

International Journal of Group Theory ISSN (print): 2251-7650, ISSN (on-line): 2251-7669 Vol. 8 No. 2 (2019), pp. 11-24. © 2019 University of Isfahan

A CLASSIFICATION OF NILPOTENT 3-BCI GROUPS

HIROKI KOIKE AND ISTVÁN KOVÁCS*

Communicated by Bijan Taeri

ABSTRACT. Given a finite group G and a subset $S \subseteq G$, the bi-Cayley graph BCay(G, S) is the graph whose vertex set is $G \times \{0, 1\}$ and edge set is $\{\{(x, 0), (sx, 1)\} : x \in G, s \in S\}$. A bi-Cayley graph BCay(G, S) is called a BCI-graph if for any bi-Cayley graph BCay(G, T), BCay $(G, S) \cong$ BCay(G, T)implies that $T = gS^{\alpha}$ for some $g \in G$ and $\alpha \in$ Aut(G). A group G is called an m-BCI-group if all bi-Cayley graphs of G of valency at most m are BCI-graphs. It was proved by Jin and Liu that, if G is a 3-BCI-group, then its Sylow 2-subgroup is cyclic, or elementary abelian, or \mathbf{Q}_8 [European J. Combin. 31 (2010) 1257–1264], and that a Sylow p-subgroup, p is an odd prime, is homocyclic [Util. Math. 86 (2011) 313–320]. In this paper we show that the converse also holds in the case when G is nilpotent, and hence complete the classification of nilpotent 3-BCI-groups.

1. Introduction

In this paper every group and every (di)graph will be finite. Given a group G and a subset $S \subseteq G$, the bi-Cayley graph BCay(G, S) of G with respect to S is the graph whose vertex set is $G \times \{0, 1\}$ and edge set is $\{\{(x, 0), (sx, 1)\} : x \in G, s \in S\}$. We call two bi-Cayley graphs BCay(G, S) and BCay(G, T)bi-Cayley isomorphic if $T = gS^{\alpha}$ for some $g \in G$ and $\alpha \in Aut(\Gamma)$ (here and in what follows for $x \in G$ and $R \subseteq G$, $xR = \{xr : r \in R\}$). It can be easily shown that bi-Cayley isomorphic bi-Cayley graphs are isomorphic as usual graphs. The converse implication is not true in general, and this makes the following definition interesting (see [24]): a bi-Cayley graph BCay(G, S) is a BCI-graph if for any

MSC(2010): Primary: 05C25; Secondary: 05C60, 05E18.

Keywords: bi-Cayley graph, BCI-group, graph isomorphism.

Received: 5 December 2016, Accepted: 24 November 2017.

^{*}Corresponding author.

http://dx.doi.org/10.22108/ijgt.2017.100795.1404

bi-Cayley graph BCay(G, T), $BCay(G, S) \cong BCay(G, T)$ implies that $T = gS^{\alpha}$ for some $g \in G$ and $\alpha \in Aut(G)$. A group G is called an *m*-*BCI*-group if all bi-Cayley graphs of G of valency at most m are BCI-graphs, and an |G|-BCI-group is simply called a *BCI*-group. It should be remarked that the above concepts are motivated by Cayley digraphs (more details on this will be given in Section 2).

The study of *m*-BCI-groups was initiated in [24], where it was shown that every group is a 1-BCIgroup, and a group is a 2-BCI-group if and only if it has the property that any two elements of the same order are either fused or inverse fused (these groups are described in [18]). The problem of classifying all 3-BCI-groups is still open. Up to our knowledge, it is only known that every cyclic group is a 3-BCI-group (this is a consequence of [23, Theorem 1.1], see also [10]), and that A_5 is the only non-abelian simple 3-BCI-group (see [11]). As for BCI-groups, it was proved by M. Arezoomand and B. Taeri [2] that a finite BCI-group must be solvable. In this paper we make a further step by classifying the nilpotent 3-BCI-groups.

In fact, there is an explicit list of candidates for nilpotent 3-BCI groups, which arises from the earlier works of W. Jin and W. Liu [11, 12] on the Sylow *p*-subgroups of 3-BCI-groups. In particular, a Sylow 2-subgroup of a 3-BCI-group is \mathbb{Z}_{2^r} , \mathbb{Z}_2^r or the quaternion group \mathbf{Q}_8 (see [11]), while a Sylow *p*-subgroup for p > 2 is homocyclic (see [12]). A group is said to be *homocyclic* if it is a direct product of cyclic groups of the same order. Consequently, if *G* is a nilpotent 3-BCI-group, then *G* decomposes as $G = U \times V$, where *U* is a homocyclic group of odd order, and *V* is trivial or one of the groups \mathbb{Z}_{2^r} , \mathbb{Z}_2^r and \mathbf{Q}_8 . In this paper we prove that the converse implication also holds, and hence complete the classification of nilpotent 3-BCI-groups.

Theorem 1.1. Every finite group $U \times V$ is a 3-BCI-group, where U is a homocyclic group of odd order, and V is trivial or one of the groups \mathbb{Z}_{2^r} , \mathbb{Z}_2^r and \mathbf{Q}_8 .

In Section 2, following the ideas of [3], we will see that the BCI-property of a given bi-Cayley graph can be read off entirely from its automorphism group (see Lemma 2.2). This was observed for cyclic groups in [13], and this result was later generalized to arbitrary groups in [1]. Theorem 1.1 will be proved in Section 3.

2. A Babai type lemma for bi-Cayley graphs

We start by setting the relevant notations and terminology.

Notations. Let G be a group acting on a finite set V. For $g \in G$ and $v \in V$, the image of v under g will be written as v^g . For a subset $U \subseteq V$, we will denote by G_U the elementwise stabilizer of U in G, while by $G_{\{U\}}$ the setwise stabilizer of U in G. If $U = \{u\}$, then G_u will be written for $G_{\{u\}}$. We say that U is G-invariant if G leaves U setwise fixed, or equivalently, when $G_{\{U\}} = G$. If G is transitive on V and $\Delta \subseteq V$ is a block for G, then the partition $\delta = \{\Delta^g : g \in G\}$ is called the system of blocks for G induced by Δ . The group G acts on δ naturally, the corresponding kernel will be denoted by G_{δ} , i.e., $G_{\delta} = \{g \in G : \Delta'^g = \Delta' \text{ for all } \Delta' \in \delta\}$. For a graph Γ , we let $V(\Gamma)$, $E(\Gamma)$, $A(\Gamma)$, and

13

Aut(Γ) denote the vertex set, the edge set, the arc set, and the full group of automorphisms of Γ , respectively. For a subset $U \subseteq V(\Gamma)$, we let $\Gamma[U]$ denote the subgraph of Γ induced by U. A graph Γ is called *arc-transitive* when Aut(Γ) is transitive on $A(\Gamma)$. By K_n and $K_{n,n}$ we will denote the complete graph on n vertices and the complete bipartite graph on 2n vertices respectively. By a *cubic graph* we simply mean a regular graph of valency 3.

Let G be a group and $S \subseteq G$. The Cayley digraph $\operatorname{Cay}(G, S)$ is the digraph whose vertex set is G and arc set is $\{(x, sx) : x \in G, s \in S\}$. A Cayley digraph $\operatorname{Cay}(G, S)$ is called a CI-graph if for any Cayley digraph $\operatorname{Cay}(G, T)$, $\operatorname{Cay}(G, S) \cong \operatorname{Cay}(G, T)$ implies that $T = S^{\alpha}$ for some $\alpha \in \operatorname{Aut}(G)$, G is called an *m*-DCI-group if all Cayley digraphs of G of valency at most m are CI-graphs, and an (|G| - 1)-CI-group is simply called a CI-group (see [19, Definition 1.1]). Finite CI-groups and *m*-DCI-groups have attracted considerable attention over the last 40 years, for more information on these groups, the reader is referred to the survey [17]. The following result, frequently used in studying CI-graphs, is a special case of a lemma due to Babai [3, Lemma 3.1]:

Lemma 2.1. The following are equivalent for every Cayley digraph $\Gamma = Cay(G, S)$.

