
Journal of Algebraic Systems

Vol. 2, No. 2, (2014), pp 83-96

ASSOCIATED (SEMI)HYPERGROUPS FROM
DUPLEXES

M. JAFARPOUR∗ AND F. ALIZADEH

Abstract. In this paper using strongly duplexes we introduce a
new class of (semi)hypergroups. The associated (semi)hypergroup
from a strongly duplex is called duplex (semi)hypergroup. Two
computer programs written in MATLAB show that the two groups
Z2n and Zn × Z2 produce a strongly duplex and its associated
hypergroup is a complementary feasible hypergroup.

1. Introduction

Hyperstructure theory was founded in 1934 at the 8th congress of
Scandinavian Mathematicians. Marty [11] introduced the hypergroup
notion as a generalization of groups and then he proved its utility in
solving some problems of groups, algebraic functions and rational frac-
tions. Surveys of the theory can be found in the books of Corsini [2],
Davvaz and Leoreanu-Fotea [7], Corsini and Leoreanu [4] and Vou-
giouklis [15, 16]. Now this field of modern algebra is widely studied
from the theoretical and applied viewpoints because of their applica-
tions to many subjects of pure and applied mathematics. Some appli-
cations can be used in the following areas: geometry, graphs, fuzzy sets,
cryptography, automata, lattices, binary relations, codes, and artificial
intelligence, see for example [1, 3, 5, 6, 8, 9, 12].
Jean-Louis Loday introduced the notion of dimonoid [10]. Dimonoids
are a tool to study Leibniz algebras. A dimonoid is a set equipped with
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two binary associative operations satisfying some axioms. If the opera-
tions of a dimonoid coincide, then the dimonoid becomes a semigroup.
T. Pirashvili [13] introduced the notion of a duplex which generalizes
the notion of a dimonoid. In this paper we make a connection between
duplexes and hyperstructures. We introduce strongly duplexes and we
define and study a new class of semihypergroups. Two computer pro-
grams written in MATLAB help us to see that the two groups Z2n

(cyclic group of order 2n) and Zn × Z2 produce a strongly duplex and
its associated hypergroup is a complementary feasible hypergroup.

2. Preliminaries

Let us briefly recall some basic notions and results about groups and
hypergroups; for a comprehensive overview of this subject, the reader
is refereed to [2, 4, 7, 14].

For a non-empty set H and a natural number n, we denote by P∗(H)
the set of all non-empty subsets of H and Hn = H ×H × ...×H.

Definition 2.1. A non-empty set H, endowed with a mapping called
hyperoperation, • : H2 −→ P∗(H) is named hypergroupoid. A hyper-
groupoid which verifies the following conditions:

(i): (x• y)• z = x• (y • z), for all x, y, z ∈ H (the associativity)
(ii): x•H = H = H •x, for all x ∈ H (the reproduction axiom)

is called hypergroup. In particular, an associative hypergroupoid is
called a semihypergroup and a hypergroupoid that verifies the repro-
duction axiom is called a quasihypergroup.
If A and B are non-empty subsets of H, then A •B = ∪a∈A

b∈Ba • b.

Definition 2.2. A duplex is a set D equipped with two associative
operations · : D2 → D and ◦ : D2 → D. We will denote by (D, ·, ◦) the
set duplex with two associative operations (·) and (◦). Moreover, a map
f : D → D

′
from a duplex D to another duplex D

′
is a homomorphism,

provided that f(x · y) = f(x) · f(y) and f(x ◦ y) = f(x) ◦ f(y).

Definition 2.3. A duplex (D, ·, ◦) is called commutative if two opera-
tions (·) and (◦) are commutative.

Definition 2.4. Let (D, ·, ◦) be a duplex. A strong duplex is a type of
duplex that follows the condition:

{(a · b) ◦ c, (a ◦ b) · c} = {a ◦ (b · c), a · (b ◦ c)},

for all (a, b, c) ∈ D3.
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3. (Semi)hypergroups derived from strongly duplexes

Let m be a natural number and (Zm,+) be the cyclic group of the
set of residue classes modulo m. Moreover, suppose x is a real number
and [x] is the integer part of x. Then we have the following.

