
www.theoryofgroups.ir

International Journal of Group Theory
ISSN (print): 2251-7650, ISSN (on-line): 2251-7669
Vol. 8 No. 3 (2019), pp. 1-8.
(C) 2019 University of Isfahan

www.ui.ac.ir

ON FINITE GROUPS HAVING A CERTAIN NUMBER OF CYCLIC SUBGROUPS

SAJJAD MAHMOOD ROBATI

Communicated by Mahmut Kuzucuoğlu

Abstract

Let G be a finite group. In this paper, we study the structure of finite groups having $|G|-r$ cyclic subgroups for $3 \leq r \leq 5$.

1. Introduction

Let G be a finite group and $C(G)$ be the poset of cyclic subgroups of G. Some results show that the structure of $C(G)$ has an influence on the algebraic structure of G. In Main Theorem of [8], Tărnăuceanu proved that the finite group G has $|G|-1$ cyclic groups if and only if G is isomorphic to Z_{3}, Z_{4}, S_{3}, or D_{8}. In the end of that paper the author states the following problem:

Open Problem. Describe the finite group G satisfying $|C(G)|=|G|-r$ where $2 \leq r \leq|G|-1$.
In [9], Tărnăuceanu solved this open problem for $|C(G)|=|G|-2$. In this paper, we describe the structure of finite groups with $|C(G)|=|G|-r$ in which $3 \leq r \leq 5$.

We summarize our notations. $\operatorname{cl}(a)$ denotes the conjugacy class of a in $G, \pi(G)$ denotes the set of prime numbers dividing the order of $G, \phi(n)$ denotes the Euler function that counts the positive integers less than n that are relatively prime to $n, F(G)$ denotes the subgroup generated by all normal nilpotent subgroups of $G, O_{p}(G)$ denotes the unique maximal normal p-subgroup of $G, F_{p, q}$ denotes the Frobenius group of order $p q$ and $o(x)$ denotes the order of x.

[^0]
2. Preliminaries

Lemma 2.1. Let G be a finite group and $p \in \pi(G)$. Then the number of distinct subgroups of order p in G is $k p+1$ for some non-negative integer k.

We denote with $c_{n}(G)$ the number of cyclic subgroups of order 2^{n} in a finite 2 -group G. And, a group G of order p^{m} is said to be of maximal class if $m>2$ and $\operatorname{cl}(G)=m-1$.

Theorem 2.2. [1, Theorem 1.17] Suppose that a 2 -group G is neither cyclic nor of maximal class. Then $c_{n}(G)$ is even for $n>1$ and $c_{1}(G) \equiv 3(\bmod 4)$.

Remark 2.3 ([1]). For each 2-group $G, c_{2}(G)=1$ if and only if G is either cyclic or dihedral and $c_{2}(G)=3$ if and only if G is either Q_{8} or $S D_{16}$.

Theorem 2.4. [1, Corollary 1.7 and Theorem 1.2] Let G be a 2-group of maximal class. Then it is either $D_{2^{n}}, Q_{2^{n}}$, or $S D_{2^{n+1}}$ for $n \geq 3$.

In this paper, $\Omega_{n}(G)=\left\langle x \in G \mid o(x) \leq p^{n}\right\rangle$ and $\mho_{n}(G)=\left\langle x^{p^{n}} \mid x \in G\right\rangle$. In the next theorem, 2-groups of order $>2^{3}$ with $c_{2}(G)=2$ are characterized.

Theorem 2.5. [1, Theorem 43.6] and [7, Theorem 5.1 and 5.2 and Proposition 1.4] Suppose that a group G of order $2^{m}>2^{3}$ has exactly two cyclic subgroups U and V of order 4 ; set $A=\langle U, V\rangle$. Then A is abelian of type $(4,2)$ and one of the following holds:
(a) $G \cong M_{2^{m}}$.
(b) G is abelian of type $\left(2^{m-1}, 2\right)$.
(c) $G=\left\langle a, b \mid a^{2^{m-2}}=b^{8}=1, a^{b}=a^{-1}, a^{2^{m-3}}=b^{4}\right\rangle$, where $m \geq 5$.
(d) $G=D_{2^{m-1}} \times C_{2}$.
(e) $G=\left\langle b, t \mid b^{2^{m-2}}=t^{2}=1, b^{t}=b^{-1+2^{m-4}} u, u^{2}=[u, t]=1, b^{u}=b^{1+2^{m-3}}, m \geq 5\right\rangle$.

