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Abstract. Let G be a finite group. In this paper, we study the structure of finite groups having

|G| − r cyclic subgroups for 3 ≤ r ≤ 5.

1. Introduction

Let G be a finite group and C(G) be the poset of cyclic subgroups of G. Some results show that

the structure of C(G) has an influence on the algebraic structure of G. In Main Theorem of [8],

Tărnăuceanu proved that the finite group G has |G| − 1 cyclic groups if and only if G is isomorphic

to Z3, Z4, S3, or D8. In the end of that paper the author states the following problem:

Open Problem. Describe the finite group G satisfying |C(G)| = |G| − r where 2 ≤ r ≤ |G| − 1.

In [9], Tărnăuceanu solved this open problem for |C(G)| = |G| − 2. In this paper, we describe the

structure of finite groups with |C(G)| = |G| − r in which 3 ≤ r ≤ 5.

We summarize our notations. cl(a) denotes the conjugacy class of a in G, π(G) denotes the set

of prime numbers dividing the order of G, ϕ(n) denotes the Euler function that counts the positive

integers less than n that are relatively prime to n, F (G) denotes the subgroup generated by all normal

nilpotent subgroups of G, Op(G) denotes the unique maximal normal p-subgroup of G, Fp,q denotes

the Frobenius group of order pq and o(x) denotes the order of x.
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2. Preliminaries

Lemma 2.1. Let G be a finite group and p ∈ π(G). Then the number of distinct subgroups of order

p in G is kp+ 1 for some non-negative integer k.

We denote with cn(G) the number of cyclic subgroups of order 2n in a finite 2-group G. And, a

group G of order pm is said to be of maximal class if m > 2 and cl(G) = m− 1.

Theorem 2.2. [1, Theorem 1.17] Suppose that a 2-group G is neither cyclic nor of maximal class.

Then cn(G) is even for n > 1 and c1(G) ≡ 3(mod 4).

Remark 2.3 ([1]). For each 2-group G, c2(G) = 1 if and only if G is either cyclic or dihedral and

c2(G) = 3 if and only if G is either Q8 or SD16.

Theorem 2.4. [1, Corollary 1.7 and Theorem 1.2] Let G be a 2-group of maximal class. Then it is

either D2n, Q2n, or SD2n+1 for n ≥ 3.

In this paper, Ωn(G) = ⟨x ∈ G|o(x) ≤ pn⟩ and ℧n(G) = ⟨xpn |x ∈ G⟩. In the next theorem, 2-groups

of order > 23 with c2(G) = 2 are characterized.

Theorem 2.5. [1, Theorem 43.6] and [7, Theorem 5.1 and 5.2 and Proposition 1.4] Suppose that a

group G of order 2m > 23 has exactly two cyclic subgroups U and V of order 4; set A = ⟨U, V ⟩. Then

A is abelian of type (4, 2) and one of the following holds:

(a) G ∼= M2m.

(b) G is abelian of type (2m−1, 2).

(c) G = ⟨a, b|a2m−2
= b8 = 1, ab = a−1, a2

m−3
= b4⟩, where m ≥ 5.

(d) G = D2m−1 × C2.

(e) G = ⟨b, t|b2m−2
= t2 = 1, bt = b−1+2m−4

u, u2 = [u, t] = 1, bu = b1+2m−3
,m ≥ 5⟩.

In the next theorems, 2-groups of order > 24 with c2(G) = 4 are characterized.

Theorem 2.6. [6, Theorem 2.1 and Proposition 1.3 and 1.4] and [7, Theorem 2.1] Let G be a 2-group

of order > 24 with c2(G) = 4 and |Ω2(G)| = 24. Then one of the following holds:

(a) G ∼= D8 ∗ C (the central product) where C is cyclic of order ≥ 4.

(b) G ∼= Q8S where S is cyclic of order ≥ 16 and Q8 is normal in G.

(c) G = ⟨E, a, b⟩, in which E ∼= E8, o(b) = 8, o(a) = 2n and a2
n−2

= v is of order 4. Moreover

A = Ω2(G) = ⟨E, v⟩ ∼= C4 × C2 × C2.

(d) G = ⟨E, a⟩, in which E ∼= E8, o(a) = 2n and a2
n−2

= v is of order 4. Moreover A = Ω2(G) =

⟨E, v⟩ ∼= C4 × C2 × C2.

In case(d) of Theorem 2.6, if n = 2, then a = v and so G ∼= C4 × C2 × C2 contradicting |G| > 24.

Hence, G has some element of order at least 8.
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Theorem 2.7. [6, Theorem 2.2] Let G be a 2-group of order > 24 with c2(G) = 4 and |Ω2(G)| > 24.