Theorem 3.1. Let n be a positive integer and Hn = {0, 1, · · · , 2n− 1}
be the set of natural numbers less than 2n. The pair (Hn,⊕) is a group
which is isomorphic to (Z2n,+), where ⊕ is defined by:

x⊕ y = x+ y − 2n[(x+ y)/2n], ∀(x, y) ∈ H2
n.

Proof. Let f : Hn → Z2n by x 7→ x be a map. It is obvious that f is
onto and one-to-one. We shall show that f is homomorphism. There
are two cases:

(1) If x+ y < 2n then [(x+ y)/2n] = 0 thus we have:
f(x ⊕ y) = f(x + y − 2n[(x + y)/2n]) = f(x + y) = x+ y =
x+ y = f(x) + f(y).

(2) If x+ y ≥ 2n then [(x+ y)/2n] = 1 hence:
f(x ⊕ y) = f(x + y − 2n[(x + y)/2n]) = f(x + y − 2n) =
x+ y − 2n = x+ y + 2n = x+ y = f(x) + f(y).

Therefore (Hn,⊕) is a group isomorphic to (Z2n,+). Symbolically,
(Hn,⊕) ∼= (Z2n,+). □
Example 3.2. Let H4 = {0, 1, 2, 3, 4, 5, 6, 7} be a set. The group
(H4,⊕) can be shown as follows:

⊕ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7 0
2 2 3 4 5 6 7 0 1
3 3 4 5 6 7 0 1 2
4 4 5 6 7 0 1 2 3
5 5 6 7 0 1 2 3 4
6 6 7 0 1 2 3 4 5
7 7 0 1 2 3 4 5 6

Hence (H4,⊕) ∼= (Z8,+).

Theorem 3.3. Let n be a natural number and Hn = {0, 1, · · · , 2n−1}.
We define an operation ⊗ on Hn by:

x⊗ y =


x+ y − n[(x+ y)/n], if 0 ≤ x < n, 0 ≤ y < n
x+ y − n[(x+ y)/n] + n, if 0 ≤ x < n, n ≤ y < 2n
x+ y − n[(x+ y)/n], if n ≤ x < 2n, n ≤ y < 2n
x+ y − n[(x+ y)/n] + n, if n ≤ x < 2n, 0 ≤ y < n
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Then (Hn,⊗) is a group and (Hn,⊗) ∼= (Z2 × Zn,+).

Proof. Suppose that Z2×Zn = {(x, y)|x ∈ Z2, y ∈ Zn}. Now consider
the map

g : Hn −→ Z2 × Zn

g(x) =

{
(0̄, x) if 0 ≤ x < n
(1̄, x) if n ≤ x < 2n

We prove that g(x ⊗ y) = g(x) + g(y). To end this first suppose that
0 ≤ x < n, 0 ≤ y < n so 0 ≤ x+ y < 2n.

(1) If 0 ≤ x + y < n, then [(x + y)/n] = 0, thus g(x ⊗ y) =
g(x+y−n[(x+y)/n]) = g(x+y) = (0̄, x+ y) = (0̄, x)+(0̄, y) =
g(x) + g(y).

(2) If n ≤ x + y < 2n then [(x + y)/n] = 1, and so g(x ⊗ y) =
g(x + y − n[(x + y)/n]) = g(x + y − n) = (0̄, x+ y − n) =
(0̄, x) + (0̄, y) = g(x) + g(y).

Now let 0 ≤ x < n, n ≤ y < 2n. Then we have two cases:

(3) If n ≤ x+ y < 2n, then [(x+ y)/n] = 1 so we have g(x⊗ y) =
g(x + y − n[(x + y)/n] + n) = g(x + y − n + n) = g(x + y) =
(1̄, x+ y) = (0̄, x) + (1̄, y) = g(x) + g(y).

(4) If 2n ≤ x + y < 3n, then [(x + y)/n] = 2, hence g(x ⊗ y) =
g(x+y−n[(x+y)/n]+n) = g(x+y−2n+n) = g(x+y−n) =
(1, x+ y) = (0̄, x) + (1, y) = g(x) + g(y).

Consider n ≤ x < 2n, n ≤ y < 2n.