In the next theorems, 2 -groups of order $>2^{4}$ with $c_{2}(G)=4$ are characterized.

Theorem 2.6. [6, Theorem 2.1 and Proposition 1.3 and 1.4] and [7, Theorem 2.1] Let G be a 2-group of order $>2^{4}$ with $c_{2}(G)=4$ and $\left|\Omega_{2}(G)\right|=2^{4}$. Then one of the following holds:
(a) $G \cong D_{8} * C$ (the central product) where C is cyclic of order ≥ 4.
(b) $G \cong Q_{8} S$ where S is cyclic of order ≥ 16 and Q_{8} is normal in G.
(c) $G=\langle E, a, b\rangle$, in which $E \cong E_{8}, o(b)=8, o(a)=2^{n}$ and $a^{2^{n-2}}=v$ is of order 4. Moreover $A=\Omega_{2}(G)=\langle E, v\rangle \cong C_{4} \times C_{2} \times C_{2}$.
(d) $G=\langle E, a\rangle$, in which $E \cong E_{8}, o(a)=2^{n}$ and $a^{2^{n-2}}=v$ is of order 4. Moreover $A=\Omega_{2}(G)=$ $\langle E, v\rangle \cong C_{4} \times C_{2} \times C_{2}$.

In case (d) of Theorem 2.6, if $n=2$, then $a=v$ and so $G \cong C_{4} \times C_{2} \times C_{2}$ contradicting $|G|>2^{4}$. Hence, G has some element of order at least 8 .

Theorem 2.7. [6, Theorem 2.2] Let G be a 2-group of order $>2^{4}$ with $c_{2}(G)=4$ and $\left|\Omega_{2}(G)\right|>2^{4}$. If G has a quaternion subgroup Q, then Q is normal in $G, C=C_{G}(Q)$ is cyclic of order $2^{n}, n \geq 2$, $G=(Q * C)\langle t\rangle$, where t is an involution such that $Q\langle t\rangle \cong S D_{2^{4}}$ and $\langle t\rangle C \cong D_{2^{n+1}}$. We have $|Z(G)|=2,|G|=2^{n+3}$, and $\Omega_{2}(G)=G$.

In Theorem 2.7, since $Q\langle t\rangle \cong S D_{2^{4}}$ is a subgroup of G, then G has some element of order 8 .
Theorem 2.8. [6, Theorem 2.4, 2.5, and 2.6] Let G be a 2 -group of order $>2^{4}$ with $c_{2}(G)=4$ and $\left|\Omega_{2}(G)\right|>2^{4}$. Suppose that G has no subgroup isomorphic to Q_{8}. Then
(a) $G=\Omega_{2}(G)$ and $\Omega_{2}(G)=B\langle t\rangle$ where B is abelian of type $\left(2^{m}, 2,2\right), m \geq 2$, and t is an involution acting invertingly on B.
(b) $\left|G: \Omega_{2}(G)\right| \geq 4$ and $G=\langle a, b, t| a^{8}=b^{8}=t^{2}=1 ; a^{2}=v ; a^{4}=z ; b^{2}=e v ; a^{b}=a^{-1} u ; e^{2}=$ $u^{2}=[e, v]=[u, v]=[e, u]=[a, u]=[t, e]=[t, u]=1, e^{a}=e z ; e^{b}=e z ; u^{b}=u z ; v^{t}=v^{-1} ; a^{t}=$ $\left.e v a^{-1} ; b^{t}=e u v b^{-1}\right\rangle$.
(c) $\left|G: \Omega_{2}(G)\right|=2$ and $G=\langle b, e, t| b^{8}=e^{2}=t^{2}=1 ;(t b)^{2}=a ; a^{2^{n}}=1, n \geq 3, a^{2^{n-2}}=v ; a^{2^{n-1}}=$ $\left.z, b^{2}=u v, u^{2}=[b, e]=[a, e]=[a, u]=[u, e]=[t, e]=[t, u]=1, u^{b}=u z ; a^{b}=a^{-1} ; a^{t}=a^{-1}\right\rangle$.

