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Communicated by Bijan Taeri

Abstract. Given a finite group G and a subset S ⊆ G, the bi-Cayley graph BCay(G,S) is the graph

whose vertex set is G × {0, 1} and edge set is {{(x, 0), (sx, 1)} : x ∈ G, s ∈ S}. A bi-Cayley graph

BCay(G,S) is called a BCI-graph if for any bi-Cayley graph BCay(G,T ), BCay(G,S) ∼= BCay(G,T )

implies that T = gSα for some g ∈ G and α ∈ Aut(G). A group G is called an m-BCI-group if all

bi-Cayley graphs of G of valency at most m are BCI-graphs. It was proved by Jin and Liu that, if

G is a 3-BCI-group, then its Sylow 2-subgroup is cyclic, or elementary abelian, or Q8 [European J.

Combin. 31 (2010) 1257–1264], and that a Sylow p-subgroup, p is an odd prime, is homocyclic [Util.

Math. 86 (2011) 313–320]. In this paper we show that the converse also holds in the case when G is

nilpotent, and hence complete the classification of nilpotent 3-BCI-groups.

1. Introduction

In this paper every group and every (di)graph will be finite. Given a group G and a subset S ⊆ G,

the bi-Cayley graph BCay(G,S) of G with respect to S is the graph whose vertex set is G×{0, 1} and

edge set is {{(x, 0), (sx, 1)} : x ∈ G, s ∈ S}. We call two bi-Cayley graphs BCay(G,S) and BCay(G,T )

bi-Cayley isomorphic if T = gSα for some g ∈ G and α ∈ Aut(Γ) (here and in what follows for x ∈ G

and R ⊆ G, xR = {xr : r ∈ R}). It can be easily shown that bi-Cayley isomorphic bi-Cayley graphs

are isomorphic as usual graphs. The converse implication is not true in general, and this makes the

following definition interesting (see [24]): a bi-Cayley graph BCay(G,S) is a BCI-graph if for any
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bi-Cayley graph BCay(G,T ), BCay(G,S) ∼= BCay(G,T ) implies that T = gSα for some g ∈ G and

α ∈ Aut(G). A group G is called an m-BCI-group if all bi-Cayley graphs of G of valency at most m

are BCI-graphs, and an |G|-BCI-group is simply called a BCI-group. It should be remarked that the

above concepts are motivated by Cayley digraphs (more details on this will be given in Section 2).

The study of m-BCI-groups was initiated in [24], where it was shown that every group is a 1-BCI-

group, and a group is a 2-BCI-group if and only if it has the property that any two elements of the

same order are either fused or inverse fused (these groups are described in [18]). The problem of

classifying all 3-BCI-groups is still open. Up to our knowledge, it is only known that every cyclic

group is a 3-BCI-group (this is a consequence of [23, Theorem 1.1], see also [10]), and that A5 is the

only non-abelian simple 3-BCI-group (see [11]). As for BCI-groups, it was proved by M. Arezoomand

and B. Taeri [2] that a finite BCI-group must be solvable. In this paper we make a further step by

classifying the nilpotent 3-BCI-groups.

In fact, there is an explicit list of candidates for nilpotent 3-BCI groups, which arises from the

earlier works of W. Jin and W. Liu [11, 12] on the Sylow p-subgroups of 3-BCI-groups. In particular,

a Sylow 2-subgroup of a 3-BCI-group is Z2r , Zr
2 or the quaternion group Q8 (see [11]), while a Sylow

p-subgroup for p > 2 is homocyclic (see [12]). A group is said to be homocyclic if it is a direct product

of cyclic groups of the same order. Consequently, if G is a nilpotent 3-BCI-group, then G decomposes

as G = U × V, where U is a homocyclic group of odd order, and V is trivial or one of the groups Z2r ,

Zr
2 and Q8. In this paper we prove that the converse implication also holds, and hence complete the

classification of nilpotent 3-BCI-groups.

Theorem 1.1. Every finite group U × V is a 3-BCI-group, where U is a homocyclic group of odd

order, and V is trivial or one of the groups Z2r , Zr
2 and Q8.

In Section 2, following the ideas of [3], we will see that the BCI-property of a given bi-Cayley graph

can be read off entirely from its automorphism group (see Lemma 2.2). This was observed for cyclic

groups in [13], and this result was later generalized to arbitrary groups in [1]. Theorem 1.1 will be

proved in Section 3.

2. A Babai type lemma for bi-Cayley graphs

We start by setting the relevant notations and terminology.

Notations. Let G be a group acting on a finite set V . For g ∈ G and v ∈ V, the image of v under

g will be written as vg. For a subset U ⊆ V, we will denote by GU the elementwise stabilizer of U

in G, while by G{U} the setwise stabilizer of U in G. If U = {u}, then Gu will be written for G{u}.

We say that U is G-invariant if G leaves U setwise fixed, or equivalently, when G{U} = G. If G is

transitive on V and ∆ ⊆ V is a block for G, then the partition δ = {∆g : g ∈ G} is called the system of

blocks for G induced by ∆. The group G acts on δ naturally, the corresponding kernel will be denoted

by Gδ, i.e., Gδ = {g ∈ G : ∆′ g = ∆′ for all ∆′ ∈ δ}. For a graph Γ, we let V (Γ), E(Γ), A(Γ), and
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Aut(Γ) denote the vertex set, the edge set, the arc set, and the full group of automorphisms of Γ,

respectively. For a subset U ⊆ V (Γ), we let Γ[U ] denote the subgraph of Γ induced by U . A graph Γ is

called arc-transitive when Aut(Γ) is transitive on A(Γ). By Kn and Kn,n we will denote the complete

graph on n vertices and the complete bipartite graph on 2n vertices respectively. By a cubic graph we

simply mean a regular graph of valency 3.

