
www.theoryofgroups.ir

International Journal of Group Theory
ISSN (print): 2251-7650, ISSN (on-line): 2251-7669
Vol. 8 No. 2 (2019), pp. 11-24
(C) 2019 University of Isfahan

www.ui.ac.ir

A CLASSIFICATION OF NILPOTENT 3-BCI GROUPS

hiroki koike and istván kovács*

Communicated by Bijan Taeri

Abstract

Given a finite group G and a subset $S \subseteq G$, the bi-Cayley graph BCay (G, S) is the graph whose vertex set is $G \times\{0,1\}$ and edge set is $\{\{(x, 0),(s x, 1)\}: x \in G, s \in S\}$. A bi-Cayley graph $\operatorname{BCay}(G, S)$ is called a BCI-graph if for any bi-Cayley graph $\operatorname{BCay}(G, T), \operatorname{BCay}(G, S) \cong \operatorname{BCay}(G, T)$ implies that $T=g S^{\alpha}$ for some $g \in G$ and $\alpha \in \operatorname{Aut}(G)$. A group G is called an m-BCI-group if all bi-Cayley graphs of G of valency at most m are BCI-graphs. It was proved by Jin and Liu that, if G is a 3-BCI-group, then its Sylow 2-subgroup is cyclic, or elementary abelian, or \mathbf{Q}_{8} [European J. Combin. 31 (2010) 1257-1264], and that a Sylow p-subgroup, p is an odd prime, is homocyclic [Util. Math. 86 (2011) 313-320]. In this paper we show that the converse also holds in the case when G is nilpotent, and hence complete the classification of nilpotent 3-BCI-groups.

1. Introduction

In this paper every group and every (di)graph will be finite. Given a group G and a subset $S \subseteq G$, the bi-Cayley graph $\operatorname{BCay}(G, S)$ of G with respect to S is the graph whose vertex set is $G \times\{0,1\}$ and edge set is $\{\{(x, 0),(s x, 1)\}: x \in G, s \in S\}$. We call two bi-Cayley graphs BCay (G, S) and $\operatorname{BCay}(G, T)$ bi-Cayley isomorphic if $T=g S^{\alpha}$ for some $g \in G$ and $\alpha \in \operatorname{Aut}(\Gamma)$ (here and in what follows for $x \in G$ and $R \subseteq G, x R=\{x r: r \in R\}$). It can be easily shown that bi-Cayley isomorphic bi-Cayley graphs are isomorphic as usual graphs. The converse implication is not true in general, and this makes the following definition interesting (see [24]): a bi-Cayley graph $\operatorname{BCay}(G, S)$ is a BCI-graph if for any

[^0]bi-Cayley graph $\operatorname{BCay}(G, T), \operatorname{BCay}(G, S) \cong \operatorname{BCay}(G, T)$ implies that $T=g S^{\alpha}$ for some $g \in G$ and $\alpha \in \operatorname{Aut}(G)$. A group G is called an m-BCI-group if all bi-Cayley graphs of G of valency at most m are BCI-graphs, and an $|G|$-BCI-group is simply called a BCI-group. It should be remarked that the above concepts are motivated by Cayley digraphs (more details on this will be given in Section 2).

The study of m-BCI-groups was initiated in [24], where it was shown that every group is a 1-BCIgroup, and a group is a 2-BCI-group if and only if it has the property that any two elements of the same order are either fused or inverse fused (these groups are described in [18]). The problem of classifying all 3-BCI-groups is still open. Up to our knowledge, it is only known that every cyclic group is a 3-BCI-group (this is a consequence of [23, Theorem 1.1], see also [10]), and that A_{5} is the only non-abelian simple 3-BCI-group (see [11]). As for BCI-groups, it was proved by M. Arezoomand and B. Taeri [2] that a finite BCI-group must be solvable. In this paper we make a further step by classifying the nilpotent 3-BCI-groups.

In fact, there is an explicit list of candidates for nilpotent 3 -BCI groups, which arises from the earlier works of W. Jin and W. Liu [11, 12] on the Sylow p-subgroups of 3-BCI-groups. In particular, a Sylow 2-subgroup of a 3-BCI-group is $\mathbb{Z}_{2^{r}}, \mathbb{Z}_{2}^{r}$ or the quaternion group \mathbf{Q}_{8} (see [11]), while a Sylow p-subgroup for $p>2$ is homocyclic (see [12]). A group is said to be homocyclic if it is a direct product of cyclic groups of the same order. Consequently, if G is a nilpotent 3-BCI-group, then G decomposes as $G=U \times V$, where U is a homocyclic group of odd order, and V is trivial or one of the groups $\mathbb{Z}_{2^{r}}$, \mathbb{Z}_{2}^{r} and \mathbf{Q}_{8}. In this paper we prove that the converse implication also holds, and hence complete the classification of nilpotent 3-BCI-groups.

Theorem 1.1. Every finite group $U \times V$ is a 3-BCI-group, where U is a homocyclic group of odd order, and V is trivial or one of the groups $\mathbb{Z}_{2^{r}}, \mathbb{Z}_{2}^{r}$ and \mathbf{Q}_{8}.

In Section 2, following the ideas of [3], we will see that the BCI-property of a given bi-Cayley graph can be read off entirely from its automorphism group (see Lemma 2.2). This was observed for cyclic groups in [13], and this result was later generalized to arbitrary groups in [1]. Theorem 1.1 will be proved in Section 3.

2. A Babai type lemma for bi-Cayley graphs

We start by setting the relevant notations and terminology.
Notations. Let G be a group acting on a finite set V. For $g \in G$ and $v \in V$, the image of v under g will be written as v^{g}. For a subset $U \subseteq V$, we will denote by G_{U} the elementwise stabilizer of U in G, while by $G_{\{U\}}$ the setwise stabilizer of U in G. If $U=\{u\}$, then G_{u} will be written for $G_{\{u\}}$. We say that U is G-invariant if G leaves U setwise fixed, or equivalently, when $G_{\{U\}}=G$. If G is transitive on V and $\Delta \subseteq V$ is a block for G, then the partition $\delta=\left\{\Delta^{g}: g \in G\right\}$ is called the system of blocks for G induced by Δ. The group G acts on δ naturally, the corresponding kernel will be denoted by G_{δ}, i.e., $G_{\delta}=\left\{g \in G: \Delta^{\prime g}=\Delta^{\prime}\right.$ for all $\left.\Delta^{\prime} \in \delta\right\}$. For a graph Γ, we let $V(\Gamma), E(\Gamma), A(\Gamma)$, and
$\operatorname{Aut}(\Gamma)$ denote the vertex set, the edge set, the arc set, and the full group of automorphisms of Γ, respectively. For a subset $U \subseteq V(\Gamma)$, we let $\Gamma[U]$ denote the subgraph of Γ induced by U. A graph Γ is called arc-transitive when $\operatorname{Aut}(\Gamma)$ is transitive on $A(\Gamma)$. By K_{n} and $K_{n, n}$ we will denote the complete graph on n vertices and the complete bipartite graph on $2 n$ vertices respectively. By a cubic graph we simply mean a regular graph of valency 3 .

Let G be a group and $S \subseteq G$. The Cayley digraph $\operatorname{Cay}(G, S)$ is the digraph whose vertex set is G and arc set is $\{(x, s x): x \in G, s \in S\}$. A Cayley digraph $\operatorname{Cay}(G, S)$ is called a CI-graph if for any Cayley digraph $\operatorname{Cay}(G, T), \operatorname{Cay}(G, S) \cong \operatorname{Cay}(G, T)$ implies that $T=S^{\alpha}$ for some $\alpha \in \operatorname{Aut}(G)$, G is called an m-DCI-group if all Cayley digraphs of G of valency at most m are CI-graphs, and an $(|G|-1)$-CI-group is simply called a CI-group (see [19, Definition 1.1]). Finite CI-groups and m-DCI-groups have attracted considerable attention over the last 40 years, for more information on these groups, the reader is referred to the survey [17]. The following result, frequently used in studying CI-graphs, is a special case of a lemma due to Babai [3, Lemma 3.1]:

Lemma 2.1. The following are equivalent for every Cayley digraph $\Gamma=\operatorname{Cay}(G, S)$.
(1) $\operatorname{Cay}(G, S)$ is a CI-graph.
(2) Every two regular subgroups of $\operatorname{Aut}(\Gamma)$, isomorphic to G, are conjugate in $\operatorname{Aut}(\Gamma)$.