If G has a quaternion subgroup Q, then Q is normal in G, C = CG(Q) is cyclic of order 2n, n ≥ 2,

G = (Q ∗ C)⟨t⟩, where t is an involution such that Q⟨t⟩ ∼= SD24 and ⟨t⟩C ∼= D2n+1. We have

|Z(G)| = 2, |G| = 2n+3, and Ω2(G) = G.

In Theorem 2.7, since Q⟨t⟩ ∼= SD24 is a subgroup of G, then G has some element of order 8.

Theorem 2.8. [6, Theorem 2.4, 2.5, and 2.6] Let G be a 2-group of order > 24 with c2(G) = 4 and

|Ω2(G)| > 24. Suppose that G has no subgroup isomorphic to Q8. Then

(a) G = Ω2(G) and Ω2(G) = B⟨t⟩ where B is abelian of type (2m, 2, 2), m ≥ 2, and t is an

involution acting invertingly on B.

(b) |G : Ω2(G)| ≥ 4 and G = ⟨a, b, t|a8 = b8 = t2 = 1; a2 = v; a4 = z; b2 = ev; ab = a−1u; e2 =

u2 = [e, v] = [u, v] = [e, u] = [a, u] = [t, e] = [t, u] = 1, ea = ez; eb = ez;ub = uz; vt = v−1; at =

eva−1; bt = euvb−1⟩.
(c) |G : Ω2(G)| = 2 and G = ⟨b, e, t|b8 = e2 = t2 = 1; (tb)2 = a; a2

n
= 1, n ≥ 3, a2

n−2
= v; a2

n−1
=

z, b2 = uv, u2 = [b, e] = [a, e] = [a, u] = [u, e] = [t, e] = [t, u] = 1, ub = uz; ab = a−1; at = a−1⟩.

In the previous theorems, we observe that each 2-group of order > 24 with c2(G) = 4 has some

element of order at least 8, except for some cases of Theorem 2.6(a) and Theorem 2.8(a).

Lemma 2.9. Let G be a finite group with the Sylow p-subgroup P and π(G) = {p, q}. Assume that

a ∈ G and p divides o(a) if and only if a is of prime power order. Then G is a Frobenius group with

kernel P .

Proof. Since P is normal in G, then G = PQ where Q is a Sylow q-subgroup of G. On the other hand,

if x ∈ CQ(P ), p and q divide o(x) which is a contradiction. Therefore, By Problem 7.1 of [5], G is a

Frobenius group with kernel P . □

3. Main Theorem

Theorem 3.1. Let G be a finite group. Then

(1) |C(G)| = |G| − 3 if and only if G ∼= Z5, Q8, or D10.

(2) |C(G)| = |G| − 4 if and only if G ∼= Z8, Z3 × Z3, Z6 × Z2, Z4 × Z2 × Z2, D16, (Z4 × Z2) ⋊
Z2, (Z3 × Z3)⋊ Z2, D8 × Z2 × Z2, or D8 ∗ Z4(the central product D8 and Z4).

(3) |C(G)| = |G|−5 if and only if G ∼= Z7, Z3×Z6, Dic12, D14, or F5,4(where Dic12 is the dicyclic

group of order 12).

Proof. We know that

(3.1) |G| =
k∑

i=1

niϕ(di) and |C(G)| =
k∑

i=1

ni

DOI: http://dx.doi.org/10.22108/ijgt.2018.108302.1458

http://dx.doi.org/10.22108/ijgt.2018.108302.1458


4 Int. J. Group Theory 8 no. 3 (2019) 1-8 S. M. Robati

in which di’s are the positive divisors of |G| and ni’s are the number of cyclic subgroups of order di in

G for 1 ≤ i ≤ k. If |C(G)| = |G| − r then we can obtain that

(3.2)

k∑
i=1

ni(ϕ(di)− 1) = r.

Suppose that n = (n1, . . . , nk), d = (d1, . . . , dk), Pq is a Sylow q-subgroup of G, and A is a cyclic sub-

group of order 4. Applying equation 3.2 and Lemma 2.1, we distinguish several cases for r, n, and d.

(1) r = 3.

Case (1):n = (1,m) and d = (5, 2).

If m = 0, then G ∼= Z5. Otherwise, by Lemma 2.9, G is a Frobenius group with kernel P5

of order 5. By Theorem 13.3(1),(3) of [3], we deduce that G ∼= D10.

Case (2):n = (3,m) and d = (4, 2).

G is a 2-group and c2(G) = 3. By Remark 2.3 we obtain that G ∼= Q8 or SD16 and since

SD16 has some elements of order 8, then G ∼= Q8.