(5) If 2n ≤ x + y < 3n, then [(x + y)/n] = 2, thus g(x ⊗ y) =
g(x + y − n[(x + y)/n]) = g(x + y − 2n) = (0̄, x+ y − 2n) =
(1̄, x) + (1̄, y) = g(x) + g(y).

(6) If 3n ≤ x+ y < 4n, then [(x+ y)/n] = 3, hence:
g(x⊗y) = g(x+y−n[(x+y)/n]) = g(x+y−3n) = (0, x+ y − 3n) =
(1̄, x) + (1̄, y) = g(x) + g(y).

Finally, if n ≤ x < 2n, 0 ≤ y < n, the proof is similar above. Therefore
(Hn,⊗) ∼= (Z2 × Zn,+) and the proof is completed. □
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Example 3.4. Let H4 = {0, 1, 2, 3, 4, 5, 6, 7}. We can show the Cayley
table of the group (H4,⊗) as follow:

⊗ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 2 3 0 5 6 7 4
2 2 3 0 1 6 7 4 5
3 3 0 1 2 7 4 5 6
4 4 5 6 7 0 1 2 3
5 5 6 7 4 1 2 3 0
6 6 7 4 5 2 3 0 1
7 7 4 5 6 3 0 1 2

In this case we have (H4,⊗) ∼= (Z2 × Zn,+).

For a given n the following program written in MATLAB, shows that
the duplex (Hn,⊕,⊗), where two hyperoperations ⊕ and ⊗ are intro-
duced in Theorems (3.1) and (3.3) is a strongly duplex. We could check
that our claim is true for the natural numbers less than 230; of course
we guess that (Hn,⊕,⊗) is a strongly duplex for all natural numbers.
The program works in this way which first for a given n as the input
of (Hn,⊕), (Hn,⊗) group’s tables entitled a and b which every one is
isomorphic to (Z2n,+) and (Z2×Zn,+) groups, respectively. Then we
consider table k with 7 columns that the first row shows x, the second
y and the third z. In 4th to 7th rows which are related to x, y and z,
equations (x ⊕ y) ⊗ z, (x ⊗ y) ⊕ z, x ⊕ (y ⊗ z) and x ⊗ (y ⊕ z) are
obtained and finally the associativity of (Hn,⊕,⊗) are checked.

n=input(’please inter n=’);
a=zeros(2*n);
for x=0:2*n-1

for y=0:2*n-1
a(x+1,y+1)=x+y-2*n*(floor((x+y)/(2*n)));

end
end
a
b=zeros(2*n);
for x=0:n-1

for y=0:n-1
b(x+1,y+1)=x+y-n*(floor((x+y)/n));

end
end
for x=n:2*n-1
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for y=0:n-1
b(x+1,y+1)=x+y-n*(floor((x+y)/n))+n;

end
end
for x=n:2*n-1

for y=n:2*n-1
b(x+1,y+1)=x+y-n*(floor((x+y)/n));

end
end
for x=0:n-1

for y=n:2*n-1
b(x+1,y+1)=x+y-n*(floor((x+y)/n))+n;

end
end
b
f=(2*n)3;
k=zeros(f,7);
i=1;
for x=0:(2*n)-1

for y=0:(2*n)-1
for z=0:(2*n)-1
d1=a(x+1,y+1);
c1=b(1+d1,z+1);
d2=b(x+1,y+1);
c2=a(1+d2,z+1);
d3=b(y+1,z+1);
c3=a(x+1,1+d3);
d4=a(y+1,z+1);
c4=b(x+1,1+d4);
k(i,1)=x;
k(i,2)=y;
k(i,3)=z;
k(i,4)=c1;
k(i,5)=c2;
k(i,6)=c3;
k(i,7)=c4;
i=i+1;

end
end

end
k



ASSOCIATED (SEMI)HYPERGROUPS FROM DUPLEXES 89

ans1 = 1;
for i=1:f

if (k(i, 4) == k(i, 5) == k(i, 6) == k(i, 7))
elseif (k(i, 4) == k(i, 6) , k(i, 5) == k(i, 7))
elseif (k(i, 4) == k(i, 7) , k(i, 5) == k(i, 6))
else

ans1 = 0;
break;

end
end
if ans1 == 1

disp(’the duplex (Hn, ·, ◦) is strong duplex’)
else

disp(’the duplex (Hn, ·, ◦) is not strong duplex’)
end

Proposition 3.5. Let (D, ·, ◦) be a strong duplex. Then (D,⊙) is a
semihypergroup, where the hyperoperation ⊙ is defined on D as follows:

x⊙ y = {x · y, x ◦ y}, for all (x, y) ∈ D2.