Given a group G with identity element 1_{G}, we shall use the symbols $\mathbf{0}$ and $\mathbf{1}$ to denote the elements $\left(1_{G}, 0\right)$ and $\left(1_{G}, 1\right)$ in $G \times\{0,1\}$ respectively. For a subset $S \subseteq G$, we write $(S, 0)=\{(s, 0): s \in S\}$ and $(S, 1)=\{(s, 1): s \in S\}$. For $g \in G$, let \hat{g} be the permutation of $G \times\{0,1\}$ defined by

$$
(x, i)^{\hat{g}}=(x g, i) \text { for every } x \in G \text { and } i \in\{0,1\}
$$

We set $\hat{G}=\{\hat{g}: g \in G\}$. Obviously, $\hat{G} \leq \operatorname{Aut}(\operatorname{BCay}(G, S))$, and \hat{G} is semiregular with orbits $(G, 0)$ and $(G, 1)$. In what follows will we denote by $\mathcal{S}(\operatorname{Aut}(\operatorname{BCay}(G, S))$ the set of all semiregular subgroups of $\operatorname{Aut}(\operatorname{BCay}(G, S))$ whose orbits are $(G, 0)$ and $(G, 1)$. Finally, we let $G_{\text {right }} \leq \operatorname{Sym}((G, 1))$ be the permutation group induced by the action of \hat{G} on $(G, 1)$.

The next lemma was proved by M. Arezoomand and B. Taeri [1]. For completeness, we give a proof here.

Lemma 2.2. The following are equivalent for every bi-Cayley graph $\Gamma=\mathrm{BCay}(G, S)$.
(1) $\operatorname{BCay}(G, S)$ is a BCI-graph.
(2) The normalizer $N_{\operatorname{Aut}(\Gamma)}(\hat{G})$ is transitive on $V(\Gamma)$, and every two subgroups in $\mathcal{S}(\operatorname{Aut}(\Gamma))$, isomorphic to G, are conjugate in $\operatorname{Aut}(\Gamma)$.

Proof. We start with the part $(1) \Rightarrow(2)$. Let $X \in \mathcal{S}(\operatorname{Aut}(\Gamma))$ such that $X \cong G$. We have to show that X and \hat{G} are conjugate in $\operatorname{Aut}(\Gamma)$. Let $i \in\{0,1\}$, and set $X^{(G, i)}$ and $\hat{G}^{(G, i)}$ for the permutation groups of the set (G, i) induced by X and \hat{G} respectively. The groups $X^{(G, i)}$ and $\hat{G}^{(G, i)}$ are conjugate in $\operatorname{Sym}((G, i))$, because these are isomorphic and regular on (G, i). Thus X and \hat{G} are conjugate by
a permutation $\phi \in \operatorname{Sym}(G \times\{0,1\})$ such that $(G, 0)$ is ϕ-invariant (here ϕ is viewed as a permutation of $G \times\{0,1\})$. We write $X=\phi \hat{G} \phi^{-1}$. Consider the graph Γ^{ϕ}, the image of Γ under ϕ. Then $\hat{G}=\phi^{-1} X \phi \leq \operatorname{Aut}\left(\Gamma^{\phi}\right)$. Using this and that $(G, 0)$ is ϕ-invariant, we obtain that $\Gamma^{\phi}=\operatorname{BCay}(G, T)$ for some subset $T \subseteq G$. Then $\Gamma \cong \operatorname{BCay}(G, T)$, and by (i), $T=g S^{\alpha}$ for some $g \in G$ and $\alpha \in \operatorname{Aut}(G)$. Define the permutation σ of $G \times\{0,1\}$ by

$$
(x, i)^{\sigma}= \begin{cases}\left(x^{\alpha}, 0\right) & \text { if } i=0 \\ \left(g x^{\alpha}, 1\right) & \text { if } i=1\end{cases}
$$

A direct calculation shows that $\sigma^{-1} \hat{g} \sigma=\hat{g^{\sigma}}$ if $g \in G$. Thus σ normalizes \hat{G}. The vertex $(x, 0)$ of $\operatorname{BCay}(G, S)$ has neighborhood $(S x, 1)$. This is mapped by σ to the the set $\left(g S^{\alpha} x^{\alpha}, 1\right)=\left(T x^{\alpha}, 1\right)$. This proves that σ is an isomorphism from Γ to Γ^{ϕ}, and in turn it follows that, $\Gamma^{\phi}=\Gamma^{\sigma}, \phi \sigma^{-1} \in \operatorname{Aut}(\Gamma)$, and thus $\phi=\rho \sigma$ for some $\rho \in \operatorname{Aut}(\Gamma)$. Finally, $X=\phi \hat{G} \phi^{-1}=\rho \sigma \hat{G} \sigma^{-1} \rho^{-1}=\rho \hat{G} \rho^{-1}$, i.e., X and \hat{G} are conjugate in $\operatorname{Aut}(\Gamma)$.

In order to prove that the normalizer $N_{\operatorname{Aut}(\Gamma)}(\hat{G})$ is transitive on $V(\Gamma)$, it is sufficient to find some automorphism η which switches $(G, 0)$ and $(G, 1)$ and normalizes \hat{G}. Observe that $\mathrm{BCay}(G, S) \cong$ $\operatorname{BCay}\left(G, S^{-1}\right)$, where $S^{-1}=\left\{s^{-1}: s \in S\right\}$. Then by (i), $S^{-1}=g S^{\alpha}$ for some $g \in G$ and $\alpha \in \operatorname{Aut}(G)$. We leave for the reader to verify that the permutation of $G \times\{0,1\}$ defined below is an appropriate choice for such η :

$$
(x, i)^{\eta}= \begin{cases}\left(x^{\alpha}, 1\right) & \text { if } i=0 \\ \left(g x^{\alpha}, 0\right) & \text { if } i=1\end{cases}
$$

We turn to the part $(2) \Rightarrow(1)$. Let $\Gamma^{\prime}=\operatorname{BCay}(G, T)$ such that $\Gamma^{\prime} \cong \Gamma$. We have to show that $T=g S^{\alpha}$ for some $g \in G$ and $\alpha \in \operatorname{Aut}(G)$. We claim the existence of an isomorphism $\phi: \Gamma \rightarrow \Gamma^{\prime}$ for which $\phi: \mathbf{0} \mapsto \mathbf{0}$ and $(G, 0)$ is ϕ-invariant (here ϕ is viewed as a permutation of $G \times\{0,1\}$). We construct ϕ in a few steps. To start with, choose an arbitrary isomorphism $\phi_{1}: \Gamma \rightarrow \Gamma^{\prime}$. Since the normalizer $N_{\mathrm{Aut}(\Gamma)}(\hat{G})$ is transitive on $V(\Gamma)$, there exists $\rho \in N_{\mathrm{Aut}(\Gamma)}(\hat{G})$ which maps $\mathbf{0}$ to $\mathbf{0}^{\phi_{1}^{-1}}$. Let $\phi_{2}=\rho \phi_{1}$. Then ϕ_{2} is an isomorphism from Γ to Γ^{\prime}, and also $\phi_{2}: \mathbf{0} \mapsto \mathbf{0}$. The connected component of Γ containing the vertex $\mathbf{0}$ is equal to the induced subgraph $\Gamma[(H, 0) \cup(s H, 1)]$, where $s \in S$ and $H \leq G$ is generated by the set $s^{-1} S$. It can be easily checked that

$$
\Gamma[(H, 0) \cup(s H, 1)] \cong \operatorname{BCay}\left(H, s^{-1} S\right)
$$

Similarly, the connected component of Γ^{\prime} containing the vertex $\mathbf{0}$ is equal to the induced subgraph $\Gamma^{\prime}[(K, 0) \cup(t K, 1)]$, where $t \in T$ and $K \leq G$ is generated by the set $t^{-1} T$, and

$$
\Gamma^{\prime}[(K, 0) \cup(t K, 1)] \cong \mathrm{BCay}\left(K, t^{-1} T\right) .
$$

Since ϕ_{2} fixes $\mathbf{0}$, it induces an isomorphism from $\Gamma[(H, 0) \cup(s H, 1)]$ to $\Gamma[(K, 0) \cup(t K, 1)]$; denote this isomorphism by ϕ_{3}. It follows from the connectedness of these induced subgraphs that ϕ_{3} preserves their bipartition classes, moreover, ϕ_{3} maps $(H, 0)$ to $(K, 0)$, since it fixes $\mathbf{0}$. Finally, take $\phi: \Gamma \rightarrow \Gamma^{\prime}$
to be the isomorphism whose restriction to each component of Γ equals ϕ_{3}. It is clear that $\phi: \mathbf{0} \mapsto \mathbf{0}$ and $(G, 0)$ is ϕ-invariant.