In the previous theorems, we observe that each 2-group of order $>2^{4}$ with $c_{2}(G)=4$ has some element of order at least 8, except for some cases of Theorem 2.6(a) and Theorem 2.8(a).

Lemma 2.9. Let G be a finite group with the Sylow p-subgroup P and $\pi(G)=\{p, q\}$. Assume that $a \in G$ and p divides $o(a)$ if and only if a is of prime power order. Then G is a Frobenius group with kernel P.

Proof. Since P is normal in G, then $G=P Q$ where Q is a Sylow q-subgroup of G. On the other hand, if $x \in C_{Q}(P), p$ and q divide $o(x)$ which is a contradiction. Therefore, By Problem 7.1 of [5], G is a Frobenius group with kernel P.

3. Main Theorem

Theorem 3.1. Let G be a finite group. Then
(1) $|C(G)|=|G|-3$ if and only if $G \cong Z_{5}, Q_{8}$, or D_{10}.
(2) $|C(G)|=|G|-4$ if and only if $G \cong Z_{8}, Z_{3} \times Z_{3}, Z_{6} \times Z_{2}, Z_{4} \times Z_{2} \times Z_{2}, D_{16},\left(Z_{4} \times Z_{2}\right) \rtimes$ $Z_{2},\left(Z_{3} \times Z_{3}\right) \rtimes Z_{2}, D_{8} \times Z_{2} \times Z_{2}$, or $D_{8} * Z_{4}$ (the central product D_{8} and $\left.Z_{4}\right)$.
(3) $|C(G)|=|G|-5$ if and only if $G \cong Z_{7}, Z_{3} \times Z_{6}$, Dic c_{12}, D_{14}, or $F_{5,4}$ (where Dic c_{12} is the dicyclic group of order 12).

Proof. We know that

$$
\begin{equation*}
|G|=\sum_{i=1}^{k} n_{i} \phi\left(d_{i}\right) \text { and }|C(G)|=\sum_{i=1}^{k} n_{i} \tag{3.1}
\end{equation*}
$$

in which d_{i} 's are the positive divisors of $|G|$ and n_{i} 's are the number of cyclic subgroups of order d_{i} in G for $1 \leq i \leq k$. If $|C(G)|=|G|-r$ then we can obtain that

$$
\begin{equation*}
\sum_{i=1}^{k} n_{i}\left(\phi\left(d_{i}\right)-1\right)=r . \tag{3.2}
\end{equation*}
$$

Suppose that $n=\left(n_{1}, \ldots, n_{k}\right), d=\left(d_{1}, \ldots, d_{k}\right), P_{q}$ is a Sylow q-subgroup of G, and A is a cyclic subgroup of order 4. Applying equation 3.2 and Lemma 2.1, we distinguish several cases for r, n, and d.
(1) $r=3$.

Case (1): $n=(1, m)$ and $d=(5,2)$.
If $m=0$, then $G \cong Z_{5}$. Otherwise, by Lemma 2.9, G is a Frobenius group with kernel P_{5} of order 5 . By Theorem 13.3(1),(3) of [3], we deduce that $G \cong D_{10}$.

Case (2): $n=(3, m)$ and $d=(4,2)$.
G is a 2 -group and $c_{2}(G)=3$. By Remark 2.3 we obtain that $G \cong Q_{8}$ or $S D_{16}$ and since $S D_{16}$ has some elements of order 8 , then $G \cong Q_{8}$.

Case (3): $n=(2,1, m)$ and $d=(4,3,2)$.
By Lemma 2.9 and Theorem 13.3(1) of [3] $G \cong S_{3}$ which contradicts the hypothesis.

Case (4): $n=(1,1,1, m)$ and $d=(6,4,3,2)$.
Observe that A and $P_{3} \cong Z_{3}$ are normal in G and so $A P_{3} \cong Z_{4} \times Z_{3} \cong Z_{12}$ is a subgroup of G which is impossible by the hypothesis.