Let G be a group and S ⊆ G. The Cayley digraph Cay(G,S) is the digraph whose vertex set is

G and arc set is {(x, sx) : x ∈ G, s ∈ S}. A Cayley digraph Cay(G,S) is called a CI-graph if for

any Cayley digraph Cay(G,T ), Cay(G,S) ∼= Cay(G,T ) implies that T = Sα for some α ∈ Aut(G),

G is called an m-DCI-group if all Cayley digraphs of G of valency at most m are CI-graphs, and

an (|G| − 1)-CI-group is simply called a CI-group (see [19, Definition 1.1]). Finite CI-groups and

m-DCI-groups have attracted considerable attention over the last 40 years, for more information on

these groups, the reader is referred to the survey [17]. The following result, frequently used in studying

CI-graphs, is a special case of a lemma due to Babai [3, Lemma 3.1]:

Lemma 2.1. The following are equivalent for every Cayley digraph Γ = Cay(G,S).

(1) Cay(G,S) is a CI-graph.

(2) Every two regular subgroups of Aut(Γ), isomorphic to G, are conjugate in Aut(Γ).

Given a group G with identity element 1G, we shall use the symbols 0 and 1 to denote the elements

(1G, 0) and (1G, 1) in G × {0, 1} respectively. For a subset S ⊆ G, we write (S, 0) = {(s, 0) : s ∈ S}
and (S, 1) = {(s, 1) : s ∈ S}. For g ∈ G, let ĝ be the permutation of G× {0, 1} defined by

(x, i)ĝ = (xg, i) for every x ∈ G and i ∈ {0, 1}.

We set Ĝ = {ĝ : g ∈ G}. Obviously, Ĝ ≤ Aut(BCay(G,S)), and Ĝ is semiregular with orbits (G, 0)

and (G, 1). In what follows will we denote by S(Aut(BCay(G,S)) the set of all semiregular subgroups

of Aut(BCay(G,S)) whose orbits are (G, 0) and (G, 1). Finally, we let Gright ≤ Sym((G, 1)) be the

permutation group induced by the action of Ĝ on (G, 1).

The next lemma was proved by M. Arezoomand and B. Taeri [1]. For completeness, we give a proof

here.

Lemma 2.2. The following are equivalent for every bi-Cayley graph Γ = BCay(G,S).

(1) BCay(G,S) is a BCI-graph.

(2) The normalizer NAut(Γ)(Ĝ) is transitive on V (Γ), and every two subgroups in S(Aut(Γ)),

isomorphic to G, are conjugate in Aut(Γ).

Proof. We start with the part (1) ⇒ (2). Let X ∈ S(Aut(Γ)) such that X ∼= G. We have to show

that X and Ĝ are conjugate in Aut(Γ). Let i ∈ {0, 1}, and set X(G,i) and Ĝ(G,i) for the permutation

groups of the set (G, i) induced by X and Ĝ respectively. The groups X(G,i) and Ĝ(G,i) are conjugate

in Sym((G, i)), because these are isomorphic and regular on (G, i). Thus X and Ĝ are conjugate by
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a permutation ϕ ∈ Sym(G×{0, 1}) such that (G, 0) is ϕ-invariant (here ϕ is viewed as a permutation

of G × {0, 1}). We write X = ϕĜϕ−1. Consider the graph Γϕ, the image of Γ under ϕ. Then

Ĝ = ϕ−1Xϕ ≤ Aut(Γϕ). Using this and that (G, 0) is ϕ-invariant, we obtain that Γϕ = BCay(G,T )

for some subset T ⊆ G. Then Γ ∼= BCay(G,T ), and by (i), T = gSα for some g ∈ G and α ∈ Aut(G).

Define the permutation σ of G× {0, 1} by

(x, i)σ =

(xα, 0) if i = 0,

(gxα, 1) if i = 1.

A direct calculation shows that σ−1ĝσ = ĝσ if g ∈ G. Thus σ normalizes Ĝ. The vertex (x, 0) of

BCay(G,S) has neighborhood (Sx, 1). This is mapped by σ to the the set (gSαxα, 1) = (Txα, 1). This

proves that σ is an isomorphism from Γ to Γϕ, and in turn it follows that, Γϕ = Γσ, ϕσ−1 ∈ Aut(Γ),

and thus ϕ = ρσ for some ρ ∈ Aut(Γ). Finally, X = ϕĜϕ−1 = ρσĜσ−1ρ−1 = ρĜρ−1, i.e., X and Ĝ

are conjugate in Aut(Γ).

In order to prove that the normalizer NAut(Γ)(Ĝ) is transitive on V (Γ), it is sufficient to find some

automorphism η which switches (G, 0) and (G, 1) and normalizes Ĝ. Observe that BCay(G,S) ∼=
BCay(G,S−1), where S−1 = {s−1 : s ∈ S}. Then by (i), S−1 = gSα for some g ∈ G and α ∈ Aut(G).

We leave for the reader to verify that the permutation of G × {0, 1} defined below is an appropriate

choice for such η:

(x, i)η =

(xα, 1) if i = 0,

(gxα, 0) if i = 1.