Since $\hat{G} \leq \Gamma^{\prime}, \phi \hat{G} \phi^{-1} \leq \operatorname{Aut}(\Gamma)$. The orbit of $\mathbf{0}$ under $\phi \hat{G} \phi^{-1}$ is equal to $(G, 0)^{\phi^{-1}}=(G, 0)$, and hence $\phi \hat{G} \phi^{-1} \in \mathcal{S}(\operatorname{Aut}(\Gamma))$. By (ii), $\phi \hat{G} \phi^{-1}=\sigma^{-1} \hat{G} \sigma$ for some $\sigma \in \operatorname{Aut}(\Gamma)$. Since $N_{\operatorname{Aut}(\Gamma)}(\hat{G})$ is transitive on $V(\Gamma), \sigma$ can be chosen so that $\sigma: \mathbf{0} \mapsto \mathbf{0}$. To sum up, we have an isomorphism $(\sigma \phi): \Gamma \mapsto \Gamma^{\prime}$ which fixes $\mathbf{0}$ and also normalizes \hat{G}. Thus $(\sigma \phi)$ maps $(G, 1)$ to itself. Recall that $G_{\text {right }} \leq \operatorname{Sym}((G, 1))$ is the permutation group induced by the action of \hat{G} on $(G, 1)$. Then, the permutation of $(G, 1)$ induced by $(\sigma \phi)$ belongs to the holomorph of $G_{\text {right }}$ (cf. [8, Exercise 2.5.6]), and therefore, there exist $g \in G$ and $\alpha \in \operatorname{Aut}(G)$ such that $(\sigma \phi):(x, 1) \mapsto\left(g x^{\alpha}, 1\right)$ for all $x \in G$. On the other hand, being an isomorphism from Γ to $\Gamma^{\prime}, \sigma \phi$ maps $(S, 1)$ to $(T, 1)$. These give that $(T, 1)=(S, 1)^{\sigma \phi}=\left(g S^{\alpha}, 1\right)$, i.e., $T=g S^{\alpha}$.

Remark 2.3. Notice that, we cannot delete the condition on the normalizer $N_{\mathrm{Aut}(\Gamma)}(\hat{G})$ from Lemma 2.2.(ii). To see this, consider the bi-Cayley graph $\Gamma=\operatorname{BCay}(G, S)$, where

$$
G=\left\langle a, b \mid a^{5}=b^{4}=1, b^{-1} a b=a^{2}\right\rangle \text { and } S=\{1, a, b\} .
$$

The group G is the unique Frobenius group of order 20, and we find by the help of the computer package Magma [5] that Γ is arc-transitive. In fact, Γ is the unique arc-transitive cubic graph on 40 points (see [6]). We also compute that any two subgroups in $\mathcal{S}(\operatorname{Aut}(\Gamma))$, isomorphic to G, are conjugate in $\operatorname{Aut}(\Gamma)$. We show below that, for any $g \in G$ and $\alpha \in \operatorname{Aut}(G), S^{\alpha} \neq g S^{-1}$. Since $\operatorname{BCay}(G, S) \cong \operatorname{BCay}\left(G, S^{-1}\right)$, this implies that Γ is not a BCI-graph.

To the contrary assume that $S^{\alpha}=g S^{-1}$ for some $g \in G$ and $\alpha \in \operatorname{Aut}(G)$. It follows at once that $g \in S$. As no element in $b S^{-1}=\left\{b, b a^{-1}, 1\right\}$ is of order $5, g \neq b$. Since every automorphism of G is inner, α equals the conjugation by some element $c \in G$. Let $g=1$. Then $S^{\alpha}=g S^{-1}=S^{-1}$, hence $a^{c}=a^{\alpha}=a^{-1}$ and $b^{c}=b^{\alpha}=b^{-1}$. From the first equality $c \in C_{G}(a) b^{2}=\langle a\rangle b^{2}$, where $C_{G}(a)$ denotes the centraliser of a in G, that is, $C_{G}(a)=\{x \in G: a x=x a\}$. Thus $c=a^{i} b^{2}$ for some $i \in\{0, \ldots, 4\}$. Plugging this in the second equality, we get $b^{2} a^{-i} b a^{i} b^{2}=b^{-1}$, hence $a^{3 i} b=b^{-1}$, which is impossible. Finally, let $g=a$. Then $S^{\alpha}=g S^{-1}=a S^{-1}$, hence $a^{c}=a^{\alpha}=a$ and $b^{c}=b^{\alpha}=a b^{-1}$. The first equality gives that $c=a^{i}$ for some $i \in\{0, \ldots, 4\}$. Plugging this in the second equality, we get $a^{-i} b a^{i}=a b^{-1}$, hence $a^{2 i} b=a b^{-1}$, which is again impossible.

As an application of Lemma 2.2, we prove the lemma below in which we connect the BCI-property with the CI-property. This lemma will be used in the proof of Theorem 1.1 in the particular case when the graphs are not arc-transitive.

Lemma 2.4. Let $\Gamma=\operatorname{BCay}(G, S)$ such that there exists an involution $\tau \in \operatorname{Aut}(\Gamma)$ which normalizes \hat{G} and $\mathbf{0}^{\tau}=\mathbf{1}$. Suppose, in addition, that $\operatorname{Aut}(\Gamma)_{\mathbf{0}}=\operatorname{Aut}(\Gamma)_{\mathbf{1}}$. Then $\operatorname{BCay}(G, S)$ is a BCI-graph whenever $\operatorname{Cay}(G, S)$ is a CI-graph.

Proof. Set $A=\operatorname{Aut}(\Gamma)$ and $A^{+}=A_{\{(G, 0)\}}$, and let us suppose that $\operatorname{Cay}(G, S)$ is a CI-graph. Let $X \in \mathcal{S}(A), X \cong G$. Obviously, $X, \hat{G} \leq A^{+}$. The normalizer $N_{A}(\hat{G}) \geq\langle\hat{G}, \tau\rangle$, hence it is transitive on
$V(\Gamma)$. Thus by Lemma 2.2 we are done if we show that X and \hat{G} are conjugate in A^{+}. In order to prove this we define a faithful action of A^{+}on G as follows. Let $\Delta=\{\mathbf{0}, \mathbf{1}\}$ and consider the setwise stabilizer $A_{\{\Delta\}}$. Since $A_{\mathbf{0}}=A_{\mathbf{1}}, A_{\mathbf{0}} \leq A_{\{\Delta\}}$. By [8, Theorem 1.5A], the orbit of $\mathbf{0}$ under $A_{\{\Delta\}}$ is a block for A. Since τ switches $\mathbf{0}$ and $\mathbf{1}$, this orbit is equal to Δ, and the system of blocks induced by Δ is

$$
\delta=\left\{\Delta^{\hat{x}}: x \in G\right\}=\{\{(x, 0),(x, 1)\}: x \in G\} .
$$

Now, define the action of A^{+}on G by letting $x^{\sigma}=x^{\prime}$, where $x \in G$ and $\sigma \in A^{+}$, if σ maps the block $\{(x, 0),(x, 1)\}$ to the block $\left\{\left(x^{\prime}, 0\right),\left(x^{\prime}, 1\right)\right\}$. We will write $\bar{\sigma}$ for the image of σ under the corresponding permutation representation, and let $\bar{B}=\{\bar{\sigma}: \sigma \in B\}$ for a subgroup $B \leq A^{+}$. It is easily seen that this action is faithful. Therefore, X and \hat{G} are conjugate in A^{+}exactly when \bar{X} and $\overline{\hat{G}}$ are conjugate in $\overline{A^{+}}$. Also, $\overline{\hat{G}}=G_{\text {right }}$, and \bar{X} is regular on G. We finish the proof by showing that $\overline{A^{+}}=\operatorname{Aut}(\operatorname{Cay}(G, S))$. Then the conjugacy of \bar{X} and $\overline{\hat{G}}$ follows by Lemma 2.1 and the assumption that $\operatorname{Cay}(G, S)$ is a CI-graph.