Case (3):n = (2, 1,m) and d = (4, 3, 2).

By Lemma 2.9 and Theorem 13.3(1) of [3] G ∼= S3 which contradicts the hypothesis.

Case (4):n = (1, 1, 1,m) and d = (6, 4, 3, 2).

Observe that A and P3
∼= Z3 are normal in G and so AP3

∼= Z4 × Z3
∼= Z12 is a subgroup

of G which is impossible by the hypothesis.

Case (5):n = (2, 1,m) and d = (6, 3, 2).

Assume that G = P2P3 in which P3 is normal of order 3 and P2 is an elementary abelian

2-group. Since each element of order 6 is a product of an element of order 3 and an element

of order 2, then these elements belong to CG(P3) and CG(P3) ∼= Z3 × Z2 × · · · × Z2 ⊆ P3P2.

Furthermore, by Theorem 2.2 c1(CG(P3)) = 1 or 4k + 3, therefore the number of cyclic sub-

groups of order 6 is 1 or 4k + 3 and so G can not have exactly 2 subgroups of order 6.

(2) r = 4.

Case (1):n = (1, 1,m) and d = (5, 3, 2).

Observe that P3
∼= Z3 and P5

∼= Z5 are normal in G and so P3P5
∼= Z15 is a subgroup of G,

which is impossible.

Case (2):n = (1, 1,m) and d = (8, 4, 2).
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Since c2(G) = 1, then by Remark 2.3, G ∼= Z8 or D16.

Case (3):n = (1, 1,m) and d = (5, 4, 2).

Observe that A and P5
∼= Z5 are normal in G and so AP5

∼= Z20 is a subgroup of G, which

is impossible.

Case (4):n = (4,m) and d = (3, 2).

If P3
∼= Z3, then by Main Theorem of [2] G is a Frobenius group with kernel P3 of order 3 and

Theorem 13.3(1) of [3] G ∼= S3 which is impossible. Otherwise, Z3 ×Z3 ⊆ P3 and Z3 ×Z3 has

4 subgroups of order 3, then by Main Theorem of [2], either G ∼= Z3×Z3 or G ∼= (Z3×Z3)⋊Z2.

Case (5):n = (3, 1,m) and d = (4, 3, 2).

By Lemma 2.9 G is a Frobenius group with kernel P3 of order 3. On the other hand, by

Theorem 13.3(1) of [3] P ∼= Z2 which is a contradiction.

Case (6):n = (3, 1,m) and d = (6, 3, 2).

Since P3
∼= Z3

∼= ⟨x⟩ is normal in G and P2 is an elementary abelian 2-group, then G′ ⊆ P3

and |cl(x)| = |G|/|CG(x)| ≤ |G′| ≤ 3, and either x ∈ Z(G) or |cl(x)| = 2. On the other hand,

since G has 3 cyclic subgroups of order 6, we can obtain that CG(x) ∼= Z2 × Z2 × Z3. Thus

G ∼= Z6 × Z2 or (Z6 × Z2) ⋊ Z2, but using GAP [4], we know that (Z6 × Z2) ⋊ Z2 has some

element of order 4.

Case (7):n = (1, 2, 1,m) and d = (6, 4, 3, 2).

Since G has 2 cyclic subgroups of order 4, then c2(P2) ≤ 2 and so by Theorem 2.5,

P2
∼= Z4 × Z2, D8 × Z2, Z4, or D8 and Q ∼= Z3. Using GAP [4], we obtain that such group

does not exist.

Case (8):n = (2, 1, 1,m) and d = (6, 4, 3, 2).

Observe that A and P3
∼= Z3 are normal in G and so AP3

∼= Z12 which is impossible by the

hypothesis.

Case (9):n = (4,m) and d = (4, 2).

Observe that G is a 2-group with c2(G) = 4 and since G does not some element of order 8,

then by Theorems 2.6-2.8 and using GAP[4], we obtain that G ∼= Z4 × Z2 × Z2, (Z4 × Z2) ⋊
Z2, D8 × Z2 × Z2, or D8 ∗ Z4(Central product).

(3) r = 5.

Case (1):n = (1,m) and d = (7, 2)
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If m = 0, then G ∼= Z7. Otherwise, by Lemma 2.9, G is a Frobenius group with kernel P7

of order 7. By Theorem 13.3(1) of [3] G is isomorphic to D14.

Case (2):n = (1, 1, 1,m) and d = (5, 4, 3, 2)

We observe that P3 and P5 are normal in G and P3P5
∼= Z15 is a subgroup of G which is

impossible.