- (1) $\operatorname{Cay}(G, S)$ is a CI-graph.
- (2) Every two regular subgroups of $Aut(\Gamma)$, isomorphic to G, are conjugate in $Aut(\Gamma)$.

Given a group G with identity element 1_G , we shall use the symbols **0** and **1** to denote the elements $(1_G, 0)$ and $(1_G, 1)$ in $G \times \{0, 1\}$ respectively. For a subset $S \subseteq G$, we write $(S, 0) = \{(s, 0) : s \in S\}$ and $(S, 1) = \{(s, 1) : s \in S\}$. For $g \in G$, let \hat{g} be the permutation of $G \times \{0, 1\}$ defined by

$$(x,i)^{\hat{g}} = (xg,i)$$
 for every $x \in G$ and $i \in \{0,1\}$.

We set $\hat{G} = \{\hat{g} : g \in G\}$. Obviously, $\hat{G} \leq \operatorname{Aut}(\operatorname{BCay}(G, S))$, and \hat{G} is semiregular with orbits (G, 0)and (G, 1). In what follows will we denote by $\mathcal{S}(\operatorname{Aut}(\operatorname{BCay}(G, S)))$ the set of all semiregular subgroups of $\operatorname{Aut}(\operatorname{BCay}(G, S))$ whose orbits are (G, 0) and (G, 1). Finally, we let $G_{\operatorname{right}} \leq \operatorname{Sym}((G, 1))$ be the permutation group induced by the action of \hat{G} on (G, 1).

The next lemma was proved by M. Arezoomand and B. Taeri [1]. For completeness, we give a proof here.

Lemma 2.2. The following are equivalent for every bi-Cayley graph $\Gamma = BCay(G, S)$.

- (1) BCay(G, S) is a BCI-graph.
- (2) The normalizer $N_{\operatorname{Aut}(\Gamma)}(\hat{G})$ is transitive on $V(\Gamma)$, and every two subgroups in $\mathcal{S}(\operatorname{Aut}(\Gamma))$, isomorphic to G, are conjugate in $\operatorname{Aut}(\Gamma)$.

Proof. We start with the part $(1) \Rightarrow (2)$. Let $X \in \mathcal{S}(\operatorname{Aut}(\Gamma))$ such that $X \cong G$. We have to show that X and \hat{G} are conjugate in $\operatorname{Aut}(\Gamma)$. Let $i \in \{0, 1\}$, and set $X^{(G,i)}$ and $\hat{G}^{(G,i)}$ for the permutation groups of the set (G, i) induced by X and \hat{G} respectively. The groups $X^{(G,i)}$ and $\hat{G}^{(G,i)}$ are conjugate in $\operatorname{Sym}((G, i))$, because these are isomorphic and regular on (G, i). Thus X and \hat{G} are conjugate by a permutation $\phi \in \text{Sym}(G \times \{0,1\})$ such that (G,0) is ϕ -invariant (here ϕ is viewed as a permutation of $G \times \{0,1\}$). We write $X = \phi \hat{G} \phi^{-1}$. Consider the graph Γ^{ϕ} , the image of Γ under ϕ . Then $\hat{G} = \phi^{-1} X \phi \leq \text{Aut}(\Gamma^{\phi})$. Using this and that (G,0) is ϕ -invariant, we obtain that $\Gamma^{\phi} = \text{BCay}(G,T)$ for some subset $T \subseteq G$. Then $\Gamma \cong \text{BCay}(G,T)$, and by (i), $T = gS^{\alpha}$ for some $g \in G$ and $\alpha \in \text{Aut}(G)$. Define the permutation σ of $G \times \{0,1\}$ by

$$(x,i)^{\sigma} = \begin{cases} (x^{\alpha},0) & \text{if } i = 0, \\ (gx^{\alpha},1) & \text{if } i = 1. \end{cases}$$

A direct calculation shows that $\sigma^{-1}\hat{g}\sigma = \hat{g}^{\sigma}$ if $g \in G$. Thus σ normalizes \hat{G} . The vertex (x, 0) of BCay(G, S) has neighborhood (Sx, 1). This is mapped by σ to the the set $(gS^{\alpha}x^{\alpha}, 1) = (Tx^{\alpha}, 1)$. This proves that σ is an isomorphism from Γ to Γ^{ϕ} , and in turn it follows that, $\Gamma^{\phi} = \Gamma^{\sigma}$, $\phi\sigma^{-1} \in \operatorname{Aut}(\Gamma)$, and thus $\phi = \rho\sigma$ for some $\rho \in \operatorname{Aut}(\Gamma)$. Finally, $X = \phi \hat{G} \phi^{-1} = \rho\sigma \hat{G} \sigma^{-1} \rho^{-1} = \rho \hat{G} \rho^{-1}$, i.e., X and \hat{G} are conjugate in $\operatorname{Aut}(\Gamma)$.

In order to prove that the normalizer $N_{\operatorname{Aut}(\Gamma)}(\hat{G})$ is transitive on $V(\Gamma)$, it is sufficient to find some automorphism η which switches (G, 0) and (G, 1) and normalizes \hat{G} . Observe that $\operatorname{BCay}(G, S) \cong$ $\operatorname{BCay}(G, S^{-1})$, where $S^{-1} = \{s^{-1} : s \in S\}$. Then by (i), $S^{-1} = gS^{\alpha}$ for some $g \in G$ and $\alpha \in \operatorname{Aut}(G)$. We leave for the reader to verify that the permutation of $G \times \{0, 1\}$ defined below is an appropriate choice for such η :

$$(x,i)^{\eta} = \begin{cases} (x^{\alpha},1) & \text{if } i = 0, \\ (gx^{\alpha},0) & \text{if } i = 1. \end{cases}$$

We turn to the part $(2) \Rightarrow (1)$. Let $\Gamma' = \operatorname{BCay}(G,T)$ such that $\Gamma' \cong \Gamma$. We have to show that $T = gS^{\alpha}$ for some $g \in G$ and $\alpha \in \operatorname{Aut}(G)$. We claim the existence of an isomorphism $\phi : \Gamma \to \Gamma'$ for which $\phi : \mathbf{0} \mapsto \mathbf{0}$ and (G,0) is ϕ -invariant (here ϕ is viewed as a permutation of $G \times \{0,1\}$). We construct ϕ in a few steps. To start with, choose an arbitrary isomorphism $\phi_1 : \Gamma \to \Gamma'$. Since the normalizer $N_{\operatorname{Aut}(\Gamma)}(\hat{G})$ is transitive on $V(\Gamma)$, there exists $\rho \in N_{\operatorname{Aut}(\Gamma)}(\hat{G})$ which maps $\mathbf{0}$ to $\mathbf{0}^{\phi_1^{-1}}$. Let $\phi_2 = \rho\phi_1$. Then ϕ_2 is an isomorphism from Γ to Γ' , and also $\phi_2 : \mathbf{0} \mapsto \mathbf{0}$. The connected component of Γ containing the vertex $\mathbf{0}$ is equal to the induced subgraph $\Gamma[(H,0) \cup (sH,1)]$, where $s \in S$ and $H \leq G$ is generated by the set $s^{-1}S$. It can be easily checked that

$$\Gamma[(H,0) \cup (sH,1)] \cong \mathrm{BCay}(H,s^{-1}S).$$

Similarly, the connected component of Γ' containing the vertex **0** is equal to the induced subgraph $\Gamma'[(K,0) \cup (tK,1)]$, where $t \in T$ and $K \leq G$ is generated by the set $t^{-1}T$, and

$$\Gamma'[(K,0) \cup (tK,1)] \cong \operatorname{BCay}(K,t^{-1}T).$$

Since ϕ_2 fixes **0**, it induces an isomorphism from $\Gamma[(H, 0) \cup (sH, 1)]$ to $\Gamma[(K, 0) \cup (tK, 1)]$; denote this isomorphism by ϕ_3 . It follows from the connectedness of these induced subgraphs that ϕ_3 preserves their bipartition classes, moreover, ϕ_3 maps (H, 0) to (K, 0), since it fixes **0**. Finally, take $\phi : \Gamma \to \Gamma'$

to be the isomorphism whose restriction to each component of Γ equals ϕ_3 . It is clear that $\phi : \mathbf{0} \mapsto \mathbf{0}$ and (G, 0) is ϕ -invariant.