Pick an automorphism $\sigma \in A^{+}$and an $\operatorname{arc}(x, s x)$ of $\operatorname{Cay}(G, S)$. Then the edge $\{(x, 0),(s x, 1)\}$ of Γ is mapped by σ to an edge $\left\{\left(x^{\prime}, 0\right),\left(s^{\prime} x^{\prime}, 1\right)\right\}$ for some $x^{\prime} \in G$ and $s^{\prime} \in S$. Hence $\bar{\sigma}: x \mapsto x^{\prime}$ and $s x \mapsto s^{\prime} x^{\prime}$, i.e., it maps the $\operatorname{arc}(x, s x)$ to the $\operatorname{arc}\left(x^{\prime}, s^{\prime} x^{\prime}\right)$. We have just proved that $\bar{\sigma} \in \operatorname{Aut}(\operatorname{Cay}(G, S))$, and hence $\overline{A^{+}} \leq \operatorname{Aut}(\operatorname{Cay}(G, S))$. In order to establish the relation " \geq ", for an arbitrary automorphism $\rho \in \operatorname{Aut}(\operatorname{Cay}(G, S))$, define the permutation π of $G \times\{0,1\}$ by $(x, i)^{\pi}=\left(x^{\rho}, i\right)$ for all $x \in G$ and $i \in\{0,1\}$. Repeating the previous argument we obtain that $\pi \in \operatorname{Aut}(\operatorname{Cay}(G, S))$. It is clear that $\pi \in A^{+}$and $\bar{\pi}=\rho$. Thus $\overline{A^{+}} \geq \operatorname{Aut}(\operatorname{Cay}(G, S))$, and so $\overline{A^{+}}=\operatorname{Aut}(\operatorname{Cay}(G, S))$. The lemma is proved.

3. Proof of Theorem 1.1

In this section we denote by \mathcal{C} the set of all groups $U \times V$, where U is a homocyclic group of odd order, and V is either trivial or one of $\mathbb{Z}_{2^{r}}, \mathbb{Z}_{2}^{r}$ and \mathbf{Q}_{8}; and by $\mathcal{C}_{\text {sub }}$ the set of all groups that have an overgroup in \mathcal{C}.

Lemma 3.1. Let Γ be a cubic bipartite graph with bipartition classes $\Delta_{i}, i=1,2$, and $X \leq \operatorname{Aut}(\Gamma)$ be a semiregular subgroup whose orbits are $\Delta_{i}, i=1,2$, and $X \in \mathcal{C}_{\text {sub }}$. Then $\operatorname{Aut}(\Gamma)$ has an element τ_{X} which satisfies:
(1) every subgroup of X is normal in $\left\langle X, \tau_{X}\right\rangle$;
(2) $\left\langle X, \tau_{X}\right\rangle$ is regular on $V(\Gamma)$.

Proof. It is straightforward to show that $\Gamma \cong \operatorname{BCay}(X, S)$ for some subset $S \subseteq X$ with $1_{X} \in S$ and $|S|=3$. Moreover, there is an isomorphism from Γ to $\operatorname{BCay}(X, S)$ which induces a permutation isomorphism from X to \hat{X}. Therefore, it is sufficient to find $\tau \in \operatorname{Aut}(\operatorname{BCay}(X, S))$ for which every subgroup of \hat{X} is normal in $\langle\hat{X}, \tau\rangle$; and $\langle\hat{X}, \tau\rangle$ is regular on $V(\operatorname{BCay}(X, S))$.

Since $X \in \mathcal{C}_{\text {sub }}, X=U \times V$, where U is an abelian group of odd order, and V is trivial or one of $\mathbb{Z}_{2^{r}}, \mathbb{Z}_{2}^{r}$ and \mathbf{Q}_{8}. We prove below the existence of an automorphism $\iota \in \operatorname{Aut}(X)$, which maps the set S to its inverse S^{-1}. Let π_{U} and π_{V} denote the projections $U \times V \rightarrow U$ and $U \times V \rightarrow V$ respectively. It is sufficient to find an automorphism $\iota_{1} \in \operatorname{Aut}(U)$ which maps $\pi_{U}(S)$ to $\pi_{U}(S)^{-1}$, and an automorphism $\iota_{2} \in \operatorname{Aut}(V)$ which maps $\pi_{V}(S)$ to $\pi_{V}(S)^{-1}$. Since U is abelian, we are done by choosing ι_{1} to be the automorphism $x \mapsto x^{-1}$. If V is abelian, then let $\iota_{2}: x \mapsto x^{-1}$. Otherwise, $V \cong \mathbf{Q}_{8}$, and since $\left|\pi_{V}(S) \backslash\left\{1_{V}\right\}\right| \leq 2$, it follows that $\pi_{V}(S)$ is conjugate to $\pi_{V}(S)^{-1}$ in V. This ensures that ι_{2} can be chosen to be some inner automorphism. Now, define ι by setting its restriction $\left.\iota\right|_{U}$ to U as $\left.\iota\right|_{U}=\iota_{1}$, and its restriction $\left.\iota\right|_{V}$ to V as $\left.\iota\right|_{V}=\iota_{2}$. Define the permutation τ of $X \times\{0,1\}$ by

$$
(x, i)^{\tau}= \begin{cases}\left(x^{\iota}, 1\right) & \text { if } i=0 \\ \left(x^{\iota}, 0\right) & \text { if } i=1\end{cases}
$$

The vertex $(x, 0)$ of $\operatorname{BCay}(X, S)$ has neighborhood ($S x, 1$). This is mapped by τ to the set ($S^{-1} x^{l}, 0$), which is equal to the neighborhood of $\left(x^{\iota}, 1\right)$. We have proved that $\tau \in \operatorname{Aut}(\operatorname{BCay}(X, S))$.

It follows from its construction that τ is an involution. Fix an arbitrary subgroup $Y \leq X$, and pick $y \in Y$. We may write $y=y_{U} y_{V}$ for some $y_{U} \in U$ and $y_{V} \in V$. Then $\left\langle y_{U}, y_{V}\right\rangle \leq Y$, since y_{U} and y_{V} commute and $\operatorname{gcd}(|U|,|V|)=1$. Also, $\left(y_{U}\right)^{\iota_{1}}=y_{U}^{-1}$ and $\left(y_{V}\right)^{\iota_{2}} \in\left\langle y_{V}\right\rangle$, implying that $y^{\iota}=\left(y_{U}\right)^{\iota_{1}}\left(y_{V}\right)^{\iota_{2}} \in\left\langle y_{U}, u_{V}\right\rangle \leq Y$. We conclude that ι maps Y to itself. Thus $\tau^{-1} \hat{y} \tau=\tau \hat{y} \tau=\hat{y^{\iota}}$ is in \hat{Y}, and τ normalizes \hat{Y}. Since $X \in \mathcal{C}_{\text {sub }}, \hat{Y}$ is also normal in \hat{X}, and part (1) follows.

For part (2), observe that $|\langle\hat{X}, \tau\rangle|=2|X|=|V(\operatorname{BCay}(X, S))|$. Clearly, $\langle\hat{X}, \tau\rangle$ is transitive on $V(\mathrm{BCay}(X, S))$, so it is regular.