We turn to the part (2) ⇒ (1). Let Γ′ = BCay(G,T ) such that Γ′ ∼= Γ. We have to show that

T = gSα for some g ∈ G and α ∈ Aut(G). We claim the existence of an isomorphism ϕ : Γ → Γ′

for which ϕ : 0 7→ 0 and (G, 0) is ϕ-invariant (here ϕ is viewed as a permutation of G × {0, 1}). We

construct ϕ in a few steps. To start with, choose an arbitrary isomorphism ϕ1 : Γ → Γ′. Since the

normalizer NAut(Γ)(Ĝ) is transitive on V (Γ), there exists ρ ∈ NAut(Γ)(Ĝ) which maps 0 to 0ϕ
−1
1 . Let

ϕ2 = ρϕ1. Then ϕ2 is an isomorphism from Γ to Γ′, and also ϕ2 : 0 7→ 0. The connected component

of Γ containing the vertex 0 is equal to the induced subgraph Γ[(H, 0) ∪ (sH, 1)], where s ∈ S and

H ≤ G is generated by the set s−1S. It can be easily checked that

Γ[(H, 0) ∪ (sH, 1)] ∼= BCay(H, s−1S).

Similarly, the connected component of Γ′ containing the vertex 0 is equal to the induced subgraph

Γ′[(K, 0) ∪ (tK, 1)], where t ∈ T and K ≤ G is generated by the set t−1T, and

Γ′[(K, 0) ∪ (tK, 1)] ∼= BCay(K, t−1T ).

Since ϕ2 fixes 0, it induces an isomorphism from Γ[(H, 0) ∪ (sH, 1)] to Γ[(K, 0) ∪ (tK, 1)]; denote this

isomorphism by ϕ3. It follows from the connectedness of these induced subgraphs that ϕ3 preserves

their bipartition classes, moreover, ϕ3 maps (H, 0) to (K, 0), since it fixes 0. Finally, take ϕ : Γ → Γ′
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http://dx.doi.org/10.22108/ijgt.2017.100795.1404


Int. J. Group Theory 8 no. 2 (2019) 11-24 H. Koike and I. Kovács 15

to be the isomorphism whose restriction to each component of Γ equals ϕ3. It is clear that ϕ : 0 7→ 0

and (G, 0) is ϕ-invariant.

Since Ĝ ≤ Γ′, ϕĜϕ−1 ≤ Aut(Γ). The orbit of 0 under ϕĜϕ−1 is equal to (G, 0)ϕ
−1

= (G, 0),

and hence ϕĜϕ−1 ∈ S(Aut(Γ)). By (ii), ϕĜϕ−1 = σ−1Ĝσ for some σ ∈ Aut(Γ). Since NAut(Γ)(Ĝ)

is transitive on V (Γ), σ can be chosen so that σ : 0 7→ 0. To sum up, we have an isomorphism

(σϕ) : Γ 7→ Γ′ which fixes 0 and also normalizes Ĝ. Thus (σϕ) maps (G, 1) to itself. Recall that

Gright ≤ Sym((G, 1)) is the permutation group induced by the action of Ĝ on (G, 1). Then, the

permutation of (G, 1) induced by (σϕ) belongs to the holomorph of Gright (cf. [8, Exercise 2.5.6]),

and therefore, there exist g ∈ G and α ∈ Aut(G) such that (σϕ) : (x, 1) 7→ (gxα, 1) for all x ∈ G.

On the other hand, being an isomorphism from Γ to Γ′, σϕ maps (S, 1) to (T, 1). These give that

(T, 1) = (S, 1)σϕ = (gSα, 1), i.e., T = gSα. □

Remark 2.3. Notice that, we cannot delete the condition on the normalizer NAut(Γ)(Ĝ) from Lemma

2.2.(ii). To see this, consider the bi-Cayley graph Γ = BCay(G,S), where

G = ⟨a, b | a5 = b4 = 1, b−1ab = a2⟩ and S = {1, a, b}.

The group G is the unique Frobenius group of order 20, and we find by the help of the computer package

Magma [5] that Γ is arc-transitive. In fact, Γ is the unique arc-transitive cubic graph on 40 points (see

[6]). We also compute that any two subgroups in S(Aut(Γ)), isomorphic to G, are conjugate in Aut(Γ).

We show below that, for any g ∈ G and α ∈ Aut(G), Sα ̸= gS−1. Since BCay(G,S) ∼= BCay(G,S−1),

this implies that Γ is not a BCI-graph.

To the contrary assume that Sα = gS−1 for some g ∈ G and α ∈ Aut(G). It follows at once that

g ∈ S. As no element in bS−1 = {b, ba−1, 1} is of order 5, g ̸= b. Since every automorphism of G is

inner, α equals the conjugation by some element c ∈ G. Let g = 1. Then Sα = gS−1 = S−1, hence

ac = aα = a−1 and bc = bα = b−1. From the first equality c ∈ CG(a)b
2 = ⟨a⟩b2, where CG(a) denotes

the centraliser of a in G, that is, CG(a) = {x ∈ G : ax = xa}. Thus c = aib2 for some i ∈ {0, . . . , 4}.
Plugging this in the second equality, we get b2a−ibaib2 = b−1, hence a3ib = b−1, which is impossible.

Finally, let g = a. Then Sα = gS−1 = aS−1, hence ac = aα = a and bc = bα = ab−1. The first equality

gives that c = ai for some i ∈ {0, . . . , 4}. Plugging this in the second equality, we get a−ibai = ab−1,

hence a2ib = ab−1, which is again impossible. □

As an application of Lemma 2.2, we prove the lemma below in which we connect the BCI-property

with the CI-property. This lemma will be used in the proof of Theorem 1.1 in the particular case

when the graphs are not arc-transitive.

Lemma 2.4. Let Γ = BCay(G,S) such that there exists an involution τ ∈ Aut(Γ) which normalizes

Ĝ and 0τ = 1. Suppose, in addition, that Aut(Γ)0 = Aut(Γ)1. Then BCay(G,S) is a BCI-graph

whenever Cay(G,S) is a CI-graph.