Since $\hat{G} \leq \Gamma'$, $\phi \hat{G} \phi^{-1} \leq \operatorname{Aut}(\Gamma)$. The orbit of **0** under $\phi \hat{G} \phi^{-1}$ is equal to $(G, 0)^{\phi^{-1}} = (G, 0)$, and hence $\phi \hat{G} \phi^{-1} \in \mathcal{S}(\operatorname{Aut}(\Gamma))$. By (ii), $\phi \hat{G} \phi^{-1} = \sigma^{-1} \hat{G} \sigma$ for some $\sigma \in \operatorname{Aut}(\Gamma)$. Since $N_{\operatorname{Aut}(\Gamma)}(\hat{G})$ is transitive on $V(\Gamma)$, σ can be chosen so that $\sigma : \mathbf{0} \mapsto \mathbf{0}$. To sum up, we have an isomorphism $(\sigma \phi) : \Gamma \mapsto \Gamma'$ which fixes **0** and also normalizes \hat{G} . Thus $(\sigma \phi)$ maps (G, 1) to itself. Recall that $G_{\operatorname{right}} \leq \operatorname{Sym}((G, 1))$ is the permutation group induced by the action of \hat{G} on (G, 1). Then, the permutation of (G, 1) induced by $(\sigma \phi)$ belongs to the holomorph of G_{right} (cf. [8, Exercise 2.5.6]), and therefore, there exist $g \in G$ and $\alpha \in \operatorname{Aut}(G)$ such that $(\sigma \phi) : (x, 1) \mapsto (gx^{\alpha}, 1)$ for all $x \in G$. On the other hand, being an isomorphism from Γ to Γ' , $\sigma \phi$ maps (S, 1) to (T, 1). These give that $(T, 1) = (S, 1)^{\sigma \phi} = (gS^{\alpha}, 1)$, i.e., $T = gS^{\alpha}$.

Remark 2.3. Notice that, we cannot delete the condition on the normalizer $N_{\text{Aut}(\Gamma)}(\hat{G})$ from Lemma 2.2. (ii). To see this, consider the bi-Cayley graph $\Gamma = \text{BCay}(G, S)$, where

$$G = \langle a, b \, | \, a^5 = b^4 = 1, \, b^{-1}ab = a^2 \rangle \text{ and } S = \{1, a, b\}.$$

The group G is the unique Frobenius group of order 20, and we find by the help of the computer package MAGMA [5] that Γ is arc-transitive. In fact, Γ is the unique arc-transitive cubic graph on 40 points (see [6]). We also compute that any two subgroups in $S(\operatorname{Aut}(\Gamma))$, isomorphic to G, are conjugate in $\operatorname{Aut}(\Gamma)$. We show below that, for any $g \in G$ and $\alpha \in \operatorname{Aut}(G)$, $S^{\alpha} \neq gS^{-1}$. Since $\operatorname{BCay}(G, S) \cong \operatorname{BCay}(G, S^{-1})$, this implies that Γ is not a BCI-graph.

To the contrary assume that $S^{\alpha} = gS^{-1}$ for some $g \in G$ and $\alpha \in \operatorname{Aut}(G)$. It follows at once that $g \in S$. As no element in $bS^{-1} = \{b, ba^{-1}, 1\}$ is of order 5, $g \neq b$. Since every automorphism of G is inner, α equals the conjugation by some element $c \in G$. Let g = 1. Then $S^{\alpha} = gS^{-1} = S^{-1}$, hence $a^{c} = a^{\alpha} = a^{-1}$ and $b^{c} = b^{\alpha} = b^{-1}$. From the first equality $c \in C_{G}(a)b^{2} = \langle a \rangle b^{2}$, where $C_{G}(a)$ denotes the centraliser of a in G, that is, $C_{G}(a) = \{x \in G : ax = xa\}$. Thus $c = a^{i}b^{2}$ for some $i \in \{0, \ldots, 4\}$. Plugging this in the second equality, we get $b^{2}a^{-i}ba^{i}b^{2} = b^{-1}$, hence $a^{3i}b = b^{-1}$, which is impossible. Finally, let g = a. Then $S^{\alpha} = gS^{-1} = aS^{-1}$, hence $a^{c} = a^{\alpha} = a$ and $b^{c} = b^{\alpha} = ab^{-1}$. The first equality gives that $c = a^{i}$ for some $i \in \{0, \ldots, 4\}$. Plugging this in the second equality. $Q = aS^{-1} = aS^{-1}$, hence $a^{c} = a^{\alpha} = a$ and $b^{c} = b^{\alpha} = ab^{-1}$. The first equality gives that $c = a^{i}$ for some $i \in \{0, \ldots, 4\}$. Plugging this in the second equality. $Q = aS^{-1} = aS^{-1}$, hence $a^{c} = a^{\alpha} = a$ and $b^{c} = b^{\alpha} = ab^{-1}$. The first equality gives that $c = a^{i}$ for some $i \in \{0, \ldots, 4\}$. Plugging this in the second equality, we get $a^{-i}ba^{i} = ab^{-1}$, hence $a^{2i}b = ab^{-1}$, which is again impossible.

As an application of Lemma 2.2, we prove the lemma below in which we connect the BCI-property with the CI-property. This lemma will be used in the proof of Theorem 1.1 in the particular case when the graphs are not arc-transitive.

Lemma 2.4. Let $\Gamma = BCay(G, S)$ such that there exists an involution $\tau \in Aut(\Gamma)$ which normalizes \hat{G} and $\mathbf{0}^{\tau} = \mathbf{1}$. Suppose, in addition, that $Aut(\Gamma)_{\mathbf{0}} = Aut(\Gamma)_{\mathbf{1}}$. Then BCay(G, S) is a BCI-graph whenever Cay(G, S) is a CI-graph.