Let Γ be an arbitrary finite graph and $G \leq \operatorname{Aut}(\Gamma)$ which is transitive on $V(\Gamma)$. For a normal subgroup $N \triangleleft G$ which is not transitive on $V(\Gamma)$, the quotient graph Γ_{N} is the graph whose vertices are the N-orbits on $V(\Gamma)$, and two N-orbits $\Delta_{i}, i=1,2$, are adjacent if and only if there exist $v_{i} \in \Delta_{i}, i=1,2$, which are adjacent in Γ. For a positive integer s, an s-arc of Γ is an ordered ($s+1$)tuple $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ of vertices of Γ such that, for every $i \in\{1, \ldots, s\}, v_{i-1}$ is adjacent to v_{i}, and for every $i \in\{1, \ldots, s-1\}, v_{i-1} \neq v_{i+1}$. The graph Γ is called (G, s)-arc-transitive ((G, s)-arc-regular) if G is transitive (regular) on the set of s-arcs of Γ. If $G=\operatorname{Aut}(\Gamma)$, then a (G, s)-arc-transitive $((G, s)$-arc-regular) graph is simply called s-transitive (s-regular). The proof of the following lemma is straightforward, hence it is omitted (it can be also deduced from [20, Theorem 9]).

Lemma 3.2. Let $\Gamma=\operatorname{BCay}(G, S)$ be a connected arc-transitive graph, G be any finite group, $|S|=3$, and $N<\hat{G}$ be a subgroup which is normal in $\operatorname{Aut}(\Gamma)$. Then the following hold:
(1) Γ_{N} is a cubic connected arc-transitive graph.
(2) N is equal to the kernel of $\operatorname{Aut}(\Gamma)$ acting on the set of N-orbits.
(3) Γ_{N} is isomorphic to a bi-Cayley graph of the group \hat{G} / N.

Remark 3.3. Let Γ and N be as described in Lemma 3.2. The group $\operatorname{Aut}(\Gamma)$ acts on the set of $N-$ orbits, i.e., on the vertex set $V\left(\Gamma_{N}\right)$. Lemma 3.2.(ii) implies that, the induced permutation group on
$V\left(\Gamma_{N}\right)$ is isomorphic to $\operatorname{Aut}(\Gamma) / N$, and therefore, by some abuse of notation, this permutation group will also be denoted by $\operatorname{Aut}(\Gamma) / N$. In what follows we shall write $\operatorname{Aut}(\Gamma) / N \leq \operatorname{Aut}\left(\Gamma_{N}\right)$. Also note that, if Γ is s-transitive, then Γ_{N} is $(\operatorname{Aut}(\Gamma) / N, s)$-arc-transitive.

The proof of Theorem 1.1 in the case of arc-transitive graphs will be based on three lemmas about cubic connected arc-transitive bi-Cayley graphs to be proved below. In these lemmas we keep the following notation:
(*) $\Gamma=\operatorname{BCay}(G, S)$ is a connected arc-transitive graph, where $G \in \mathcal{C}_{\text {sub }}$ and $|S|=3$.
Lemma 3.4. With notation (*), let δ be a system of blocks for $\operatorname{Aut}(\Gamma)$ induced by a block properly contained in $(G, 0)$, and X be in $\mathcal{S}(\operatorname{Aut}(\Gamma))$ such that $X \in \mathcal{C}_{\text {sub }}$. Then for the kernel A_{δ} (see Notations), $A_{\delta}<X$. Moreover, if δ is non-trivial, then A_{δ} is also non-trivial.

Proof. Set $A=\operatorname{Aut}(\Gamma)$. Let $Y=X \cap A_{\{\Delta\}}$, where $\Delta \in \delta$ with $\Delta \subset(G, 0)$. Then Δ is equal to an orbit of Y, and $|Y|=|\Delta|$ because $\Delta \subset(G, 0)$ and X is regular on $(G, 0)$. Formally, $\Delta=\operatorname{Orb}_{Y}(v)$ for some vertex $v \in \Delta$.

Let $\tau_{X} \in A$ be the automorphism defined in Lemma 3.1, and set $L=\left\langle X, \tau_{X}\right\rangle$. The group L is regular on $V(\Gamma)$, and $Y \unlhd L$. These yield

$$
\delta=\left\{\Delta^{l}: l \in L\right\}=\left\{\operatorname{Orb}_{Y}(v)^{l}: l \in L\right\}=\left\{\operatorname{Orb}_{Y}\left(v^{l}\right): l \in L\right\} .
$$

From this $Y \leq A_{\delta}$. This shows that, if $|Y|=|\Delta| \neq 1$, then A_{δ} is non-trivial. Since δ has more than 2 blocks, and Γ is a connected and cubic graph, it is known that A_{δ} is semiregular. These imply that $A_{\delta}=Y<X$.

Corollary 3.5. With notation $(*)$, let $N<\hat{G}$ be normal in $\operatorname{Aut}(\Gamma)$, and X be in $\mathcal{S}(\operatorname{Aut}(\Gamma))$ such that $X \in \mathcal{C}_{\text {sub }}$. Then $N<X$.

Proof. Let δ be the system of blocks for $\operatorname{Aut}(\Gamma)$ consisting of the N-orbits. Then $A_{\delta}=N$ by Lemma 3.2.(ii), and the corollary follows directly from Lemma 3.4.

We denote by Q_{3} the graph of the cube and by \mathcal{H} the Heawood graph, i.e., the unique arc-transitive cubic graph on 14 points (see [6]). Recall that, the core of a subgroup $H \leq K$ in the group K is the largest normal subgroup of K contained in H.

Lemma 3.6. With notation (*), suppose that \hat{G} is not normal in $\operatorname{Aut}(\Gamma)$, and let N be the core of \hat{G} in $\operatorname{Aut}(\Gamma)$. Then $\left(\hat{G} / N, \Gamma_{N}\right)$ is isomorphic to one of the pairs $\left(\mathbb{Z}_{3}, K_{3,3}\right)$, $\left(\mathbb{Z}_{4}, Q_{3}\right)$, and $\left(\mathbb{Z}_{7}, \mathcal{H}\right)$.

Proof. Set $A=\operatorname{Aut}(\Gamma)$. Consider the quotient graph Γ_{N}, and suppose that $M \leq \hat{G}$ such that $N \leq M$ and $M / N \unlhd \operatorname{Aut}\left(\Gamma_{N}\right)$ (here $M / N \leq A / N \leq \operatorname{Aut}\left(\Gamma_{N}\right)$, see Remark 3.3). This in turn implies that, $M / N \unlhd A / N, M \unlhd A$, and $M=N$. We conclude that, Γ_{N} is a bi-Cayley graph of $\hat{G} / N, \hat{G} / N$ is in $\mathcal{C}_{\text {sub }}$, and \hat{G} / N has trivial core in $\operatorname{Aut}\left(\Gamma_{N}\right)$. This shows that it is sufficient to prove Lemma 3.6 in the particular case when N is trivial. For the rest of the proof we assume that the core N is trivial, and we write $N=1$.

By Tutte Theorem [22], Γ is k-regular for some $k \leq 5$. Set $A^{+}=\operatorname{Aut}(\Gamma)_{\{(G, 0)\}}$. It follows from the connectedness of Γ that $A=\left\langle A^{+}, \tau_{\hat{G}}\right\rangle$, where $\tau_{\hat{G}} \in A$ is the automorphism defined in Lemma 3.1. Let M be the core of \hat{G} in A^{+}. Then $M \unlhd A$, since M is normalized by $\tau_{\hat{G}}$, see Lemma 3.1.(i), and $A=\left\langle A^{+}, \tau_{\hat{G}}\right\rangle$. Thus $M \leq N=1$, hence M is also trivial.

Let us consider A^{+}acting on the set $\left[A^{+}: \hat{G}\right]$ of right \hat{G}-cosets in A^{+}. This action is faithful because M is trivial. The corresponding degree is equal to $\left|A^{+}: \hat{G}\right|$. Since $A=\operatorname{Aut}(X)$ is regular on the set of k-arcs of X, thus $|A|$ is equal to the number of k-arcs of X, which is $|V(X)| \cdot 3 \cdot 2^{k-1}=|\hat{G}| \cdot 3 \cdot 2^{k}$. Since $\left|A^{+}\right|=|A| / 2$, it follows that

$$
\left|A^{+}: \hat{G}\right|=\frac{|\hat{G}| \cdot 3 \cdot 2^{k}}{2 \cdot|\hat{G}|}=3 \cdot 2^{k-1} .
$$

Since \hat{G} acts as a point stabilizer in this action, we have an embedding of G into $S_{3 \cdot 2^{k-1}-1}$. We will write below that $G \leq S_{3 \cdot 2^{k-1}-1}$.

