that is a phenomenon with all NP-Complete
problems. The hard region or the critical point of Sudoku is around p = 0.55. It is around this region
where the most difficult puzzles reside.
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We observe from the corresponding graphs that Heuristic-5 significantly improved the search effort at
the critical point of p = 0.55 compared to Heuristic-4 which performed similar to Heuristic-3. In fact,
the difference of performance between Heuristic-3 and Heuristic-4 at the hard region was not statistically
significant. This experiment distinguishes the importance of using a tie-breaker for the smallest domain
heuristic over just coupling the smallest domain heuristic with a value ordering heuristic.

We also notice from the corresponding graphs that although Heuristic-6 performed a little better at
the critical point of p = 0.55 compared to Heuristic-5, it actually performed worse at the subsequent
probabilities of the heavy-tail region. This experiment demonstrates that adding value ordering heuristic
without really gathering insight from the variable ordering heuristic does not necessarily yield better
performance and it may actually hinder it.

As can be seen from the corresponding graphs, Heuristic-7 achieved a significant improvement over
both Heuristic-5 and Heuristic-6. The performance at the critical point of p = 0.55 is the most profound
compared to the previous six heuristics. Heuristic-7, on average, was able to go further down in the
search tree, traversed less number of nodes and made less number of instantiations. This demonstrates
that a second round of tie-breaker for the smallest domain heuristic could be very useful. Indeed, the
value ordering heuristic could be used for this purpose and it executes well for this intent. In other words,
considering the values in the domains of the variables when breaking ties is relevant.

We also observe from the corresponding graphs that the methods in [9] and [13] did as well as our
Heuristic-4 at the critical point of p = 0.55 whereas our Heuristic-7 clearly out performed them at this
significant point.

4.3 Order 6 puzzles

The performance of our seven heuristics when solving order 6 puzzles at the hard region are presented
in table 7. We detect similar patterns with order 6 puzzles that we also observed with order 4 and 5
puzzles with respect to average depth, average nodes and average instantiations. However, this time the
differences among the heuristics are more profound, because there are more unassigned variables with
domain sizes that are greater than two and as a result, Heuristic-1 and Heuristic-2 perform even worse.
Although Heuristic-3 and Heuristic-4 cannot solve any instances within the allocated time, they still
perform better than Heuristic-1 and Heuristic-2 since they were able to go further down the search-tree
and thus explored more nodes on average. Heuristic-7 solves the most instances and it is followed by
Heuristic-6 and Heuristic-5. The performance of Heuristic-7 when solving order 6 puzzles at the hard
region is further evidence that considering the values in the domains of the variables when selecting the
next variable to instantiate does in fact make a difference in guiding the search effort.

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Heuristic-1 5 9 16 27 39 53 70 83 98 118
Heuristic-2 4 9 17 27 44 61 77 95 113 137
Heuristic-3 5 11 22 41 63 83 103 123 138 156
Heuristic-4 6 12 22 44 69 87 109 131 147 164
Heuristic-5 5 11 20 39 60 84 104 126 140 156
Heuristic-6 6 13 22 44 70 89 112 132 148 165
Heuristic-7 6 13 24 45 70 90 113 134 149 167

Table 1: Average depth of the search tree at each probability for order 4 puzzles

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Heuristic-1 28 160 2,273 4,269 5,609 7,020 11,222 8,493 5,897 5,328
Heuristic-2 6 87 442 2,339 6,825 3,267 5,471 9,774 4,065 1,482
Heuristic-3 6 27 94 3,338 3,295 3,897 3,403 124 138 156
Heuristic-4 9 50 158 97 1,997 175 129 145 148 164
Heuristic-5 5 18 25 52 62 98 105 126 140 156
Heuristic-6 9 16 30 64 3,436 96 112 137 4,431 165
Heuristic-7 9 16 49 50 76 102 114 135 149 167

Table 2: Average number of explored nodes at each probability for order 4 puzzles
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0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Heuristic-1 90 384 8,024 15,574 20,969 25,509 40,781 29,485 21,714 19,225
Heuristic-2 9 206 1,061 7,663 20,936 8,934 15,501 27,426 11,076 3,267
Heuristic-3 9 46 170 6,640 6,532 7,741 6,715 125 139 157
Heuristic-4 13 91 297 154 3,928 266 150 161 149 165
Heuristic-5 7 28 34 67 65 114 108 127 142 157
Heuristic-6 12 20 41 86 6844 104 113 143 8771 165
Heuristic-7 14 20 76 57 83 117 116 136 149 167