Proof. Set $A = \operatorname{Aut}(\Gamma)$ and $A^+ = A_{\{(G,0)\}}$, and let us suppose that $\operatorname{Cay}(G,S)$ is a CI-graph. Let $X \in \mathcal{S}(A), X \cong G$. Obviously, $X, \hat{G} \leq A^+$. The normalizer $N_A(\hat{G}) \geq \langle \hat{G}, \tau \rangle$, hence it is transitive on

 $V(\Gamma)$. Thus by Lemma 2.2 we are done if we show that X and \hat{G} are conjugate in A^+ . In order to prove this we define a faithful action of A^+ on G as follows. Let $\Delta = \{\mathbf{0}, \mathbf{1}\}$ and consider the setwise stabilizer $A_{\{\Delta\}}$. Since $A_{\mathbf{0}} = A_{\mathbf{1}}, A_{\mathbf{0}} \leq A_{\{\Delta\}}$. By [8, Theorem 1.5A], the orbit of **0** under $A_{\{\Delta\}}$ is a block for A. Since τ switches **0** and **1**, this orbit is equal to Δ , and the system of blocks induced by Δ is

$$\delta = \{\Delta^{\hat{x}} : x \in G\} = \{\{(x,0), (x,1)\} : x \in G\}$$

Now, define the action of A^+ on G by letting $x^{\sigma} = x'$, where $x \in G$ and $\sigma \in A^+$, if σ maps the block $\{(x,0), (x,1)\}$ to the block $\{(x',0), (x',1)\}$. We will write $\bar{\sigma}$ for the image of σ under the corresponding permutation representation, and let $\bar{B} = \{\bar{\sigma} : \sigma \in B\}$ for a subgroup $B \leq A^+$. It is easily seen that this action is faithful. Therefore, X and \hat{G} are conjugate in A^+ exactly when \bar{X} and \bar{G} are conjugate in \bar{A}^+ . Also, $\bar{G} = G_{right}$, and \bar{X} is regular on G. We finish the proof by showing that $\bar{A}^+ = \operatorname{Aut}(\operatorname{Cay}(G,S))$. Then the conjugacy of \bar{X} and \bar{G} follows by Lemma 2.1 and the assumption that $\operatorname{Cay}(G,S)$ is a CI-graph.

Pick an automorphism $\sigma \in A^+$ and an arc (x, sx) of $\operatorname{Cay}(G, S)$. Then the edge $\{(x, 0), (sx, 1)\}$ of Γ is mapped by σ to an edge $\{(x', 0), (s'x', 1)\}$ for some $x' \in G$ and $s' \in S$. Hence $\bar{\sigma} : x \mapsto x'$ and $sx \mapsto s'x'$, i.e., it maps the arc (x, sx) to the arc (x', s'x'). We have just proved that $\bar{\sigma} \in \operatorname{Aut}(\operatorname{Cay}(G, S))$, and hence $\bar{A^+} \leq \operatorname{Aut}(\operatorname{Cay}(G, S))$. In order to establish the relation " \geq ", for an arbitrary automorphism $\rho \in \operatorname{Aut}(\operatorname{Cay}(G, S))$, define the permutation π of $G \times \{0, 1\}$ by $(x, i)^{\pi} = (x^{\rho}, i)$ for all $x \in G$ and $i \in \{0, 1\}$. Repeating the previous argument we obtain that $\pi \in \operatorname{Aut}(\operatorname{Cay}(G, S))$. It is clear that $\pi \in A^+$ and $\bar{\pi} = \rho$. Thus $\bar{A^+} \geq \operatorname{Aut}(\operatorname{Cay}(G, S))$, and so $\bar{A^+} = \operatorname{Aut}(\operatorname{Cay}(G, S))$. The lemma is proved. \Box

3. Proof of Theorem 1.1

In this section we denote by \mathcal{C} the set of all groups $U \times V$, where U is a homocyclic group of odd order, and V is either trivial or one of \mathbb{Z}_{2^r} , \mathbb{Z}_2^r and \mathbf{Q}_8 ; and by \mathcal{C}_{sub} the set of all groups that have an overgroup in \mathcal{C} .

Lemma 3.1. Let Γ be a cubic bipartite graph with bipartition classes Δ_i , i = 1, 2, and $X \leq \operatorname{Aut}(\Gamma)$ be a semiregular subgroup whose orbits are Δ_i , i = 1, 2, and $X \in C_{sub}$. Then $\operatorname{Aut}(\Gamma)$ has an element τ_X which satisfies:

- (1) every subgroup of X is normal in $\langle X, \tau_X \rangle$;
- (2) $\langle X, \tau_X \rangle$ is regular on $V(\Gamma)$.

Proof. It is straightforward to show that $\Gamma \cong \operatorname{BCay}(X, S)$ for some subset $S \subseteq X$ with $1_X \in S$ and |S| = 3. Moreover, there is an isomorphism from Γ to $\operatorname{BCay}(X, S)$ which induces a permutation isomorphism from X to \hat{X} . Therefore, it is sufficient to find $\tau \in \operatorname{Aut}(\operatorname{BCay}(X, S))$ for which every subgroup of \hat{X} is normal in $\langle \hat{X}, \tau \rangle$; and $\langle \hat{X}, \tau \rangle$ is regular on $V(\operatorname{BCay}(X, S))$.

Since $X \in C_{sub}$, $X = U \times V$, where U is an abelian group of odd order, and V is trivial or one of $\mathbb{Z}_{2^r}, \mathbb{Z}_2^r$ and \mathbf{Q}_8 . We prove below the existence of an automorphism $\iota \in \operatorname{Aut}(X)$, which maps the set S to its inverse S^{-1} . Let π_U and π_V denote the projections $U \times V \to U$ and $U \times V \to V$ respectively. It is sufficient to find an automorphism $\iota_1 \in \operatorname{Aut}(U)$ which maps $\pi_U(S)$ to $\pi_U(S)^{-1}$, and an automorphism $\iota_2 \in \operatorname{Aut}(V)$ which maps $\pi_V(S)$ to $\pi_V(S)^{-1}$. Since U is abelian, we are done by choosing ι_1 to be the automorphism $x \mapsto x^{-1}$. If V is abelian, then let $\iota_2 : x \mapsto x^{-1}$. Otherwise, $V \cong \mathbf{Q}_8$, and since $|\pi_V(S) \setminus \{1_V\}| \leq 2$, it follows that $\pi_V(S)$ is conjugate to $\pi_V(S)^{-1}$ in V. This ensures that ι_2 can be chosen to be some inner automorphism. Now, define ι by setting its restriction $\iota|_U$ to U as $\iota|_U = \iota_1$, and its restriction $\iota|_V$ to V as $\iota|_V = \iota_2$. Define the permutation τ of $X \times \{0, 1\}$ by

$$(x,i)^{\tau} = \begin{cases} (x^{\iota},1) & \text{ if } i = 0, \\ (x^{\iota},0) & \text{ if } i = 1. \end{cases}$$

The vertex (x, 0) of BCay(X, S) has neighborhood (Sx, 1). This is mapped by τ to the set $(S^{-1}x^{\iota}, 0)$, which is equal to the neighborhood of $(x^{\iota}, 1)$. We have proved that $\tau \in Aut(BCay(X, S))$.

It follows from its construction that τ is an involution. Fix an arbitrary subgroup $Y \leq X$, and pick $y \in Y$. We may write $y = y_U y_V$ for some $y_U \in U$ and $y_V \in V$. Then $\langle y_U, y_V \rangle \leq Y$, since y_U and y_V commute and gcd(|U|, |V|) = 1. Also, $(y_U)^{\iota_1} = y_U^{-1}$ and $(y_V)^{\iota_2} \in \langle y_V \rangle$, implying that $y^{\iota} = (y_U)^{\iota_1}(y_V)^{\iota_2} \in \langle y_U, u_V \rangle \leq Y$. We conclude that ι maps Y to itself. Thus $\tau^{-1}\hat{y}\tau = \tau\hat{y}\tau = \hat{y}^{\iota}$ is in \hat{Y} , and τ normalizes \hat{Y} . Since $X \in \mathcal{C}_{sub}$, \hat{Y} is also normal in \hat{X} , and part (1) follows.

For part (2), observe that $|\langle \hat{X}, \tau \rangle| = 2|X| = |V(\text{BCay}(X, S))|$. Clearly, $\langle \hat{X}, \tau \rangle$ is transitive on V(BCay(X, S)), so it is regular.