Proof. Set A = Aut(Γ) and A+ = A{(G,0)}, and let us suppose that Cay(G,S) is a CI-graph. Let

X ∈ S(A), X ∼= G. Obviously, X, Ĝ ≤ A+. The normalizer NA(Ĝ) ≥ ⟨Ĝ, τ⟩, hence it is transitive on
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V (Γ). Thus by Lemma 2.2 we are done if we show that X and Ĝ are conjugate in A+. In order to

prove this we define a faithful action of A+ on G as follows. Let ∆ = {0,1} and consider the setwise

stabilizer A{∆}. Since A0 = A1, A0 ≤ A{∆}. By [8, Theorem 1.5A], the orbit of 0 under A{∆} is a

block for A. Since τ switches 0 and 1, this orbit is equal to ∆, and the system of blocks induced by

∆ is

δ = {∆x̂ : x ∈ G} =
{
{(x, 0), (x, 1)} : x ∈ G

}
.

Now, define the action of A+ on G by letting xσ = x′, where x ∈ G and σ ∈ A+, if σ maps the

block {(x, 0), (x, 1)} to the block {(x′, 0), (x′, 1)}. We will write σ̄ for the image of σ under the

corresponding permutation representation, and let B̄ = {σ̄ : σ ∈ B} for a subgroup B ≤ A+. It is

easily seen that this action is faithful. Therefore, X and Ĝ are conjugate in A+ exactly when X̄ and
¯̂
G are conjugate in Ā+. Also,

¯̂
G = Gright, and X̄ is regular on G. We finish the proof by showing that

Ā+ = Aut(Cay(G,S)). Then the conjugacy of X̄ and
¯̂
G follows by Lemma 2.1 and the assumption

that Cay(G,S) is a CI-graph.

Pick an automorphism σ ∈ A+ and an arc (x, sx) of Cay(G,S). Then the edge {(x, 0), (sx, 1)} of Γ is

mapped by σ to an edge {(x′, 0), (s′x′, 1)} for some x′ ∈ G and s′ ∈ S. Hence σ̄ : x 7→ x′ and sx 7→ s′x′,

i.e., it maps the arc (x, sx) to the arc (x′, s′x′). We have just proved that σ̄ ∈ Aut(Cay(G,S)), and

hence Ā+ ≤ Aut(Cay(G,S)). In order to establish the relation “≥”, for an arbitrary automorphism

ρ ∈ Aut(Cay(G,S)), define the permutation π of G × {0, 1} by (x, i)π = (xρ, i) for all x ∈ G and

i ∈ {0, 1}. Repeating the previous argument we obtain that π ∈ Aut(Cay(G,S)). It is clear that

π ∈ A+ and π̄ = ρ. Thus Ā+ ≥ Aut(Cay(G,S)), and so Ā+ = Aut(Cay(G,S)). The lemma is

proved. □

3. Proof of Theorem 1.1

In this section we denote by C the set of all groups U × V, where U is a homocyclic group of odd

order, and V is either trivial or one of Z2r , Zr
2 and Q8; and by Csub the set of all groups that have an

overgroup in C.

Lemma 3.1. Let Γ be a cubic bipartite graph with bipartition classes ∆i, i = 1, 2, and X ≤ Aut(Γ)

be a semiregular subgroup whose orbits are ∆i, i = 1, 2, and X ∈ Csub. Then Aut(Γ) has an element

τX which satisfies:

(1) every subgroup of X is normal in ⟨X, τX⟩;
(2) ⟨X, τX⟩ is regular on V (Γ).

Proof. It is straightforward to show that Γ ∼= BCay(X,S) for some subset S ⊆ X with 1X ∈ S and

|S| = 3. Moreover, there is an isomorphism from Γ to BCay(X,S) which induces a permutation

isomorphism from X to X̂. Therefore, it is sufficient to find τ ∈ Aut(BCay(X,S)) for which every

subgroup of X̂ is normal in ⟨X̂, τ⟩; and ⟨X̂, τ⟩ is regular on V (BCay(X,S)).

http://dx.doi.org/10.22108/ijgt.2017.100795.1404
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Since X ∈ Csub, X = U × V, where U is an abelian group of odd order, and V is trivial or one of

Z2r ,Zr
2 and Q8. We prove below the existence of an automorphism ι ∈ Aut(X), which maps the set S

to its inverse S−1. Let πU and πV denote the projections U×V → U and U×V → V respectively. It is

sufficient to find an automorphism ι1 ∈ Aut(U) which maps πU (S) to πU (S)
−1, and an automorphism

ι2 ∈ Aut(V ) which maps πV (S) to πV (S)
−1. Since U is abelian, we are done by choosing ι1 to be

the automorphism x 7→ x−1. If V is abelian, then let ι2 : x 7→ x−1. Otherwise, V ∼= Q8, and since

|πV (S) \ {1V }| ≤ 2, it follows that πV (S) is conjugate to πV (S)
−1 in V . This ensures that ι2 can be

chosen to be some inner automorphism. Now, define ι by setting its restriction ι|U to U as ι|U = ι1,

and its restriction ι|V to V as ι|V = ι2. Define the permutation τ of X × {0, 1} by

(x, i)τ =

(xι, 1) if i = 0,

(xι, 0) if i = 1.

The vertex (x, 0) of BCay(X,S) has neighborhood (Sx, 1). This is mapped by τ to the set (S−1xι, 0),

which is equal to the neighborhood of (xι, 1). We have proved that τ ∈ Aut(BCay(X,S)).