Recall that, A_{0} is determined uniquely by k, and we have, respectively, $A_{0} \cong \mathbb{Z}_{3}$, or S_{3}, or D_{12}, or S_{4}, or $S_{4} \times \mathbb{Z}_{2}$. We go through each case.

CASE 1. $k=1$.
This case can be excluded at once by observing that we have $G \leq S_{2}$ by the above discussion, which contradicts the obvious bound $|G| \geq 3$.

CASE 2. $k=2$.
In this case $G \leq S_{5}$. Using also that $G \in \mathcal{C}_{\text {sub }}$, we see that G is abelian, hence $|G| \leq 6,|V(\Gamma)| \leq 12$. We obtain by [6 , Table] that $\Gamma \cong Q_{3}$, and $G \cong \mathbb{Z}_{4}$.

CASE 3. $k=3$.
Then $A^{+}=\hat{G} A_{\mathbf{0}}=\hat{G} D_{12}$, a product of a nilpotent and a dihedral subgroup. Thus A^{+}is solvable by Huppert-Itô Theorem (cf. [21, 13.10.1]). Assume for the moment that A^{+}is imprimitive on $(G, 0)$. This implies that A is also imprimitive on $V(\Gamma)$ and it has a non-trivial block system δ which has a block properly contained in $(G, 0)$. Lemma 3.4 gives that $A_{\delta}<\hat{G}$, and A_{δ} is non-trivial. This, however, contradicts that the core $N=1$. Thus A^{+}is primitive on $(G, 0)$. Using that A^{+}is also solvable, we find that G is a p-group. We see that G is either abelian or it is \mathbf{Q}_{8}. In the latter case $|V(\Gamma)|=16$, and Γ is isomorphic to the Moebius-Kantor graph, which is, however, 2-regular (see [6, Table]). Therefore, G is an abelian p-group. Let $S=\left\{s_{1}, s_{2}, s_{3}\right\}$. Since G is abelian, for Γ we have:

$$
\begin{equation*}
\mathbf{0} \sim\left(s_{1}, 1\right) \sim\left(s_{2}^{-1} s_{1}, 0\right) \sim\left(s_{3} s_{2}^{-1} s_{1}, 1\right)=\left(s_{1} s_{2}^{-1} s_{3}, 1\right) \sim\left(s_{2}^{-1} s_{3}, 0\right) \sim\left(s_{3}, 1\right) \sim \mathbf{0} \tag{3.1}
\end{equation*}
$$

Thus Γ is of girth at most 6. It was proved in [7, Theorem 2.3] that the Pappus graph on 18 points and the Desargues graph on 20 points are the only 3 -regular cubic graphs of girth 6 . For the latter graph $|G|=10$, contradicting that G is a p-group. We exclude the former graph by the help of Magma. We compute that the Pappus graph has no abelian semiregular automorphism group of order 9 which has trivial core in the full automorphism group. Thus Γ is of girth 4 (3 and 5 are impossible as the graph
is bipartite). It is well-known that there are only two cubic arc-transitive graphs of girth 4 (see also [14, page 163]): $K_{3,3}$ and Q_{3}. We get at once that $\Gamma \cong K_{3,3}$ and $G \cong \mathbb{Z}_{3}$.

CASE $4 . k=4$.
It is sufficient to show that G is abelian. Then by the above reasoning Γ is of girth 6 , and as the Heawood graph is the only cubic 4-regular graph of girth 6 (see [7, Theorem 2.3]), we get at once that $\Gamma \cong \mathcal{H}$ and $G \cong \mathbb{Z}_{7}$.

Assume, towards a contradiction, that G is non-abelian. Thus $G=U \times V$, where U is an abelian group of odd order, and $V \cong \mathbf{Q}_{8}$. We have already shown above that A^{+}is primitive on $(G, 0)$. In other words, Γ is a 4 -transitive bi-primitive cubic graph. Recall that a permutation group on a set Ω is called bi-primitive if it is transitive and imprimitive, and Ω has only one nontrivial system of blocks consisting of exactly two blocks.

Two possibilities can be deduced from the list of 4 -transitive bi-primitive graphs given in $[16$, Theorem 1.4]:

- Γ is the standard double cover of a connected vertex-primitive cubic 4-regular graph, in which case $A=A^{+} \times\langle\eta\rangle$ for an involution η; or
- Γ isomorphic to the sextet graph $S(p)$ (see [4]), where $p \equiv \pm 7(\bmod 16)$, in which case $A \cong$ $P G L(2, p)$, and $A^{+} \cong P S L(2, p)$.
The second possibility cannot occur, because then $A^{+} \cong P S L(2, p)$, whose Sylow 2-subgroup is a dihedral group (cf. [9, Satz 8.10]), which contradicts that $V \leq \hat{G} \leq A^{+}$, and $V \cong \mathbf{Q}_{8}$. It remains to exclude the first possibility. We may assume, by replacing S with $x S$ for a suitable $x \in G$ if necessary, that η switches $\mathbf{0}$ and $\mathbf{1}$. Since η commutes with \hat{G}, we find $(x, 1)^{\eta}=\mathbf{1}^{\hat{x} \eta}=\mathbf{1}^{\eta \hat{x}}=\mathbf{0}^{\hat{x}}=(x, 0)$ for every $x \in G$. Let $s \in S$. Then $\mathbf{0} \sim(s, 1)$, hence $\mathbf{1}=\mathbf{0}^{\eta} \sim(s, 1)^{\eta}=(s, 0)$, which shows that $s \in S^{-1}$, and thus $S=S^{-1}$. Thus there exists $s \in S$ with $o(s) \leq 2$. Put $T=s^{-1} S=s S$. Then $1_{G} \in T$, and since Γ is connected, $G=\langle T\rangle$. Notice that $s \in Z(G)$. This implies that $T^{-1}=S^{-1} s=s S=T$, and thus $\pi_{V}(T)$ satisfies $1_{V} \in \pi_{V}(T)$ and $\pi_{V}(T)=\pi_{V}(T)^{-1}$. Since $V \cong \mathbf{Q}_{8}$, this implies that $\left\langle\pi_{V}(T)\right\rangle \neq V$, a contradiction to $G=\langle T\rangle$. This completes the proof of this case.

CASE 5. $k=5$.
In this case Γ is a 5 -transitive bi-primitive cubic graph. It was proved in [16, Corollary 1.5] that Γ is isomorphic to either the $P \Gamma L(2,9)$-graph on 30 points (also known as the Tutte's 8 -Cage), or the standards double cover of the $\operatorname{PSL}(3,3) \cdot \mathbb{Z}_{2}$-graph on 468 points. These graphs are of girth 8 and 12 respectively (see [6, Table]). Also, in both cases $8 \nmid|G|$, hence G is abelian. In this case, however, the graph Γ has a closed walk of length 6, as shown in Eq. (3.1), hence its girth cannot be larger than 6 . This proves that this case does not occur.

For a group A and a prime p dividing $|A|$, we let A_{p} denote a Sylow p-subgroup of A.
Lemma 3.7. With notation $(*)$, let $X \in \mathcal{S}(\operatorname{Aut}(\Gamma))$ such that $X \in \mathcal{C}_{\text {sub }}$ and $X_{2} \cong G_{2}$. Then X and \hat{G} are conjugate in $\operatorname{Aut}(\Gamma)$.

Remark 3.8. We remark that, the assumption $X_{2} \cong G_{2}$ cannot be deleted. The Moebius-Kantor graph is a bi-Cayley graph of the group \mathbf{Q}_{8}, which has a semiregular cyclic group of automorphisms of order 8 which preserves the bipartition classes.