Let Γ be an arbitrary finite graph and $G \leq \operatorname{Aut}(\Gamma)$ which is transitive on $V(\Gamma)$. For a normal subgroup $N \triangleleft G$ which is not transitive on $V(\Gamma)$, the quotient graph Γ_N is the graph whose vertices are the N-orbits on $V(\Gamma)$, and two N-orbits $\Delta_i, i = 1, 2$, are adjacent if and only if there exist $v_i \in \Delta_i, i = 1, 2$, which are adjacent in Γ . For a positive integer s, an s-arc of Γ is an ordered (s + 1)tuple (v_0, v_1, \ldots, v_s) of vertices of Γ such that, for every $i \in \{1, \ldots, s\}, v_{i-1}$ is adjacent to v_i , and for every $i \in \{1, \ldots, s - 1\}, v_{i-1} \neq v_{i+1}$. The graph Γ is called (G, s)-arc-transitive ((G, s)-arc-regular) if G is transitive (regular) on the set of s-arcs of Γ . If $G = \operatorname{Aut}(\Gamma)$, then a (G, s)-arc-transitive ((G, s)-arc-regular) graph is simply called s-transitive (s-regular). The proof of the following lemma is straightforward, hence it is omitted (it can be also deduced from [20, Theorem 9]).

Lemma 3.2. Let $\Gamma = BCay(G, S)$ be a connected arc-transitive graph, G be any finite group, |S| = 3, and $N < \hat{G}$ be a subgroup which is normal in Aut(Γ). Then the following hold:

- (1) Γ_N is a cubic connected arc-transitive graph.
- (2) N is equal to the kernel of $Aut(\Gamma)$ acting on the set of N-orbits.
- (3) Γ_N is isomorphic to a bi-Cayley graph of the group \hat{G}/N .

Remark 3.3. Let Γ and N be as described in Lemma 3.2. The group $\operatorname{Aut}(\Gamma)$ acts on the set of Norbits, i.e., on the vertex set $V(\Gamma_N)$. Lemma 3.2.(ii) implies that, the induced permutation group on $V(\Gamma_N)$ is isomorphic to $\operatorname{Aut}(\Gamma)/N$, and therefore, by some abuse of notation, this permutation group will also be denoted by $\operatorname{Aut}(\Gamma)/N$. In what follows we shall write $\operatorname{Aut}(\Gamma)/N \leq \operatorname{Aut}(\Gamma_N)$. Also note that, if Γ is s-transitive, then Γ_N is $(\operatorname{Aut}(\Gamma)/N, s)$ -arc-transitive.

The proof of Theorem 1.1 in the case of arc-transitive graphs will be based on three lemmas about cubic connected arc-transitive bi-Cayley graphs to be proved below. In these lemmas we keep the following notation:

(*) $\Gamma = \text{BCay}(G, S)$ is a connected arc-transitive graph, where $G \in \mathcal{C}_{\text{sub}}$ and |S| = 3.

Lemma 3.4. With notation (*), let δ be a system of blocks for $\operatorname{Aut}(\Gamma)$ induced by a block properly contained in (G, 0), and X be in $\mathcal{S}(\operatorname{Aut}(\Gamma))$ such that $X \in \mathcal{C}_{\operatorname{sub}}$. Then for the kernel A_{δ} (see Notations), $A_{\delta} < X$. Moreover, if δ is non-trivial, then A_{δ} is also non-trivial.

Proof. Set $A = \operatorname{Aut}(\Gamma)$. Let $Y = X \cap A_{\{\Delta\}}$, where $\Delta \in \delta$ with $\Delta \subset (G, 0)$. Then Δ is equal to an orbit of Y, and $|Y| = |\Delta|$ because $\Delta \subset (G, 0)$ and X is regular on (G, 0). Formally, $\Delta = \operatorname{Orb}_Y(v)$ for some vertex $v \in \Delta$.

Let $\tau_X \in A$ be the automorphism defined in Lemma 3.1, and set $L = \langle X, \tau_X \rangle$. The group L is regular on $V(\Gamma)$, and $Y \leq L$. These yield

$$\delta = \{\Delta^{l} : l \in L\} = \{\operatorname{Orb}_{Y}(v)^{l} : l \in L\} = \{\operatorname{Orb}_{Y}(v^{l}) : l \in L\}.$$

From this $Y \leq A_{\delta}$. This shows that, if $|Y| = |\Delta| \neq 1$, then A_{δ} is non-trivial. Since δ has more than 2 blocks, and Γ is a connected and cubic graph, it is known that A_{δ} is semiregular. These imply that $A_{\delta} = Y < X$.

Corollary 3.5. With notation (*), let $N < \hat{G}$ be normal in Aut(Γ), and X be in $\mathcal{S}(Aut(\Gamma))$ such that $X \in \mathcal{C}_{sub}$. Then N < X.

Proof. Let δ be the system of blocks for Aut(Γ) consisting of the *N*-orbits. Then $A_{\delta} = N$ by Lemma 3.2.(ii), and the corollary follows directly from Lemma 3.4.

We denote by Q_3 the graph of the cube and by \mathcal{H} the *Heawood graph*, i.e., the unique arc-transitive cubic graph on 14 points (see [6]). Recall that, the *core* of a subgroup $H \leq K$ in the group K is the largest normal subgroup of K contained in H.

Lemma 3.6. With notation (*), suppose that \hat{G} is not normal in Aut(Γ), and let N be the core of \hat{G} in Aut(Γ). Then $(\hat{G}/N, \Gamma_N)$ is isomorphic to one of the pairs $(\mathbb{Z}_3, K_{3,3}), (\mathbb{Z}_4, Q_3), \text{ and } (\mathbb{Z}_7, \mathcal{H}).$

Proof. Set $A = \operatorname{Aut}(\Gamma)$. Consider the quotient graph Γ_N , and suppose that $M \leq \hat{G}$ such that $N \leq M$ and $M/N \leq \operatorname{Aut}(\Gamma_N)$ (here $M/N \leq A/N \leq \operatorname{Aut}(\Gamma_N)$), see Remark 3.3). This in turn implies that, $M/N \leq A/N$, $M \leq A$, and M = N. We conclude that, Γ_N is a bi-Cayley graph of \hat{G}/N , \hat{G}/N is in \mathcal{C}_{sub} , and \hat{G}/N has trivial core in $\operatorname{Aut}(\Gamma_N)$. This shows that it is sufficient to prove Lemma 3.6 in the particular case when N is trivial. For the rest of the proof we assume that the core N is trivial, and we write N = 1. By Tutte Theorem [22], Γ is k-regular for some $k \leq 5$. Set $A^+ = \operatorname{Aut}(\Gamma)_{\{(G,0)\}}$. It follows from the connectedness of Γ that $A = \langle A^+, \tau_{\hat{G}} \rangle$, where $\tau_{\hat{G}} \in A$ is the automorphism defined in Lemma 3.1. Let M be the core of \hat{G} in A^+ . Then $M \leq A$, since M is normalized by $\tau_{\hat{G}}$, see Lemma 3.1.(i), and $A = \langle A^+, \tau_{\hat{G}} \rangle$. Thus $M \leq N = 1$, hence M is also trivial.