It follows from its construction that τ is an involution. Fix an arbitrary subgroup Y ≤ X, and

pick y ∈ Y . We may write y = yUyV for some yU ∈ U and yV ∈ V . Then ⟨yU , yV ⟩ ≤ Y, since

yU and yV commute and gcd(|U |, |V |) = 1. Also, (yU )
ι1 = y−1

U and (yV )
ι2 ∈ ⟨yV ⟩, implying that

yι = (yU )
ι1(yV )

ι2 ∈ ⟨yU , uV ⟩ ≤ Y . We conclude that ι maps Y to itself. Thus τ−1ŷτ = τ ŷτ = ŷι is in

Ŷ , and τ normalizes Ŷ . Since X ∈ Csub, Ŷ is also normal in X̂, and part (1) follows.

For part (2), observe that |⟨X̂, τ⟩| = 2|X| = |V (BCay(X,S))|. Clearly, ⟨X̂, τ⟩ is transitive on

V (BCay(X,S)), so it is regular. □

Let Γ be an arbitrary finite graph and G ≤ Aut(Γ) which is transitive on V (Γ). For a normal

subgroup N ◁ G which is not transitive on V (Γ), the quotient graph ΓN is the graph whose vertices

are the N -orbits on V (Γ), and two N -orbits ∆i, i = 1, 2, are adjacent if and only if there exist

vi ∈ ∆i, i = 1, 2, which are adjacent in Γ. For a positive integer s, an s-arc of Γ is an ordered (s+ 1)-

tuple (v0, v1, . . . , vs) of vertices of Γ such that, for every i ∈ {1, . . . , s}, vi−1 is adjacent to vi, and for

every i ∈ {1, . . . , s − 1}, vi−1 ̸= vi+1. The graph Γ is called (G, s)-arc-transitive ((G, s)-arc-regular)

if G is transitive (regular) on the set of s-arcs of Γ. If G = Aut(Γ), then a (G, s)-arc-transitive

((G, s)-arc-regular) graph is simply called s-transitive (s-regular). The proof of the following lemma

is straightforward, hence it is omitted (it can be also deduced from [20, Theorem 9]).

Lemma 3.2. Let Γ = BCay(G,S) be a connected arc-transitive graph, G be any finite group, |S| = 3,

and N < Ĝ be a subgroup which is normal in Aut(Γ). Then the following hold:

(1) ΓN is a cubic connected arc-transitive graph.

(2) N is equal to the kernel of Aut(Γ) acting on the set of N -orbits.

(3) ΓN is isomorphic to a bi-Cayley graph of the group Ĝ/N .

Remark 3.3. Let Γ and N be as described in Lemma 3.2. The group Aut(Γ) acts on the set of N -

orbits, i.e., on the vertex set V (ΓN ). Lemma 3.2.(ii) implies that, the induced permutation group on
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V (ΓN ) is isomorphic to Aut(Γ)/N, and therefore, by some abuse of notation, this permutation group

will also be denoted by Aut(Γ)/N . In what follows we shall write Aut(Γ)/N ≤ Aut(ΓN ). Also note

that, if Γ is s-transitive, then ΓN is (Aut(Γ)/N, s)-arc-transitive.

The proof of Theorem 1.1 in the case of arc-transitive graphs will be based on three lemmas about

cubic connected arc-transitive bi-Cayley graphs to be proved below. In these lemmas we keep the

following notation:

(∗) Γ = BCay(G,S) is a connected arc-transitive graph, where G ∈ Csub and |S| = 3.

Lemma 3.4. With notation (∗), let δ be a system of blocks for Aut(Γ) induced by a block properly

contained in (G, 0), and X be in S(Aut(Γ)) such that X ∈ Csub. Then for the kernel Aδ (see Notations),

Aδ < X. Moreover, if δ is non-trivial, then Aδ is also non-trivial.

Proof. Set A = Aut(Γ). Let Y = X ∩ A{∆}, where ∆ ∈ δ with ∆ ⊂ (G, 0). Then ∆ is equal to an

orbit of Y, and |Y | = |∆| because ∆ ⊂ (G, 0) and X is regular on (G, 0). Formally, ∆ = OrbY (v) for

some vertex v ∈ ∆.

Let τX ∈ A be the automorphism defined in Lemma 3.1, and set L = ⟨X, τX⟩. The group L is

regular on V (Γ), and Y ⊴ L. These yield

δ = {∆l : l ∈ L} = {OrbY (v)
l : l ∈ L} = {OrbY (v

l) : l ∈ L}.

From this Y ≤ Aδ. This shows that, if |Y | = |∆| ̸= 1, then Aδ is non-trivial. Since δ has more than

2 blocks, and Γ is a connected and cubic graph, it is known that Aδ is semiregular. These imply that

Aδ = Y < X. □

Corollary 3.5. With notation (∗), let N < Ĝ be normal in Aut(Γ), and X be in S(Aut(Γ)) such that

X ∈ Csub. Then N < X.

Proof. Let δ be the system of blocks for Aut(Γ) consisting of the N -orbits. Then Aδ = N by Lemma

3.2.(ii), and the corollary follows directly from Lemma 3.4. □

We denote by Q3 the graph of the cube and by H the Heawood graph, i.e., the unique arc-transitive

cubic graph on 14 points (see [6]). Recall that, the core of a subgroup H ≤ K in the group K is the

largest normal subgroup of K contained in H.

Lemma 3.6. With notation (∗), suppose that Ĝ is not normal in Aut(Γ), and let N be the core of Ĝ

in Aut(Γ). Then (Ĝ/N,ΓN ) is isomorphic to one of the pairs (Z3,K3,3), (Z4, Q3), and (Z7,H).