Proof. Set $A=\operatorname{Aut}(\Gamma)$. The proof is split into two parts according to whether \hat{G} is normal in A.
CASE 1. \hat{G} is not normal in A.
Let N be the core of \hat{G} in A. By Corollary 3.5, $N<X \cap \hat{G}$. Therefore, it is sufficient to show that

$$
\begin{equation*}
X / N \text { and } \hat{G} / N \text { are conjugate in } A / N . \tag{3.2}
\end{equation*}
$$

Recall that, the group $A / N \leq \operatorname{Aut}\left(\Gamma_{N}\right)$ for the quotient graph Γ_{N} induced by N (see Remark 3.3 and the preceding paragraph). Both groups X / N and \hat{G} / N are semiregular whose orbits are the bipartition classes of Γ_{N}. Also notice that, \hat{G} / N cannot be normal in A / N, otherwise \hat{G} were normal in A.

According to Lemma 3.6, $\left(\hat{G} / N, \Gamma_{N}\right) \cong\left(\mathbb{Z}_{3}, K_{3,3}\right)$, or $\left(\mathbb{Z}_{4}, Q_{3}\right)$, or $\left(\mathbb{Z}_{7}, \mathcal{H}\right)$. Thus (1) follows immediately from Sylow Theorems when $\left(\hat{G} / N, \Gamma_{N}\right) \cong\left(\mathbb{Z}_{7}, \mathcal{H}\right)$.

Let $\left(\hat{G} / N, \Gamma_{N}\right) \cong\left(\mathbb{Z}_{3}, K_{3,3}\right)$. Since \hat{G} / N is not normal in A / N, and Γ_{N} is $(A / N, 1)$-arc-transitive, we compute by Magma that $A / N=\operatorname{Aut}\left(\Gamma_{N}\right)$, or it is a subgroup of $\operatorname{Aut}\left(\Gamma_{N}\right)$ of index 2. In both cases A / N has one conjugacy class of semiregular subgroups whose orbits are the bipartition classes of Γ_{N}. Thus (1) holds.

Let $\left(\hat{G} / N, \Gamma_{N}\right) \cong\left(\mathbb{Z}_{4}, Q_{3}\right)$. Since $X_{2} \cong G_{2}, X / N \cong \hat{G} / N \cong \mathbb{Z}_{4}$. Using this and that Γ_{N} is $(A / N, 1)$ -arc-transitive, we compute by Magma that $A / N=\operatorname{Aut}\left(\Gamma_{N}\right)$, and that $\operatorname{Aut}\left(\Gamma_{N}\right)$ has one conjugacy class of semiregular cyclic subgroups whose orbits are the bipartition classes of Γ_{N}. Thus (1) holds also in this case.

CASE 2. \hat{G} is normal in A.
We have to show that $X=\hat{G}$. Notice that, X contains every proper subgroup $K<\hat{G}$ which is characteristic in \hat{G}. Indeed, since $\hat{G} \unlhd A$, we have that $K \unlhd A$, and hence $K<X$ follows from Corollary 3.5. This property will be used often below.

In particular, $\hat{G}_{p} \leq \hat{G}$ is characteristic for every prime p dividing $|\hat{G}|$. If G is not a p-group, then $\hat{G}_{p}<\hat{G}$, and by the above observation $\hat{G}_{p}<X$. This gives that $X=\hat{G}$ if G is not a p-group. Let G be a p-group. If $p>3$, then both \hat{G} and X are Sylow p-subgroups of A, and the statement follows from Sylow Theorems. Notice that, since Γ is connected, G is generated by the set $s^{-1} S$ for some $s \in S$, hence it is generated by two elements.

Let $p=2$. Assume for the moment that G is cyclic. Then \hat{G} has a characteristic subgroup K such that $\hat{G} / K \cong \mathbb{Z}_{4}$. Then $K \unlhd A, \Gamma_{K} \cong Q_{3}$. Moreover, Γ_{K} is a bi-Cayley graph of \hat{G} / K, and \hat{G} / K is normal in $A / K \leq \operatorname{Aut}\left(\Gamma_{K}\right)$. A simple computation, using MAGMA, shows that this situation does not occur. Let G be a non-cyclic 2 -group in $\mathcal{C}_{\text {sub }}$. Also using the fact that G is generated by two elements,
we conclude that either $G \cong \mathbb{Z}_{2}^{2}$ and $\Gamma \cong Q_{3}$, or $G \cong \mathbf{Q}_{8}$ and Γ is the Moebius-Kantor graph. Now, $X=X_{2} \cong G_{2}=G$. Then $X=\hat{G}$ can be verified by the help of MAGMA in either case.

Let $p=3$. Observe first that $|G|>3$. For otherwise, $\Gamma \cong K_{3,3}$, but no semiregular automorphism group of order 3 is normal in $\operatorname{Aut}\left(K_{3,3}\right)$. Since G is generated by two elements, we may write $G \cong$ $\mathbb{Z}_{3^{e}} \times \mathbb{Z}_{3^{f}}$, where $e \geq 1$ and $0 \leq f \leq e$. If $e=1$, then $f=1, G \cong \mathbb{Z}_{3}^{2}$, and Γ is the Pappus graph. However, this graph has no automorphism group which is isomorphic to \mathbb{Z}_{3}^{2} and also normal in the full automorphism group. Therefore, $e \geq 2$. Define $K=\left\{\hat{x}: x \in G\right.$ and $\left.o(x) \leq 3^{e-2}\right\}$. Then K is a characteristic subgroup of \hat{G}. Thus $K \triangleleft A$, and Γ_{K} is a BiCayley graph of \hat{G} / K.

Let $f \leq e-2$. Then $\hat{G} / K \cong \mathbb{Z}_{9}$, and Γ_{K} is the Pappus graph. This graph, however, does not have a cyclic semiregular automorphism group of order 9. We conclude that $f \in\{e-1, e\}$.

Let $f=e-1$. Then $\hat{G} / K \cong \mathbb{Z}_{9} \times \mathbb{Z}_{3}$. It follows that Γ_{K} is the unique cubic arc-transitive graph on 54 points (see [6, Table]). We have checked by Magma that this graph has a unique semiregular abelian automorphism group whose orbits are the bipartition classes. Therefore, $X / K=\hat{G} / K$. This together with $K<X \cap \hat{G}$ yield that $X=\hat{G}$.

Finally, let $f=e$. Then $\hat{G} / K \cong \mathbb{Z}_{9} \times \mathbb{Z}_{9}$. It follows that Γ_{K} is the unique cubic arc-transitive graph on 162 points (see [6, Table]). A direct computation, using Magma, gives that $X / K=\hat{G} / K$, which together with $K<X \cap \hat{G}$ yield that $X=\hat{G}$.

Recall that, a group H is homogeneous if every isomorphism between two subgroups of H can be extended to an automorphism of H. The following result is [15, Proposition 3.2]:

Proposition 3.9. Every 2-DCI-group is homogeneous.
Since every group in \mathcal{C} is a 2-DCI-group (see [15, Theorem 1.3]), we have the corollary that every group in \mathcal{C} is homogeneous.

Everything is prepared to prove Theorem 1.1.

Proof of Theorem 1.1. Let $G \in \mathcal{C}$ and $\Gamma=\operatorname{BCay}(G, S)$ such that $|S| \leq 3$. We have to show that Γ is a BCI-graph. This holds trivially when $|S|=1$, and follows from the homogeneity of G when $|S|=2$. Let $|S|=3$.

CASE 1. Γ is arc-transitive.
Let $\operatorname{BCay}(G, S) \cong \operatorname{BCay}(G, T)$ for some subset $T \subseteq G$. We may assume without loss of generality that $1_{G} \in S \cap T$. Let $H=\langle S\rangle$ and $K=\langle T\rangle$. Then $H, K \in \mathcal{C}_{\text {sub }}$, both bi-Cayley graphs BCay (H, S) and $\operatorname{BCay}(K, T)$ are connected, and $\operatorname{BCay}(H, S) \cong \operatorname{BCay}(K, T)$. We claim that $\operatorname{BCay}(H, S)$ is a BCI-graph. In view of Lemma 2.2, this holds if the normalizer of \hat{H} in $\operatorname{Aut}(\operatorname{BCay}(H, S))$ is transitive on the vertex-set $V(\operatorname{BCay}(H, S))$, and for every $X \in \mathcal{S}(\operatorname{Aut}(\operatorname{BCay}(H, S)))$, isomorphic to H, X and \hat{H} are conjugate in $\operatorname{Aut}(\mathrm{BCay}(H, S))$. Now, the first part follows from Lemma 3.1, while the second part follows from Lemma 3.7.