Let us consider A^+ acting on the set $[A^+ : \hat{G}]$ of right \hat{G} -cosets in A^+ . This action is faithful because M is trivial. The corresponding degree is equal to $|A^+ : \hat{G}|$. Since $A = \operatorname{Aut}(X)$ is regular on the set of k-arcs of X, thus |A| is equal to the number of k-arcs of X, which is $|V(X)| \cdot 3 \cdot 2^{k-1} = |\hat{G}| \cdot 3 \cdot 2^k$. Since $|A^+| = |A|/2$, it follows that

$$|A^+:\hat{G}| = \frac{|\hat{G}|\cdot 3\cdot 2^k}{2\cdot |\hat{G}|} = 3\cdot 2^{k-1}.$$

Since \hat{G} acts as a point stabilizer in this action, we have an embedding of G into $S_{3\cdot 2^{k-1}-1}$. We will write below that $G \leq S_{3\cdot 2^{k-1}-1}$.

Recall that, A_0 is determined uniquely by k, and we have, respectively, $A_0 \cong \mathbb{Z}_3$, or S_3 , or D_{12} , or S_4 , or $S_4 \times \mathbb{Z}_2$. We go through each case.

CASE 1. k = 1.

This case can be excluded at once by observing that we have $G \leq S_2$ by the above discussion, which contradicts the obvious bound $|G| \geq 3$.

CASE 2. k = 2.

In this case $G \leq S_5$. Using also that $G \in C_{sub}$, we see that G is abelian, hence $|G| \leq 6$, $|V(\Gamma)| \leq 12$. We obtain by [6, Table] that $\Gamma \cong Q_3$, and $G \cong \mathbb{Z}_4$.

CASE 3. k = 3.

Then $A^+ = \hat{G}A_0 = \hat{G}D_{12}$, a product of a nilpotent and a dihedral subgroup. Thus A^+ is solvable by Huppert-Itô Theorem (cf. [21, 13.10.1]). Assume for the moment that A^+ is imprimitive on (G, 0). This implies that A is also imprimitive on $V(\Gamma)$ and it has a non-trivial block system δ which has a block properly contained in (G, 0). Lemma 3.4 gives that $A_{\delta} < \hat{G}$, and A_{δ} is non-trivial. This, however, contradicts that the core N = 1. Thus A^+ is primitive on (G, 0). Using that A^+ is also solvable, we find that G is a p-group. We see that G is either abelian or it is \mathbf{Q}_8 . In the latter case $|V(\Gamma)| = 16$, and Γ is isomorphic to the Moebius-Kantor graph, which is, however, 2-regular (see [6, Table]). Therefore, G is an abelian p-group. Let $S = \{s_1, s_2, s_3\}$. Since G is abelian, for Γ we have:

(3.1)
$$\mathbf{0} \sim (s_1, 1) \sim (s_2^{-1}s_1, 0) \sim (s_3 s_2^{-1} s_1, 1) = (s_1 s_2^{-1} s_3, 1) \sim (s_2^{-1} s_3, 0) \sim (s_3, 1) \sim \mathbf{0}$$

Thus Γ is of girth at most 6. It was proved in [7, Theorem 2.3] that the Pappus graph on 18 points and the Desargues graph on 20 points are the only 3-regular cubic graphs of girth 6. For the latter graph |G| = 10, contradicting that G is a p-group. We exclude the former graph by the help of MAGMA. We compute that the Pappus graph has no abelian semiregular automorphism group of order 9 which has trivial core in the full automorphism group. Thus Γ is of girth 4 (3 and 5 are impossible as the graph is bipartite). It is well-known that there are only two cubic arc-transitive graphs of girth 4 (see also [14, page 163]): $K_{3,3}$ and Q_3 . We get at once that $\Gamma \cong K_{3,3}$ and $G \cong \mathbb{Z}_3$.

CASE 4. k = 4.

It is sufficient to show that G is abelian. Then by the above reasoning Γ is of girth 6, and as the Heawood graph is the only cubic 4-regular graph of girth 6 (see [7, Theorem 2.3]), we get at once that $\Gamma \cong \mathcal{H}$ and $G \cong \mathbb{Z}_7$.

Assume, towards a contradiction, that G is non-abelian. Thus $G = U \times V$, where U is an abelian group of odd order, and $V \cong \mathbf{Q}_8$. We have already shown above that A^+ is primitive on (G, 0). In other words, Γ is a 4-transitive bi-primitive cubic graph. Recall that a permutation group on a set Ω is called *bi-primitive* if it is transitive and imprimitive, and Ω has only one nontrivial system of blocks consisting of exactly two blocks.

Two possibilities can be deduced from the list of 4-transitive bi-primitive graphs given in [16, Theorem 1.4]:

- Γ is the standard double cover of a connected vertex-primitive cubic 4-regular graph, in which case $A = A^+ \times \langle \eta \rangle$ for an involution η ; or
- Γ isomorphic to the sextet graph S(p) (see [4]), where $p \equiv \pm 7 \pmod{16}$, in which case $A \cong PGL(2, p)$, and $A^+ \cong PSL(2, p)$.

The second possibility cannot occur, because then $A^+ \cong PSL(2, p)$, whose Sylow 2-subgroup is a dihedral group (cf. [9, Satz 8.10]), which contradicts that $V \leq \hat{G} \leq A^+$, and $V \cong \mathbf{Q}_8$. It remains to exclude the first possibility. We may assume, by replacing S with xS for a suitable $x \in G$ if necessary, that η switches $\mathbf{0}$ and $\mathbf{1}$. Since η commutes with \hat{G} , we find $(x, 1)^{\eta} = \mathbf{1}^{\hat{x}\eta} = \mathbf{1}^{\eta\hat{x}} = \mathbf{0}^{\hat{x}} = (x, 0)$ for every $x \in G$. Let $s \in S$. Then $\mathbf{0} \sim (s, 1)$, hence $\mathbf{1} = \mathbf{0}^{\eta} \sim (s, 1)^{\eta} = (s, 0)$, which shows that $s \in S^{-1}$, and thus $S = S^{-1}$. Thus there exists $s \in S$ with $o(s) \leq 2$. Put $T = s^{-1}S = sS$. Then $\mathbf{1}_G \in T$, and since Γ is connected, $G = \langle T \rangle$. Notice that $s \in Z(G)$. This implies that $T^{-1} = S^{-1}s = sS = T$, and thus $\pi_V(T)$ satisfies $\mathbf{1}_V \in \pi_V(T)$ and $\pi_V(T) = \pi_V(T)^{-1}$. Since $V \cong \mathbf{Q}_8$, this implies that $\langle \pi_V(T) \rangle \neq V$, a contradiction to $G = \langle T \rangle$. This completes the proof of this case.

CASE 5. k = 5.

In this case Γ is a 5-transitive bi-primitive cubic graph. It was proved in [16, Corollary 1.5] that Γ is isomorphic to either the $P\Gamma L(2,9)$ -graph on 30 points (also known as the Tutte's 8-Cage), or the standards double cover of the $PSL(3,3).\mathbb{Z}_2$ -graph on 468 points. These graphs are of girth 8 and 12 respectively (see [6, Table]). Also, in both cases $8 \nmid |G|$, hence G is abelian. In this case, however, the graph Γ has a closed walk of length 6, as shown in Eq. (3.1), hence its girth cannot be larger than 6. This proves that this case does not occur.

For a group A and a prime p dividing |A|, we let A_p denote a Sylow p-subgroup of A.

Lemma 3.7. With notation (*), let $X \in \mathcal{S}(\operatorname{Aut}(\Gamma))$ such that $X \in \mathcal{C}_{\operatorname{sub}}$ and $X_2 \cong G_2$. Then X and \hat{G} are conjugate in $\operatorname{Aut}(\Gamma)$.

Remark 3.8. We remark that, the assumption $X_2 \cong G_2$ cannot be deleted. The Moebius-Kantor graph is a bi-Cayley graph of the group \mathbf{Q}_8 , which has a semiregular cyclic group of automorphisms of order 8 which preserves the bipartition classes.