Proof.

(x⊙ y)⊙ z = ∪t∈x⊙yt⊙ z
= (x · y)⊙ z ∪ (x ◦ y)⊙ z
= {(x · y) · z, (x · y) ◦ z, (x ◦ y) · z, (x ◦ y) ◦ z}.

On the other hand

x⊙ (y ⊙ z) = ∪t∈y⊙zx⊙ t
= x⊙ (y · z) ∪ x⊙ (y ◦ z)
= {x · (y · z), x ◦ (y · z), x · (y ◦ z), x ◦ (y ◦ z)}.

Since (D, ·, ◦) is a strong duplex, we have:

{(x ◦ y) · z, (x · y) ◦ z} = {x ◦ (y · z), x · (y ◦ z)}.

Therefore (x⊙ y)⊙ z = x⊙ (y ⊙ z). □

The associated semihypergroup (D,⊙) is called duplex semihyper-
group.



90 JAFARPOUR AND ALIZADEH

Example 3.6. (H4,⊙) is a hypergroup, where ⊙ is defined as follows:

⊙ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 2 3 0, 4 5 6 7 0, 4
2 2 3 0, 4 1, 5 6 7 0, 4 1, 5
3 3 0, 4 1, 5 2, 6 7 0, 4 1, 5 2, 6
4 4 5 6 7 0 1 2 3
5 5 6 7 0, 4 1 2 3 0, 4
6 6 7 0, 4 1, 5 2 3 0, 4 1, 5
7 7 0, 4 1, 5 2, 6 3 0, 4 1, 5 2, 6

Proposition 3.7. The duplex semihypergroup (D,⊙) is commutative
if and only if (D, ·, ◦) is commutative duplex.

Example 3.8. For every natural number n, (Hn,⊕,⊗) is a commuta-
tive duplex.

Definition 3.9. Let ∗ be a hyperoperation on H such that x ∗ y ̸= H,
for all (x, y) ∈ H2. We define the hyperoperation ∗c on H as follows:

x ∗c y = H ∖ (x ∗ y).
From now on we call ∗c, the complementary hyperoperation of ∗ on H.

Definition 3.10. A (semi)hypergroup (H, ∗) is called a complementary
feasible (semi)hypergroup if (H, ∗c) is a (semi)hypergroup.

Example 3.11. Let H = {0, 1, 2, 3}. Then the semihypergroup (H, ∗),
where the hyperoperation (∗) is as follows:

∗ 0 1 2 3
0 0 1 2, 3 3
1 1 0, 1 2, 3 2, 3
2 2 2, 3 0, 1 0, 1
3 2, 3 2, 3 0, 1 0, 1

is not a complementary feasible semihypergroup.

Example 3.12. Every group is a complementary feasible hypergroup.

For a given n, the following program written in MATLAB shows
that the hypergroup (Hn,⊙), where the hyperoperation ⊙ introduced
in Proposition (3.5) is complementary feasible for the natural numbers
less than 31; of course we also guess (Hn,⊙) is a complementary feasi-
ble hypergroup for all natural numbers such that n ≥ 2. This program
works in this way for a given n Cayley tables (Hn,⊕), (Hn,⊗) enti-
tled a and b then the Cayley table (Hn,⊙c) entitled c. The functions
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compute and compute1 obtain (x ⊙c y) ⊙c z and x ⊙c (y ⊙c z), for all
(x, y, z) and the function equal checks the associativity.