Case (3):n = (1, 2,m) and d = (5, 4, 2)

By Lemma 2.9 G is a Frobenius group with kernel P5 of order 5. By Theorem 13.3(1) of

[3], we deduce that G ∼= F5,4.

Case (4):n = (1, 1, 1,m) and d = (6, 5, 3, 2).

Observe that P3, P5 are normal in G. Thus, P3P5
∼= Z15 which is a contradiction.

Case (5):n = (1, 1, 1,m) and d = (8, 4, 3, 2).

Since A and P3 are normal in G, then AP3
∼= Z4 × Z3

∼= Z12 is a subgroup of G which is

impossible.

Case (6):n = (1, 2,m) and d = (8, 4, 2).

Since G is a 2-group and c3(G) = 1, then by Theorem 2.2, G is of maximal class and so

by Theorem 2.4, G is isomorphic to either D2n , Q2n , or SD2n+1 for n ≥ 3. However, we have

c2(G) = 2 and so this case is impossible by Theorem 2.5.

Case (7):n = (5,m) and d = (4, 2).

Since G is a 2-group and c2(G) = 5, then by Theorem 2.2, G is of maximal class and so

by Theorem 2.4, G is isomorphic to either D2n , Q2n , or SD2n+1 for n ≥ 3. Since D2n , Q2n ,

and SD2n have some element of order 8 for n ≥ 4, then G is isomorphic to D8 or Q8 which is

impossible by Remark 2.3.

Case (8):n = (4, 1,m) and d = (6, 3, 2).

We can see that G = P2P3 in which P3 is normal of order 3 and P2 is an elementary abelian

2-group. Additionally, CG(P2) ∼= Z3×Z2×· · ·×Z2. Since each element of order 6 is a product

of an element of order 3 and an element of order 2, then such elements belong to CG(P2). Thus,

since by Theorem 2.2 c1(CQ(P2)) = 1 or 4k + 3, then G does not have exactly 4 subgroups of

order 6.

Case (9):n = (3, 1, 1,m) and d = (6, 4, 3, 2).
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Since A and P3 are normal in G, then AP3
∼= Z4 × Z3

∼= Z12 is a subgroup of G which is a

contradiction.

Case (10):n = (2, 2, 1,m) and d = (6, 4, 3, 2).

We can see that G = P2P3 in which P3 is normal of order 3 and P2 is a 2-group with

c2(P ) = 2. If x is of order 4, then x ̸∈ CQ(P2), CQ(P2) is an elementary abelian 2-group, and

CG(P2) ∼= Z3×Z2×· · ·×Z2. Since each element of order 6 belongs to CG(P2) and by Theorem

2.2 c1(CQ(P2)) = 1 or 4k + 3, then G does not exactly 2 subgroups of order 6.

Case (11):n = (1, 4,m) and d = (4, 3, 2).

By Lemma 2.9 AP3 is a Frobenius group with kernel A of order 4. By Theorem 13.3(1)

of [3] we obtain that |P3| = 3 and so AP3 is a Frobenius group of order 12 contradicting the

fact that A4 is the only Frobenius group of order 12 and it does not have any element of order 4.

Case (12):n = (4, 1,m) and d = (4, 3, 2).

By Lemma 2.9 G is a Frobenius group with kernel P3 of order 3 and by Theorem 13.3(1) of

[3] G is of order 6 which contradicts the hypothesis.

Case (13):n = (1, 4,m) and d = (6, 3, 2).

Since G has 4 subgroups of order 3, then P3
∼= Z3 or Z3 × Z3. If P3

∼= Z3, since G has

1 subgroup of order 6, then CG(P3) ∼= Z6 is a subset of F (G). Therefore F (G) = O2(G) ×
O3(G) = O2(G)× P3 and so P3 is normal in G which is a contradiction.

Now, P3
∼= Z3 × Z3 has 4 subgroups of order 3, then P3 is normal in G. Assume that B is

the cyclic subgroup of order 6 in G. Since P2 is an elementary abelian 2-group, then G′ ⊆ P3

and so |P2| = |cl(y)| ≤ |G′| ≤ 9 for y ∈ P3\B. Using GAP [4], we get that G ∼= Z3 × Z6.

Case (14):n = (1, 3, 1,m) and d = (6, 4, 3, 2).

Observe that G = P2P3 where c2(P2) ≤ 3 and P3
∼= Z3 is normal in G. By Remark 2.3 and

Theorem 2.5 and 2.4, P2 is isomorphic to Q8, D8, Z4, Z2×D8, or Z2×Z4. Using GAP[4], we

conclude that G ∼= Dic12, that is the dicyclic group of order 12.

□
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