Case (5): $n=(2,1, m)$ and $d=(6,3,2)$.
Assume that $G=P_{2} P_{3}$ in which P_{3} is normal of order 3 and P_{2} is an elementary abelian 2-group. Since each element of order 6 is a product of an element of order 3 and an element of order 2, then these elements belong to $C_{G}\left(P_{3}\right)$ and $C_{G}\left(P_{3}\right) \cong Z_{3} \times Z_{2} \times \cdots \times Z_{2} \subseteq P_{3} P_{2}$. Furthermore, by Theorem $2.2 c_{1}\left(C_{G}\left(P_{3}\right)\right)=1$ or $4 k+3$, therefore the number of cyclic subgroups of order 6 is 1 or $4 k+3$ and so G can not have exactly 2 subgroups of order 6 .
(2) $r=4$.

Case (1): $n=(1,1, m)$ and $d=(5,3,2)$.
Observe that $P_{3} \cong Z_{3}$ and $P_{5} \cong Z_{5}$ are normal in G and so $P_{3} P_{5} \cong Z_{15}$ is a subgroup of G, which is impossible.

Case (2) : $n=(1,1, m)$ and $d=(8,4,2)$.

Since $c_{2}(G)=1$, then by Remark $2.3, G \cong Z_{8}$ or D_{16}.

Case (3): $n=(1,1, m)$ and $d=(5,4,2)$.
Observe that A and $P_{5} \cong Z_{5}$ are normal in G and so $A P_{5} \cong Z_{20}$ is a subgroup of G, which is impossible.

Case (4): $n=(4, m)$ and $d=(3,2)$.
If $P_{3} \cong Z_{3}$, then by Main Theorem of [2] G is a Frobenius group with kernel P_{3} of order 3 and Theorem 13.3(1) of [3] $G \cong S_{3}$ which is impossible. Otherwise, $Z_{3} \times Z_{3} \subseteq P_{3}$ and $Z_{3} \times Z_{3}$ has 4 subgroups of order 3 , then by Main Theorem of [2], either $G \cong Z_{3} \times Z_{3}$ or $G \cong\left(Z_{3} \times Z_{3}\right) \rtimes Z_{2}$.

Case (5) : $n=(3,1, m)$ and $d=(4,3,2)$.
By Lemma 2.9 G is a Frobenius group with kernel P_{3} of order 3 . On the other hand, by Theorem $13.3(1)$ of $[3] P \cong Z_{2}$ which is a contradiction.

Case (6) : $n=(3,1, m)$ and $d=(6,3,2)$.
Since $P_{3} \cong Z_{3} \cong\langle x\rangle$ is normal in G and P_{2} is an elementary abelian 2-group, then $G^{\prime} \subseteq P_{3}$ and $|c l(x)|=|G| /\left|C_{G}(x)\right| \leq\left|G^{\prime}\right| \leq 3$, and either $x \in Z(G)$ or $|c l(x)|=2$. On the other hand, since G has 3 cyclic subgroups of order 6 , we can obtain that $C_{G}(x) \cong Z_{2} \times Z_{2} \times Z_{3}$. Thus $G \cong Z_{6} \times Z_{2}$ or $\left(Z_{6} \times Z_{2}\right) \rtimes Z_{2}$, but using GAP [4], we know that $\left(Z_{6} \times Z_{2}\right) \rtimes Z_{2}$ has some element of order 4 .

Case (7) : $n=(1,2,1, m)$ and $d=(6,4,3,2)$.
Since G has 2 cyclic subgroups of order 4 , then $c_{2}\left(P_{2}\right) \leq 2$ and so by Theorem 2.5, $P_{2} \cong Z_{4} \times Z_{2}, D_{8} \times Z_{2}, Z_{4}$, or D_{8} and $Q \cong Z_{3}$. Using GAP [4], we obtain that such group does not exist.

Case (8) : $n=(2,1,1, m)$ and $d=(6,4,3,2)$.
Observe that A and $P_{3} \cong Z_{3}$ are normal in G and so $A P_{3} \cong Z_{12}$ which is impossible by the hypothesis.

Case (9): $n=(4, m)$ and $d=(4,2)$.
Observe that G is a 2-group with $c_{2}(G)=4$ and since G does not some element of order 8 , then by Theorems 2.6-2.8 and using GAP[4], we obtain that $G \cong Z_{4} \times Z_{2} \times Z_{2},\left(Z_{4} \times Z_{2}\right) \rtimes$ $Z_{2}, D_{8} \times Z_{2} \times Z_{2}$, or $D_{8} * Z_{4}$ (Central product) .
(3) $r=5$.