Proof. Set $A = \operatorname{Aut}(\Gamma)$. The proof is split into two parts according to whether \hat{G} is normal in A.

CASE 1. \hat{G} is not normal in A.

Let N be the core of \hat{G} in A. By Corollary 3.5, $N < X \cap \hat{G}$. Therefore, it is sufficient to show that

(3.2)
$$X/N$$
 and \hat{G}/N are conjugate in A/N .

Recall that, the group $A/N \leq \operatorname{Aut}(\Gamma_N)$ for the quotient graph Γ_N induced by N (see Remark 3.3 and the preceding paragraph). Both groups X/N and \hat{G}/N are semiregular whose orbits are the bipartition classes of Γ_N . Also notice that, \hat{G}/N cannot be normal in A/N, otherwise \hat{G} were normal in A.

According to Lemma 3.6, $(\hat{G}/N, \Gamma_N) \cong (\mathbb{Z}_3, K_{3,3})$, or (\mathbb{Z}_4, Q_3) , or $(\mathbb{Z}_7, \mathcal{H})$. Thus (1) follows immediately from Sylow Theorems when $(\hat{G}/N, \Gamma_N) \cong (\mathbb{Z}_7, \mathcal{H})$.

Let $(\hat{G}/N, \Gamma_N) \cong (\mathbb{Z}_3, K_{3,3})$. Since \hat{G}/N is not normal in A/N, and Γ_N is (A/N, 1)-arc-transitive, we compute by MAGMA that $A/N = \operatorname{Aut}(\Gamma_N)$, or it is a subgroup of $\operatorname{Aut}(\Gamma_N)$ of index 2. In both cases A/N has one conjugacy class of semiregular subgroups whose orbits are the bipartition classes of Γ_N . Thus (1) holds.

Let $(\hat{G}/N, \Gamma_N) \cong (\mathbb{Z}_4, Q_3)$. Since $X_2 \cong G_2$, $X/N \cong \hat{G}/N \cong \mathbb{Z}_4$. Using this and that Γ_N is (A/N, 1)arc-transitive, we compute by MAGMA that $A/N = \operatorname{Aut}(\Gamma_N)$, and that $\operatorname{Aut}(\Gamma_N)$ has one conjugacy
class of semiregular cyclic subgroups whose orbits are the bipartition classes of Γ_N . Thus (1) holds
also in this case.

CASE 2. \hat{G} is normal in A.

We have to show that $X = \hat{G}$. Notice that, X contains every proper subgroup $K < \hat{G}$ which is characteristic in \hat{G} . Indeed, since $\hat{G} \leq A$, we have that $K \leq A$, and hence K < X follows from Corollary 3.5. This property will be used often below.

In particular, $\hat{G}_p \leq \hat{G}$ is characteristic for every prime p dividing $|\hat{G}|$. If G is not a p-group, then $\hat{G}_p < \hat{G}$, and by the above observation $\hat{G}_p < X$. This gives that $X = \hat{G}$ if G is not a p-group. Let G be a p-group. If p > 3, then both \hat{G} and X are Sylow p-subgroups of A, and the statement follows from Sylow Theorems. Notice that, since Γ is connected, G is generated by the set $s^{-1}S$ for some $s \in S$, hence it is generated by two elements.

Let p = 2. Assume for the moment that G is cyclic. Then \hat{G} has a characteristic subgroup K such that $\hat{G}/K \cong \mathbb{Z}_4$. Then $K \trianglelefteq A$, $\Gamma_K \cong Q_3$. Moreover, Γ_K is a bi-Cayley graph of \hat{G}/K , and \hat{G}/K is normal in $A/K \le \operatorname{Aut}(\Gamma_K)$. A simple computation, using MAGMA, shows that this situation does not occur. Let G be a non-cyclic 2-group in $\mathcal{C}_{\operatorname{sub}}$. Also using the fact that G is generated by two elements,

we conclude that either $G \cong \mathbb{Z}_2^2$ and $\Gamma \cong Q_3$, or $G \cong \mathbf{Q}_8$ and Γ is the Moebius-Kantor graph. Now, $X = X_2 \cong G_2 = G$. Then $X = \hat{G}$ can be verified by the help of MAGMA in either case.

Let p = 3. Observe first that |G| > 3. For otherwise, $\Gamma \cong K_{3,3}$, but no semiregular automorphism group of order 3 is normal in Aut $(K_{3,3})$. Since G is generated by two elements, we may write $G \cong \mathbb{Z}_{3^e} \times \mathbb{Z}_{3^f}$, where $e \ge 1$ and $0 \le f \le e$. If e = 1, then f = 1, $G \cong \mathbb{Z}_3^2$, and Γ is the Pappus graph. However, this graph has no automorphism group which is isomorphic to \mathbb{Z}_3^2 and also normal in the full automorphism group. Therefore, $e \ge 2$. Define $K = \{\hat{x} : x \in G \text{ and } o(x) \le 3^{e-2}\}$. Then K is a characteristic subgroup of \hat{G} . Thus $K \triangleleft A$, and Γ_K is a BiCayley graph of \hat{G}/K .

Let $f \leq e - 2$. Then $\hat{G}/K \cong \mathbb{Z}_9$, and Γ_K is the Pappus graph. This graph, however, does not have a cyclic semiregular automorphism group of order 9. We conclude that $f \in \{e - 1, e\}$.

Let f = e - 1. Then $\hat{G}/K \cong \mathbb{Z}_9 \times \mathbb{Z}_3$. It follows that Γ_K is the unique cubic arc-transitive graph on 54 points (see [6, Table]). We have checked by MAGMA that this graph has a unique semiregular abelian automorphism group whose orbits are the bipartition classes. Therefore, $X/K = \hat{G}/K$. This together with $K < X \cap \hat{G}$ yield that $X = \hat{G}$.

Finally, let f = e. Then $\hat{G}/K \cong \mathbb{Z}_9 \times \mathbb{Z}_9$. It follows that Γ_K is the unique cubic arc-transitive graph on 162 points (see [6, Table]). A direct computation, using MAGMA, gives that $X/K = \hat{G}/K$, which together with $K < X \cap \hat{G}$ yield that $X = \hat{G}$.

Recall that, a group H is *homogeneous* if every isomorphism between two subgroups of H can be extended to an automorphism of H. The following result is [15, Proposition 3.2]:

Proposition 3.9. Every 2-DCI-group is homogeneous.

Since every group in C is a 2-DCI-group (see [15, Theorem 1.3]), we have the corollary that every group in C is homogeneous.

Everything is prepared to prove Theorem 1.1.

Proof of Theorem 1.1. Let $G \in C$ and $\Gamma = BCay(G, S)$ such that $|S| \leq 3$. We have to show that Γ is a BCI-graph. This holds trivially when |S| = 1, and follows from the homogeneity of G when |S| = 2. Let |S| = 3.

CASE 1. Γ is arc-transitive.