Proof. Set A = Aut(Γ). Consider the quotient graph ΓN , and suppose that M ≤ Ĝ such that N ≤ M

and M/N ⊴ Aut(ΓN ) (here M/N ≤ A/N ≤ Aut(ΓN ), see Remark 3.3). This in turn implies that,

M/N ⊴ A/N, M ⊴ A, and M = N . We conclude that, ΓN is a bi-Cayley graph of Ĝ/N, Ĝ/N is in

Csub, and Ĝ/N has trivial core in Aut(ΓN ). This shows that it is sufficient to prove Lemma 3.6 in the

particular case when N is trivial. For the rest of the proof we assume that the core N is trivial, and

we write N = 1.

http://dx.doi.org/10.22108/ijgt.2017.100795.1404

http://dx.doi.org/10.22108/ijgt.2017.100795.1404


Int. J. Group Theory 8 no. 2 (2019) 11-24 H. Koike and I. Kovács 19

By Tutte Theorem [22], Γ is k-regular for some k ≤ 5. Set A+ = Aut(Γ){(G,0)}. It follows from

the connectedness of Γ that A = ⟨A+, τĜ⟩, where τĜ ∈ A is the automorphism defined in Lemma 3.1.

Let M be the core of Ĝ in A+. Then M ⊴ A, since M is normalized by τĜ, see Lemma 3.1.(i), and

A = ⟨A+, τĜ⟩. Thus M ≤ N = 1, hence M is also trivial.

Let us consider A+ acting on the set [A+ : Ĝ] of right Ĝ-cosets in A+. This action is faithful because

M is trivial. The corresponding degree is equal to |A+ : Ĝ|. Since A = Aut(X) is regular on the set

of k-arcs of X, thus |A| is equal to the number of k-arcs of X, which is |V (X)| · 3 · 2k−1 = |Ĝ| · 3 · 2k.
Since |A+| = |A|/2, it follows that

|A+ : Ĝ| = |Ĝ| · 3 · 2k

2 · |Ĝ|
= 3 · 2k−1.

Since Ĝ acts as a point stabilizer in this action, we have an embedding of G into S3·2k−1−1. We will

write below that G ≤ S3·2k−1−1.

Recall that, A0 is determined uniquely by k, and we have, respectively, A0
∼= Z3, or S3, or D12, or

S4, or S4 × Z2. We go through each case.

CASE 1. k = 1.

This case can be excluded at once by observing that we have G ≤ S2 by the above discussion, which

contradicts the obvious bound |G| ≥ 3.

CASE 2. k = 2.

In this case G ≤ S5. Using also that G ∈ Csub, we see that G is abelian, hence |G| ≤ 6, |V (Γ)| ≤ 12.

We obtain by [6, Table] that Γ ∼= Q3, and G ∼= Z4.

CASE 3. k = 3.

Then A+ = ĜA0 = ĜD12, a product of a nilpotent and a dihedral subgroup. Thus A+ is solvable

by Huppert-Itô Theorem (cf. [21, 13.10.1]). Assume for the moment that A+ is imprimitive on (G, 0).

This implies that A is also imprimitive on V (Γ) and it has a non-trivial block system δ which has

a block properly contained in (G, 0). Lemma 3.4 gives that Aδ < Ĝ, and Aδ is non-trivial. This,

however, contradicts that the core N = 1. Thus A+ is primitive on (G, 0). Using that A+ is also

solvable, we find that G is a p-group. We see that G is either abelian or it is Q8. In the latter case

|V (Γ)| = 16, and Γ is isomorphic to the Moebius-Kantor graph, which is, however, 2-regular (see [6,

Table]). Therefore, G is an abelian p-group. Let S = {s1, s2, s3}. Since G is abelian, for Γ we have:

(3.1) 0 ∼ (s1, 1) ∼ (s−1
2 s1, 0) ∼ (s3s

−1
2 s1, 1) = (s1s

−1
2 s3, 1) ∼ (s−1

2 s3, 0) ∼ (s3, 1) ∼ 0.

Thus Γ is of girth at most 6. It was proved in [7, Theorem 2.3] that the Pappus graph on 18 points and

the Desargues graph on 20 points are the only 3-regular cubic graphs of girth 6. For the latter graph

|G| = 10, contradicting that G is a p-group. We exclude the former graph by the help of Magma. We

compute that the Pappus graph has no abelian semiregular automorphism group of order 9 which has

trivial core in the full automorphism group. Thus Γ is of girth 4 (3 and 5 are impossible as the graph
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is bipartite). It is well-known that there are only two cubic arc-transitive graphs of girth 4 (see also

[14, page 163]): K3,3 and Q3. We get at once that Γ ∼= K3,3 and G ∼= Z3.

CASE 4. k = 4.

It is sufficient to show that G is abelian. Then by the above reasoning Γ is of girth 6, and as the

Heawood graph is the only cubic 4-regular graph of girth 6 (see [7, Theorem 2.3]), we get at once that

Γ ∼= H and G ∼= Z7.

Assume, towards a contradiction, that G is non-abelian. Thus G = U × V, where U is an abelian

group of odd order, and V ∼= Q8. We have already shown above that A+ is primitive on (G, 0). In

other words, Γ is a 4-transitive bi-primitive cubic graph. Recall that a permutation group on a set Ω

is called bi-primitive if it is transitive and imprimitive, and Ω has only one nontrivial system of blocks

consisting of exactly two blocks.

Two possibilities can be deduced from the list of 4-transitive bi-primitive graphs given in [16,

Theorem 1.4]:

• Γ is the standard double cover of a connected vertex-primitive cubic 4-regular graph, in which

case A = A+ × ⟨η⟩ for an involution η; or

• Γ isomorphic to the sextet graph S(p) (see [4]), where p ≡ ±7(mod 16), in which case A ∼=
PGL(2, p), and A+ ∼= PSL(2, p).