Let ϕ be an isomorphism from $\operatorname{BCay}(K, T)$ to $\operatorname{BCay}(H, S)$, and consider the group $X=\phi^{-1} \hat{K} \phi \leq$ $\operatorname{Sym}(H)$. Since ϕ maps the bipartition classes of $\mathrm{BCay}(K, T)$ to the bipartition classes of $\mathrm{BCay}(H, S)$, we have $X \in \mathcal{S}(\operatorname{Aut}(\operatorname{BCay}(H, S)))$. Also, $X_{2} \cong \hat{H}_{2}$, because $X \cong K,|H|=|K|$ and H and K are both contained in the group G from \mathcal{C}. Thus Lemma 3.7 is applicable, as a result, X and \hat{H} are conjugate in $\operatorname{Aut}(\operatorname{BCay}(H, S))$. In particular, $H \cong K$. Since G is homogeneous, there exists $\alpha_{1} \in \operatorname{Aut}(G)$ such that $K^{\alpha_{1}}=H$. This α_{1} induces an isomorphism from $\operatorname{BCay}(K, T)$ to $\operatorname{BCay}\left(H, T^{\alpha_{1}}\right)$. Therefore, $\operatorname{BCay}(H, S) \cong \operatorname{BCay}\left(H, T^{\alpha_{1}}\right)$, and since $\operatorname{BCay}(H, S)$ is a BCI-graph, $T^{\alpha_{1}}=g S^{\alpha_{2}}$ for some $g \in H$ and $\alpha_{2} \in \operatorname{Aut}(H)$. By the homogeneity of G, α_{2} extends to an automorphism of G, implying that $\operatorname{BCay}(G, S)$ is a BCI-graph.

CASE 2. Γ is not arc-transitive.
Since Γ is vertex-transitive (see Lemma 3.1), but not arc-transitive, we have $A_{\mathbf{0}}=A_{(s, 1)}$ for some $s \in S$. We show below that $\operatorname{BCay}\left(G, s^{-1} S\right)$ is a BCI-graph, this obviously yields that the same holds for BCay (G, S). Define the permutation ϕ of $G \times\{0,1\}$ by

$$
(x, i)^{\phi}= \begin{cases}(x, 0) & \text { if } i=0 \\ \left(s^{-1} x, 1\right) & \text { if } i=1\end{cases}
$$

The vertex $(x, 0)$ of $\operatorname{BCay}(G, S)$ has neighborhood $(S x, 1)$. This is mapped by ϕ to the the set $\left(s^{-1} S x, 1\right)$. This shows that ϕ is an isomorphism from Γ to $\Gamma^{\prime}=\operatorname{BCay}\left(G, s^{-1} S\right)$. Then we have $\operatorname{Aut}\left(\Gamma^{\prime}\right)_{\mathbf{0}}=\phi^{-1} A_{\mathbf{0}} \phi=\phi^{-1} A_{(s, 1)} \phi=\operatorname{Aut}\left(\Gamma^{\prime}\right)_{\mathbf{1}}$. Let $\tau_{\hat{G}}$ be the automorphism of Γ^{\prime} defined in Lemma 3.1. It follows that $\tau_{\hat{G}}$ is an involution (see the proof of Lemma 3.1), which normalizes \hat{G} and maps $\mathbf{0}$ to $\mathbf{1}$. Now, Lemma 2.4 is applicable to Γ^{\prime}, as a result, it is sufficient to show that $\operatorname{Cay}\left(G, s^{-1} S\right)$ is a CI-graph. This follows because $\left|s^{-1} S \backslash\left\{1_{G}\right\}\right|=2$ and that G is a 2-DCI-group (see [15, Theorem 1.3]). This completes the proof of the theorem.

Acknowledgments

This work was supported by the Slovenian Research Agency (research program P1-0285 and research projects N1-0032, N1-0038, N1-0062, J1-6720 and J1-7051).

References

[1] M. Arezoomand and B. Taeri, Isomorphisms of finite semi-Cayley graphs, Acta Math. Sin. (Engl. Ser.), 31 (2015) 715-730.
[2] M. Arezoomand and B. Taeri, Finite BCI-groups are solvable, Int. J. Group Theory, 5 no. 2 (2016) 1-6.
[3] L. Babai, Isomorphism problem for a class of point-symmetric structures, Acta Math. Acad. Sci. Hungar., 29 (1977) 329-336.
[4] N. Biggs and M. Hoare, The sextet construction for cubic graphs, Combinatorica, 3 (1983) 153-165.
[5] W. Bosma, J. Cannon and C. Playoust, The Magma Algebra System I: The User Language, J. Symbolic Comput., 24 (1997) 235-265.
[6] M. D. E. Conder and P. Dobcsányi, Trivalent symmetric graphs on up to 768 vertices, J. Combin. Math. Combin. Comput., 40 (2002) 41-63.
[7] M. D. E. Conder and R. Nedela, Symmetric cubic graphs of small girth, J. Combin. Theory Ser. B, 97 (2007) 757-768.
[8] J. D. Dixon and B. Mortimer, Permutation groups, Graduate Texts in Mathematics, 163, Springer-Verlag, New York, 1996.
[9] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin Heidelberg New York, 1967.
[10] W. Jin and W. Liu, Two results on BCI-subset of finite groups, Ars Combin., 93 (2009) 169-173.
[11] W. Jin and W. Liu, A classification of nonabelian simple 3-BCI-groups, European J. Combin., 31 (2010) 1257-1264.
[12] W. Jin and W. Liu, On Sylow subgroups of BCI groups, Util. Math., 86 (2011) 313-320.
[13] H. Koike and I. Kovács, Isomorphic tetravalent cyclic Haar graphs, Ars Math. Contemp., 7 (2014) 215-235.
[14] K. Kutnar and D. Marušič, A complete classification of cubic symmetric graphs of girth 6, J. Combin. Theory Ser. $B, 99$ (2009) 162-184.
[15] C. H. Li, Isomorphism of finite Cayley digraphs of bounded valency, II, J. Combin. Theory. Ser. A, 87 (1999) 333-346.
[16] C. H. Li, The finite vertex-primitive and vertex-biprimitive s-transitive graphs for $s \geq 4$, Trans. Amer. Math. Soc., 353 (2001) 3511-3529.
[17] C. H. Li, On isomorphisms of finite Cayley graphs-a survey, Discrete Math., 256 (2002) 301-334.
[18] C. H. Li and C. E. Praeger, Finite groups in which any two elements of the same order are either fused or inverse fused, Comm. Algebra, 25 (1997) 3081-3118.
[19] C. H. Li, C. E. Praeger and M. Y. Xu, Isomorphisms of finite Cayley digraphs of bounded valency, J. Combin. Theory. Ser. B, 73 (1998) 164-183.
[20] P. Lorimer, Vertex-transitive graphs: symmetric graphs of prime valency, J. Graph Theory, 8 (1984) 55-68.
[21] W. R. Scott, Group theory, Prentice-Hall, Inc., New Jersey, 1964.
[22] W. T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc., 43 (1947) 459-474.
[23] D. Wiedemann and M. E. Zieve, Equivalence of sparse circulants: the bipartite Ádám problem, preprint arXiv:0706.1567v1 [math. CO] (2007).
[24] S. J. Xu, W. Jin, Q. Shi and J. J. Li, The BCI-property of the Bi-Cayley graphs, J. Guangxi Norm. Univ.: Nat. Sci. Edition, 26 (2008) 33-36.

First Author

Institute of Mathematics, National Autonomous University of Mexico, 04510 Ciudad de Mexico, Mexico
Email: hiroki.koike@im.unam.mx

Second Author

UP IAM and UP FAMNIT, University of Primorska, Muzejski trg 2, 6000 Koper, Slovenia

```
Email: istvan.kovacs@upr.si
```


[^0]: MSC(2010): Primary: 05C25; Secondary: 05C60, 05E18.
 Keywords: bi-Cayley graph, BCI-group, graph isomorphism.
 Received: 5 December 2016, Accepted: 24 November 2017.
 *Corresponding author.