Let $\operatorname{BCay}(G, S) \cong \operatorname{BCay}(G, T)$ for some subset $T \subseteq G$. We may assume without loss of generality that $1_G \in S \cap T$. Let $H = \langle S \rangle$ and $K = \langle T \rangle$. Then $H, K \in \mathcal{C}_{\operatorname{sub}}$, both bi-Cayley graphs $\operatorname{BCay}(H, S)$ and $\operatorname{BCay}(K,T)$ are connected, and $\operatorname{BCay}(H,S) \cong \operatorname{BCay}(K,T)$. We claim that $\operatorname{BCay}(H,S)$ is a BCI-graph. In view of Lemma 2.2, this holds if the normalizer of \hat{H} in $\operatorname{Aut}(\operatorname{BCay}(H,S))$ is transitive on the vertex-set $V(\operatorname{BCay}(H,S))$, and for every $X \in \mathcal{S}(\operatorname{Aut}(\operatorname{BCay}(H,S)))$, isomorphic to H, X and \hat{H} are conjugate in $\operatorname{Aut}(\operatorname{BCay}(H,S))$. Now, the first part follows from Lemma 3.1, while the second part follows from Lemma 3.7. Let ϕ be an isomorphism from BCay(K, T) to BCay(H, S), and consider the group $X = \phi^{-1}\hat{K}\phi \leq$ Sym(H). Since ϕ maps the bipartition classes of BCay(K, T) to the bipartition classes of BCay(H, S), we have $X \in \mathcal{S}(\operatorname{Aut}(\operatorname{BCay}(H, S)))$. Also, $X_2 \cong \hat{H}_2$, because $X \cong K$, |H| = |K| and H and K are both contained in the group G from \mathcal{C} . Thus Lemma 3.7 is applicable, as a result, X and \hat{H} are conjugate in Aut $(\operatorname{BCay}(H, S))$. In particular, $H \cong K$. Since G is homogeneous, there exists $\alpha_1 \in \operatorname{Aut}(G)$ such that $K^{\alpha_1} = H$. This α_1 induces an isomorphism from BCay(K, T) to BCay (H, T^{α_1}) . Therefore, BCay $(H, S) \cong \operatorname{BCay}(H, T^{\alpha_1})$, and since BCay(H, S) is a BCI-graph, $T^{\alpha_1} = gS^{\alpha_2}$ for some $g \in H$ and $\alpha_2 \in \operatorname{Aut}(H)$. By the homogeneity of G, α_2 extends to an automorphism of G, implying that BCay(G, S) is a BCI-graph.

CASE 2. Γ is not arc-transitive.

Since Γ is vertex-transitive (see Lemma 3.1), but not arc-transitive, we have $A_0 = A_{(s,1)}$ for some $s \in S$. We show below that $BCay(G, s^{-1}S)$ is a BCI-graph, this obviously yields that the same holds for BCay(G, S). Define the permutation ϕ of $G \times \{0, 1\}$ by

$$(x,i)^{\phi} = \begin{cases} (x,0) & \text{if } i = 0, \\ (s^{-1}x,1) & \text{if } i = 1. \end{cases}$$

The vertex (x, 0) of $\operatorname{BCay}(G, S)$ has neighborhood (Sx, 1). This is mapped by ϕ to the the set $(s^{-1}Sx, 1)$. This shows that ϕ is an isomorphism from Γ to $\Gamma' = \operatorname{BCay}(G, s^{-1}S)$. Then we have $\operatorname{Aut}(\Gamma')_{\mathbf{0}} = \phi^{-1}A_{\mathbf{0}}\phi = \phi^{-1}A_{(s,1)}\phi = \operatorname{Aut}(\Gamma')_{\mathbf{1}}$. Let $\tau_{\hat{G}}$ be the automorphism of Γ' defined in Lemma 3.1. It follows that $\tau_{\hat{G}}$ is an involution (see the proof of Lemma 3.1), which normalizes \hat{G} and maps 0 to 1. Now, Lemma 2.4 is applicable to Γ' , as a result, it is sufficient to show that $\operatorname{Cay}(G, s^{-1}S)$ is a CI-graph. This follows because $|s^{-1}S \setminus \{1_G\}| = 2$ and that G is a 2-DCI-group (see [15, Theorem 1.3]). This completes the proof of the theorem. \Box

Acknowledgments

This work was supported by the Slovenian Research Agency (research program P1-0285 and research projects N1-0032, N1-0038, N1-0062, J1-6720 and J1-7051).

References

- M. Arezoomand and B. Taeri, Isomorphisms of finite semi-Cayley graphs, Acta Math. Sin. (Engl. Ser.), 31 (2015) 715–730.
- [2] M. Arezoomand and B. Taeri, Finite BCI-groups are solvable, Int. J. Group Theory, 5 no. 2 (2016) 1-6.
- [3] L. Babai, Isomorphism problem for a class of point-symmetric structures, Acta Math. Acad. Sci. Hungar., 29 (1977) 329–336.
- [4] N. Biggs and M. Hoare, The sextet construction for cubic graphs, Combinatorica, 3 (1983) 153–165.
- [5] W. Bosma, J. Cannon and C. Playoust, The MAGMA Algebra System I: The User Language, J. Symbolic Comput., 24 (1997) 235–265.

- [6] M. D. E. Conder and P. Dobcsányi, Trivalent symmetric graphs on up to 768 vertices, J. Combin. Math. Combin. Comput., 40 (2002) 41–63.
- [7] M. D. E. Conder and R. Nedela, Symmetric cubic graphs of small girth, J. Combin. Theory Ser. B, 97 (2007) 757–768.
- [8] J. D. Dixon and B. Mortimer, *Permutation groups*, Graduate Texts in Mathematics, 163, Springer-Verlag, New York, 1996.
- [9] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin Heidelberg New York, 1967.
- [10] W. Jin and W. Liu, Two results on BCI-subset of finite groups, Ars Combin., 93 (2009) 169–173.
- [11] W. Jin and W. Liu, A classification of nonabelian simple 3-BCI-groups, European J. Combin., 31 (2010) 1257–1264.
- [12] W. Jin and W. Liu, On Sylow subgroups of BCI groups, Util. Math., 86 (2011) 313–320.
- [13] H. Koike and I. Kovács, Isomorphic tetravalent cyclic Haar graphs, Ars Math. Contemp., 7 (2014) 215–235.
- [14] K. Kutnar and D. Marušič, A complete classification of cubic symmetric graphs of girth 6, J. Combin. Theory Ser. B, 99 (2009) 162–184.
- [15] C. H. Li, Isomorphism of finite Cayley digraphs of bounded valency, II, J. Combin. Theory. Ser. A, 87 (1999) 333–346.
- [16] C. H. Li, The finite vertex-primitive and vertex-biprimitive s-transitive graphs for $s \ge 4$, Trans. Amer. Math. Soc., **353** (2001) 3511–3529.
- [17] C. H. Li, On isomorphisms of finite Cayley graphs-a survey, Discrete Math., 256 (2002) 301-334.
- [18] C. H. Li and C. E. Praeger, Finite groups in which any two elements of the same order are either fused or inverse fused, *Comm. Algebra*, 25 (1997) 3081–3118.
- [19] C. H. Li, C. E. Praeger and M. Y. Xu, Isomorphisms of finite Cayley digraphs of bounded valency, J. Combin. Theory. Ser. B, 73 (1998) 164–183.
- [20] P. Lorimer, Vertex-transitive graphs: symmetric graphs of prime valency, J. Graph Theory, 8 (1984) 55–68.
- [21] W. R. Scott, Group theory, Prentice-Hall, Inc., New Jersey, 1964.
- [22] W. T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc., 43 (1947) 459-474.
- [23] D. Wiedemann and M. E. Zieve, Equivalence of sparse circulants: the bipartite Ádám problem, preprint arXiv:0706.1567v1 [math. CO] (2007).
- [24] S. J. Xu, W. Jin, Q. Shi and J. J. Li, The BCI-property of the Bi-Cayley graphs, J. Guangxi Norm. Univ.: Nat. Sci. Edition, 26 (2008) 33–36.

First Author

Institute of Mathematics, National Autonomous University of Mexico, 04510 Ciudad de Mexico, Mexico Email: hiroki.koike@im.unam.mx

Second Author

UP IAM and UP FAMNIT, University of Primorska, Muzejski trg 2, 6000 Koper, Slovenia Email: istvan.kovacs@upr.si