The second possibility cannot occur, because then A+ ∼= PSL(2, p), whose Sylow 2-subgroup is a

dihedral group (cf. [9, Satz 8.10]), which contradicts that V ≤ Ĝ ≤ A+, and V ∼= Q8. It remains to

exclude the first possibility. We may assume, by replacing S with xS for a suitable x ∈ G if necessary,

that η switches 0 and 1. Since η commutes with Ĝ, we find (x, 1)η = 1x̂η = 1ηx̂ = 0x̂ = (x, 0) for every

x ∈ G. Let s ∈ S. Then 0 ∼ (s, 1), hence 1 = 0η ∼ (s, 1)η = (s, 0), which shows that s ∈ S−1, and

thus S = S−1. Thus there exists s ∈ S with o(s) ≤ 2. Put T = s−1S = sS. Then 1G ∈ T, and since

Γ is connected, G = ⟨T ⟩. Notice that s ∈ Z(G). This implies that T−1 = S−1s = sS = T, and thus

πV (T ) satisfies 1V ∈ πV (T ) and πV (T ) = πV (T )
−1. Since V ∼= Q8, this implies that ⟨πV (T )⟩ ̸= V, a

contradiction to G = ⟨T ⟩. This completes the proof of this case.

CASE 5. k = 5.

In this case Γ is a 5-transitive bi-primitive cubic graph. It was proved in [16, Corollary 1.5] that Γ

is isomorphic to either the PΓL(2, 9)-graph on 30 points (also known as the Tutte’s 8-Cage), or the

standards double cover of the PSL(3, 3).Z2-graph on 468 points. These graphs are of girth 8 and 12

respectively (see [6, Table]). Also, in both cases 8 ∤ |G|, hence G is abelian. In this case, however, the

graph Γ has a closed walk of length 6, as shown in Eq. (3.1), hence its girth cannot be larger than 6.

This proves that this case does not occur. □

For a group A and a prime p dividing |A|, we let Ap denote a Sylow p-subgroup of A.

Lemma 3.7. With notation (∗), let X ∈ S(Aut(Γ)) such that X ∈ Csub and X2
∼= G2. Then X and

Ĝ are conjugate in Aut(Γ).
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Remark 3.8. We remark that, the assumption X2
∼= G2 cannot be deleted. The Moebius-Kantor

graph is a bi-Cayley graph of the group Q8, which has a semiregular cyclic group of automorphisms of

order 8 which preserves the bipartition classes.

Proof. Set A = Aut(Γ). The proof is split into two parts according to whether Ĝ is normal in A.

CASE 1. Ĝ is not normal in A.

Let N be the core of Ĝ in A. By Corollary 3.5, N < X ∩ Ĝ. Therefore, it is sufficient to show that

(3.2) X/N and Ĝ/N are conjugate in A/N.

Recall that, the group A/N ≤ Aut(ΓN ) for the quotient graph ΓN induced by N (see Remark 3.3

and the preceding paragraph). Both groups X/N and Ĝ/N are semiregular whose orbits are the

bipartition classes of ΓN . Also notice that, Ĝ/N cannot be normal in A/N, otherwise Ĝ were normal

in A.

According to Lemma 3.6, (Ĝ/N,ΓN ) ∼= (Z3,K3,3), or (Z4, Q3), or (Z7,H). Thus (1) follows imme-

diately from Sylow Theorems when (Ĝ/N,ΓN ) ∼= (Z7,H).

Let (Ĝ/N,ΓN ) ∼= (Z3,K3,3). Since Ĝ/N is not normal in A/N, and ΓN is (A/N, 1)-arc-transitive,

we compute by Magma that A/N = Aut(ΓN ), or it is a subgroup of Aut(ΓN ) of index 2. In both

cases A/N has one conjugacy class of semiregular subgroups whose orbits are the bipartition classes

of ΓN . Thus (1) holds.

Let (Ĝ/N,ΓN ) ∼= (Z4, Q3). Since X2
∼= G2, X/N ∼= Ĝ/N ∼= Z4. Using this and that ΓN is (A/N, 1)-

arc-transitive, we compute by Magma that A/N = Aut(ΓN ), and that Aut(ΓN ) has one conjugacy

class of semiregular cyclic subgroups whose orbits are the bipartition classes of ΓN . Thus (1) holds

also in this case.

CASE 2. Ĝ is normal in A.

We have to show that X = Ĝ. Notice that, X contains every proper subgroup K < Ĝ which is

characteristic in Ĝ. Indeed, since Ĝ ⊴ A, we have that K ⊴ A, and hence K < X follows from

Corollary 3.5. This property will be used often below.

In particular, Ĝp ≤ Ĝ is characteristic for every prime p dividing |Ĝ|. If G is not a p-group, then

Ĝp < Ĝ, and by the above observation Ĝp < X. This gives that X = Ĝ if G is not a p-group. Let G

be a p-group. If p > 3, then both Ĝ and X are Sylow p-subgroups of A, and the statement follows

from Sylow Theorems. Notice that, since Γ is connected, G is generated by the set s−1S for some

s ∈ S, hence it is generated by two elements.

Let p = 2. Assume for the moment that G is cyclic. Then Ĝ has a characteristic subgroup K such

that Ĝ/K ∼= Z4. Then K ⊴ A, ΓK
∼= Q3. Moreover, ΓK is a bi-Cayley graph of Ĝ/K, and Ĝ/K is

normal in A/K ≤ Aut(ΓK). A simple computation, using Magma, shows that this situation does not

occur. Let G be a non-cyclic 2-group in Csub. Also using the fact that G is generated by two elements,
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we conclude that either G ∼= Z2
2 and Γ ∼= Q3, or G ∼= Q8 and Γ is the Moebius-Kantor graph. Now,

X = X2
∼= G2 = G. Then X = Ĝ can be verified by the help of Magma in either case.