Case (1) : $n=(1, m)$ and $d=(7,2)$

If $m=0$, then $G \cong Z_{7}$. Otherwise, by Lemma 2.9, G is a Frobenius group with kernel P_{7} of order 7. By Theorem 13.3(1) of [3] G is isomorphic to D_{14}.

Case (2) : $n=(1,1,1, m)$ and $d=(5,4,3,2)$
We observe that P_{3} and P_{5} are normal in G and $P_{3} P_{5} \cong Z_{15}$ is a subgroup of G which is impossible.

Case (3): $n=(1,2, m)$ and $d=(5,4,2)$
By Lemma 2.9 G is a Frobenius group with kernel P_{5} of order 5. By Theorem 13.3(1) of [3], we deduce that $G \cong F_{5,4}$.

Case (4): $n=(1,1,1, m)$ and $d=(6,5,3,2)$.
Observe that P_{3}, P_{5} are normal in G. Thus, $P_{3} P_{5} \cong Z_{15}$ which is a contradiction.

Case (5) : $n=(1,1,1, m)$ and $d=(8,4,3,2)$.
Since A and P_{3} are normal in G, then $A P_{3} \cong Z_{4} \times Z_{3} \cong Z_{12}$ is a subgroup of G which is impossible.

Case (6): $n=(1,2, m)$ and $d=(8,4,2)$.
Since G is a 2-group and $c_{3}(G)=1$, then by Theorem 2.2, G is of maximal class and so by Theorem 2.4, G is isomorphic to either $D_{2^{n}}, Q_{2^{n}}$, or $S D_{2^{n+1}}$ for $n \geq 3$. However, we have $c_{2}(G)=2$ and so this case is impossible by Theorem 2.5.

Case (7): $n=(5, m)$ and $d=(4,2)$.
Since G is a 2 -group and $c_{2}(G)=5$, then by Theorem 2.2, G is of maximal class and so by Theorem 2.4, G is isomorphic to either $D_{2^{n}}, Q_{2^{n}}$, or $S D_{2^{n+1}}$ for $n \geq 3$. Since $D_{2^{n}}, Q_{2^{n}}$, and $S D_{2^{n}}$ have some element of order 8 for $n \geq 4$, then G is isomorphic to D_{8} or Q_{8} which is impossible by Remark 2.3.

Case (8): $n=(4,1, m)$ and $d=(6,3,2)$.
We can see that $G=P_{2} P_{3}$ in which P_{3} is normal of order 3 and P_{2} is an elementary abelian 2-group. Additionally, $C_{G}\left(P_{2}\right) \cong Z_{3} \times Z_{2} \times \cdots \times Z_{2}$. Since each element of order 6 is a product of an element of order 3 and an element of order 2, then such elements belong to $C_{G}\left(P_{2}\right)$. Thus, since by Theorem $2.2 c_{1}\left(C_{Q}\left(P_{2}\right)\right)=1$ or $4 k+3$, then G does not have exactly 4 subgroups of order 6.

Case (9): $n=(3,1,1, m)$ and $d=(6,4,3,2)$.

Since A and P_{3} are normal in G, then $A P_{3} \cong Z_{4} \times Z_{3} \cong Z_{12}$ is a subgroup of G which is a contradiction.

Case (10): $n=(2,2,1, m)$ and $d=(6,4,3,2)$.
We can see that $G=P_{2} P_{3}$ in which P_{3} is normal of order 3 and P_{2} is a 2-group with $c_{2}(P)=2$. If x is of order 4 , then $x \notin C_{Q}\left(P_{2}\right), C_{Q}\left(P_{2}\right)$ is an elementary abelian 2-group, and $C_{G}\left(P_{2}\right) \cong Z_{3} \times Z_{2} \times \cdots \times Z_{2}$. Since each element of order 6 belongs to $C_{G}\left(P_{2}\right)$ and by Theorem $2.2 c_{1}\left(C_{Q}\left(P_{2}\right)\right)=1$ or $4 k+3$, then G does not exactly 2 subgroups of order 6 .