n=input(’please inter n=’);
a=zeros(2*n);
for x=0:2*n-1

for y=0:2*n-1
a(x+1,y+1)=x+y-2*n*(floor((x+y)/(2*n)));

end
end
a
b=zeros(2*n);
for x=0:n-1

for y=0:n-1
b(x+1,y+1)=x+y-n*(floor((x+y)/n));

end
end
for x=n:2*n-1

for y=0:n-1
b(x+1,y+1)=x+y-n*(floor((x+y)/n))+n;

end
end
for x=n:2*n-1

for y=n:2*n-1
b(x+1,y+1)=x+y-n*(floor((x+y)/n));

end
end
for x=0:n-1

for y=n:2*n-1
b(x+1,y+1)=x+y-n*(floor((x+y)/n))+n;

end
end
b
d=zeros(1,2*n);
for i=1:2*n

d(i)=i-1;
end
c=zeros(2*n,(2*n-1)*(2*n));
for i=1:2*n

s=1;
for j=1:2*n

k=a(i,j);
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k1=b(i,j);
for t=1:2*n
if (d(t)∼=k && d(t)∼=k1)

c(i,s)=d(t);
s=s+1;

end
end
if a(i,j) =b(i,j)

c(i,s)=-1;
s=s+1;

end
end

end
c
T=zeros(1,(2*n)∧3);
y=1;
f=zeros(1,2*n-1);
h=zeros(1,(2*n-1)*(2*n-1));
h1=zeros(1,(2*n-1)*(2*n-1));
for i=1:2*n

for j=1:2*n
for k=1:2*n
h=compute(c,i,j,k,n);
h1=compute1(c,i,j,k,n);
if (equal(h,h1,n))

T(y)=1;
y=y+1;

else
T(y)=0;
y=y+1;

end
end

end
end
if(isequal(T,ones(1,(2*n)∧3)))

disp(’the hypergroup (Hn,⊙) is a complementary feasible’);
else

disp(’the hypergroup (Hn,⊙) is not a complementary feasible’);
end

In this step the function compute calculate a⊙(b⊙c), for all (a, b, c) ∈
(Hn)

3.
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function h=compute(c,i,j,k,n)
t=k*(2*n-1);
t1=t-(2*n-1)+1;
s=1;
for m=t1:t;

f(s)=c(j,m);
s=s+1;

end
s1=1;
for m=1:(s-1)

g=f(m)+1;
if(g =0)

t=g*(2*n-1);
t1=t-(2*n-1)+1;
for x=t1:t

h(s1)=c(i,x);
s1=s1+1;

end
end

end

In this step the function compute1, calculate (a ⊙ b) ⊙ c for all
(a, b, c) ∈ (Hn)

3.
function h1=compute1(c,i,j,k,n) t=j*(2*n-1);
t1=t-(2*n-1)+1;
s=1;
for m=t1:t;

f(s)=c(i,m);
s=s+1;

end
s1=1;
for m=1:(s-1)

g=f(m)+1;
if(g =0)

t=k*(2*n-1);
t1=t-(2*n-1)+1;
for x=t1:t

h1(s1)=c(g,x);
s1=s1+1;

end
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end
end

In this step the function equals shows the equality between two sets
(a⊙ b)⊙ c and a⊙ (b⊙ c), for all (a, b, c) ∈ (Hn)

3.
function e=equal(h,h1,n)
r(1)=h(1);
k=2;
find=0;
for i=2:length(h)

find=0;
if(h(i) =-1)
for j=1:k-1

if (h(i)==r(j))
find=1;
break;

end
end
if(find==0)

r(k)=h(i);
k=k+1;

end
end

end
r1(1)=h1(1);
k=2;
find=0;
for i=2:length(h1)

find=0;
if(h1(i) =-1)
for j=1:k-1

if (h1(i)==r1(j))
find=1;
break;

end
end
if(find==0)

r1(k)=h1(i);
k=k+1;

end
end
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end
r2=sort(r);
r3=sort(r1);
if (isequal(r2,r3))

e=1;
else

e=0;
end

4. conclusion

In this paper we introduce and analyze a new class of (semi)hypergroups
that derived from strongly duplexes. Several properties of the derived
(semi)hypergroups are investigated. This research can be continued in
the study of some particular classes of (semi)hypergroups, for instance.
Two open problems are raised that they can be incipience of a new
work. The problems are:
1) Let n be a natural number. Then (Hn,⊕,⊗) is a strongly duplex.
2) Let n ≥ 2 be a natural number. Then (Hn,⊙) is a complementary
feasible hypergroup.
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