Let p = 3. Observe first that |G| > 3. For otherwise, Γ ∼= K3,3, but no semiregular automorphism

group of order 3 is normal in Aut(K3,3). Since G is generated by two elements, we may write G ∼=
Z3e × Z3f , where e ≥ 1 and 0 ≤ f ≤ e. If e = 1, then f = 1, G ∼= Z2

3, and Γ is the Pappus graph.

However, this graph has no automorphism group which is isomorphic to Z2
3 and also normal in the

full automorphism group. Therefore, e ≥ 2. Define K = {x̂ : x ∈ G and o(x) ≤ 3e−2}. Then K is a

characteristic subgroup of Ĝ. Thus K ◁ A, and ΓK is a BiCayley graph of Ĝ/K.

Let f ≤ e− 2. Then Ĝ/K ∼= Z9, and ΓK is the Pappus graph. This graph, however, does not have

a cyclic semiregular automorphism group of order 9. We conclude that f ∈ {e− 1, e}.
Let f = e − 1. Then Ĝ/K ∼= Z9 × Z3. It follows that ΓK is the unique cubic arc-transitive graph

on 54 points (see [6, Table]). We have checked by Magma that this graph has a unique semiregular

abelian automorphism group whose orbits are the bipartition classes. Therefore, X/K = Ĝ/K. This

together with K < X ∩ Ĝ yield that X = Ĝ.

Finally, let f = e. Then Ĝ/K ∼= Z9×Z9. It follows that ΓK is the unique cubic arc-transitive graph

on 162 points (see [6, Table]). A direct computation, using Magma, gives that X/K = Ĝ/K, which

together with K < X ∩ Ĝ yield that X = Ĝ. □

Recall that, a group H is homogeneous if every isomorphism between two subgroups of H can be

extended to an automorphism of H. The following result is [15, Proposition 3.2]:

Proposition 3.9. Every 2-DCI-group is homogeneous.

Since every group in C is a 2-DCI-group (see [15, Theorem 1.3]), we have the corollary that every

group in C is homogeneous.

Everything is prepared to prove Theorem 1.1.

Proof of Theorem 1.1. Let G ∈ C and Γ = BCay(G,S) such that |S| ≤ 3. We have to show that Γ is

a BCI-graph. This holds trivially when |S| = 1, and follows from the homogeneity of G when |S| = 2.

Let |S| = 3.

CASE 1. Γ is arc-transitive.

Let BCay(G,S) ∼= BCay(G,T ) for some subset T ⊆ G. We may assume without loss of generality

that 1G ∈ S ∩ T . Let H = ⟨S⟩ and K = ⟨T ⟩. Then H,K ∈ Csub, both bi-Cayley graphs BCay(H,S)

and BCay(K,T ) are connected, and BCay(H,S) ∼= BCay(K,T ). We claim that BCay(H,S) is a

BCI-graph. In view of Lemma 2.2, this holds if the normalizer of Ĥ in Aut(BCay(H,S)) is transitive

on the vertex-set V (BCay(H,S)), and for every X ∈ S(Aut(BCay(H,S))), isomorphic to H, X and

Ĥ are conjugate in Aut(BCay(H,S)). Now, the first part follows from Lemma 3.1, while the second

part follows from Lemma 3.7.
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Let ϕ be an isomorphism from BCay(K,T ) to BCay(H,S), and consider the group X = ϕ−1K̂ϕ ≤
Sym(H). Since ϕ maps the bipartition classes of BCay(K,T ) to the bipartition classes of BCay(H,S),

we have X ∈ S(Aut(BCay(H,S))). Also, X2
∼= Ĥ2, because X ∼= K, |H| = |K| and H and K are both

contained in the group G from C. Thus Lemma 3.7 is applicable, as a result, X and Ĥ are conjugate

in Aut(BCay(H,S)). In particular, H ∼= K. Since G is homogeneous, there exists α1 ∈ Aut(G)

such that Kα1 = H. This α1 induces an isomorphism from BCay(K,T ) to BCay(H,Tα1). Therefore,

BCay(H,S) ∼= BCay(H,Tα1), and since BCay(H,S) is a BCI-graph, Tα1 = gSα2 for some g ∈ H

and α2 ∈ Aut(H). By the homogeneity of G, α2 extends to an automorphism of G, implying that

BCay(G,S) is a BCI-graph.

CASE 2. Γ is not arc-transitive.

Since Γ is vertex-transitive (see Lemma 3.1), but not arc-transitive, we have A0 = A(s,1) for some

s ∈ S. We show below that BCay(G, s−1S) is a BCI-graph, this obviously yields that the same holds

for BCay(G,S). Define the permutation ϕ of G× {0, 1} by

(x, i)ϕ =

(x, 0) if i = 0,

(s−1x, 1) if i = 1.

The vertex (x, 0) of BCay(G,S) has neighborhood (Sx, 1). This is mapped by ϕ to the the set

(s−1Sx, 1). This shows that ϕ is an isomorphism from Γ to Γ′ = BCay(G, s−1S). Then we have

Aut(Γ′)0 = ϕ−1A0ϕ = ϕ−1A(s,1)ϕ = Aut(Γ′)1. Let τĜ be the automorphism of Γ′ defined in Lemma

3.1. It follows that τĜ is an involution (see the proof of Lemma 3.1), which normalizes Ĝ and maps

0 to 1. Now, Lemma 2.4 is applicable to Γ′, as a result, it is sufficient to show that Cay(G, s−1S) is

a CI-graph. This follows because |s−1S \ {1G}| = 2 and that G is a 2-DCI-group (see [15, Theorem

1.3]). This completes the proof of the theorem. □
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