Case (11): $n=(1,4, m)$ and $d=(4,3,2)$.
By Lemma $2.9 A P_{3}$ is a Frobenius group with kernel A of order 4. By Theorem 13.3(1) of [3] we obtain that $\left|P_{3}\right|=3$ and so $A P_{3}$ is a Frobenius group of order 12 contradicting the fact that A_{4} is the only Frobenius group of order 12 and it does not have any element of order 4.

Case (12) : $n=(4,1, m)$ and $d=(4,3,2)$.
By Lemma $2.9 G$ is a Frobenius group with kernel P_{3} of order 3 and by Theorem 13.3(1) of [3] G is of order 6 which contradicts the hypothesis.

Case (13) : $n=(1,4, m)$ and $d=(6,3,2)$.
Since G has 4 subgroups of order 3 , then $P_{3} \cong Z_{3}$ or $Z_{3} \times Z_{3}$. If $P_{3} \cong Z_{3}$, since G has 1 subgroup of order 6 , then $C_{G}\left(P_{3}\right) \cong Z_{6}$ is a subset of $F(G)$. Therefore $F(G)=O_{2}(G) \times$ $O_{3}(G)=O_{2}(G) \times P_{3}$ and so P_{3} is normal in G which is a contradiction.

Now, $P_{3} \cong Z_{3} \times Z_{3}$ has 4 subgroups of order 3 , then P_{3} is normal in G. Assume that B is the cyclic subgroup of order 6 in G. Since P_{2} is an elementary abelian 2-group, then $G^{\prime} \subseteq P_{3}$ and so $\left|P_{2}\right|=|c l(y)| \leq\left|G^{\prime}\right| \leq 9$ for $y \in P_{3} \backslash B$. Using GAP [4], we get that $G \cong Z_{3} \times Z_{6}$.

Case (14): $n=(1,3,1, m)$ and $d=(6,4,3,2)$.
Observe that $G=P_{2} P_{3}$ where $c_{2}\left(P_{2}\right) \leq 3$ and $P_{3} \cong Z_{3}$ is normal in G. By Remark 2.3 and Theorem 2.5 and 2.4, P_{2} is isomorphic to $Q_{8}, D_{8}, Z_{4}, Z_{2} \times D_{8}$, or $Z_{2} \times Z_{4}$. Using GAP[4], we conclude that $G \cong D i c_{12}$, that is the dicyclic group of order 12 .

References

[1] Y. Berkovich and Z. Janko, Groups of Prime Power Order, 1, Walter de Gruyter GmbH Co. KG, Berlin, 2008.
[2] M. Deaconescu, Classification of finite groups with all elements of prime order, Proc. Amer. Math. Soc., 106 no. 3 (1989) 625-629.
[3] L. Dornhoff, Group representation theory. Part A: Ordinary representation theory, Pure and Applied Mathematics, 7, Marcel Dekker, Inc., New York, 1971.
[4] The GAP group, GAP-Groups, Algorithms, and Programming, Version 4.7.4, http://www.gap-system.org, 2014.
DOI: http://dx.doi.org/10.22108/ijgt.2018.108302.1458
[5] I. M. Isaacs, Character theory of finite groups, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976.
[6] Z. Janko, Finite 2-groups with exactly four cyclic subgroups of order 2^{n}, J. Reine Angew. Math., 566 (2004) $135-181$.
[7] Z. Janko, Finite 2-groups G with $\left|\Omega_{2}(G)\right|=16$, Glas. Mat, 40 no. 1 (2005) 71-86.
[8] M. Tărnăuceanu, Finite groups with a certain number of cyclic subgroups, Amer. Math. Monthly, 122 (2015) 275-276.
[9] M. Tărnăuceanu, Finite groups with a certain number of cyclic subgroups II, arXiv:1604.04974.

Sajjad Mahmood Robati

Department of Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
Email: sajjad.robati@gmail.com, mahmoodrobati@sci.ikiu.ac.ir

[^0]: MSC(2010): Primary: 20D99; Secondary: 20E34.
 Keywords: Finite groups, cyclic subgroups, p-groups.
 Received: 30 November 2017, Accepted: 05 March 2018.