Table 3: Average number of instantiations at each probability for order 4 puzzles

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Heuristic-1 22 49 69 101 138 170 210 248 288 326
Heuristic-2 20 48 70 102 141 169 216 260 280 320
Heuristic-3 26 69 102 154 203 250 300 346 387 427
Heuristic-4 25 70 107 162 218 263 321 361 404 446
Heuristic-5 25 69 108 153 206 253 301 348 391 429
Heuristic-6 27 72 118 163 219 263 313 362 398 442
Heuristic-7 26 74 116 162 216 266 319 362 404 443

Table 4: Average depth of the search tree at each probability for order 5 puzzles

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Heuristic-1 47,044 133,714 135,957 142,250 140,868 142,004 156,206 134,533 113,051 73,159
Heuristic-2 40,706 135,905 134,490 106,990 90,329 101,750 97,151 107,546 204,505 138,951
Heuristic-3 38,130 158,853 150,619 70,106 18,159 41,850 8,509 7,726 579 457
Heuristic-4 35,990 166,221 133,956 45,065 44,181 51,999 39,672 22,142 1,436 8,958
Heuristic-5 19,949 113,120 81,071 60,149 37,510 51,910 8,603 389 14,176 473
Heuristic-6 26,080 112,179 107,804 77,751 43,837 23,859 31,291 7,038 20,272 6,979
Heuristic-7 27,539 101,227 73,391 37,723 19,038 14,087 12,826 16,465 514 662

Table 5: Average number of explored nodes at each probability for order 5 puzzles

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Heuristic-1 176,119 515,880 535,476 566,626 561,713 561,895 611,545 520,519 433,597 278,044
Heuristic-2 112,075 391,026 395,833 300,883 258,723 290,502 286,054 306,336 597,076 466,662
Heuristic-3 76,250 317,693 301,200 140,112 36209 85714 16741 15164 778 494
Heuristic-4 71,970 332,428 267,866 90,186 88,936 105,301 79,123 44,225 2,664 17,513
Heuristic-5 39,886 226,222 162,081 120,190 74,894 103,666 16,927 438 28,022 536
Heuristic-6 52,148 224,313 215,561 155,410 87,599 47,529 63,880 13,741 42,252 13,553
Heuristic-7 55,610 202,314 146,721 75,322 37,920 24,852 26,190 32,610 626 883

Table 6: Average number of instantiations at each probability for order 5 puzzles

Solved Avg. Time Avg. Depth Avg. Nodes Avg. Inst.
Heuristic-1 0% 720 secs 302 123,294 580,268
Heuristic-2 0% 720 secs 207 144,089 472,677
Heuristic-3 0% 720 secs 433 205,125 410,570
Heuristic-4 0% 720 secs 464 217,037 446,432
Heuristic-5 2% 691 secs 459 190,939 390,949
Heuristic-6 4% 677 secs 487 181,660 363,736
Heuristic-7 11% 623 secs 481 165,015 333,751

Table 7: 100 order 6 puzzles at the hard region with a time out of 720 seconds
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5 Conclusion

We conducted a detailed analysis of how dynamic variable and value ordering heuristics affect the search
effort for Sudoku when the encoding method and the filtering algorithm are fixed. One of the most
striking insights we gained from this experiment is the importance of incorporating a dynamic value
ordering heuristic into the decision making process of a dynamic variable ordering heuristic. We observed
that as the search space got smaller, there were still many more ties even after the first tie-breaker. If
at this point the dynamic variable ordering heuristic makes a decision without considering the values
in those variables domain, then it might very well go down a path where it is hard to recognize that
no solution exists. However, by also considering the values in that variables domain, it can gain more
insight on which path to guide the search. For instance, if there are some values that can only be
fixed to few variables then it is better to guide the search with variables that have those values in their
domains. So that we can either reach a solution faster or backtrack faster if it fails. Of course, this is
especially true when the number of values in the domains of all the variables come from a discrete set of
values, which is the case for Sudoku. However, we believe that the insights gained from this study can
be carried over to other NP-Complete problems that are modeled as constraint satisfaction problems.
This is because there are still many more ties left after applying a dynamic variable ordering heuristics
and traditionally they are broken lexicographically without consulting any heuristic. We hope to further
study the effects of dynamic variable and value ordering heuristics with more sophisticated constraint
propagation algorithms.
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