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ABSTRACT. For a finite group H, let cs(H) denote the set of non-trivial conjugacy class sizes of H
and OC(H) be the set of the order components of H. In this paper, we show that if S is a finite
simple group with the disconnected prime graph and G is a finite group such that c¢s(S) = ¢s(G),
then |S| = |G/Z(G)| and OC(S) = OC(G/Z(@)). In particular, we show that for some finite simple
group S, G = S x Z(G).

1. Introduction

In this paper, all groups are finite and for a group G and = € G, Cg(z) and clg(x) are the
centralizer of x in G and the conjugacy class in G containing x, respectively and c¢s(G) denotes the
set of non-trivial conjugacy class sizes of G.

A. Camina and R. Camina in [10] found a nilpotent group G and a non-nilpotent group H such
that cs(G) = ¢s(H) = {20, 10, 5,4, 2}. This examples show that nilpotency can not be determined
by cs.

In [33], Navarro by constructing some examples showed that solvability can not be recognized
by cs.

J. Thompson (see [30, Problem 12.38]) conjectured that simplicity can be determined by cs in
the class of finite centerless groups. In a series of papers [2], [4]-[7], [17] and [34], the veracity of
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Thompson’s conjecture for some finite simple groups has been studied . In [9], A. Camina and R.
Camina asked about the structure of a group with the same cs as a simple group. In the other
word, it is interesting to know that whether simplicity can be determined by c¢s (up to an abelian
direct factor).

In 2015, it has been shown that if G is a group with ¢s(G) = ¢s(PSLy(q)), where ¢ is a prime
power, then G = PSLy(q) x Z(G) [8]. In this paper, we continue this investigation for some other
finite simple groups.

Throughout this paper, we use the following notation: For a natural number n, let 7(n) be the
set of prime divisors of n and for a group H, let 7(H) = w(|H|). Also, n.H denotes a central
extension of H by a cyclic group of order n. For a prime r and natural numbers a and b, |a|, is
the r-part of a, i.e., |a|, = r’ when 7! | a and r**! { a and, ged(a,b) and lem(a, b) are the greatest
common divisor of a and b and the lowest common multiple of a and b, respectively. For the set of
primes 7, x is named a m-element (7'-element) of a group H if 7(O(z)) C 7 (7(O(x)) C n(H) — ).
For a group G, the prime graph GK(G) of G is a simple graph whose vertices are the prime divisors
of the order of G and two distinct prime numbers p and ¢ are joined by an edge if G contains an
element of order pg. Denote by ¢(G) the number of connected components of the graph GK(G)
and denote by m; = m;(G), i = 1,...,t(G), the i-th connected component of GK(G). For a group
G of an even order, let 2 € ;. If GK(G) is disconnected, then |G| can be expressed as a product
of co-prime positive integers m;(G), i = 1,2,...,t(G), where m(m;(G)) = mi(G), and if there is
no ambiguity write m; for showing m;(G). These m;’s are called the order components of G and
the set of order components of G will be denoted by OC(G). List of all finite simple groups with

disconnected prime graph and their sets of order components have been obtained in [32] and [35].

2. The main results

Throughout this section, let S be a simple group with the disconnected prime graph and G be a
group with ¢s(S) = es(G). Also, fix G = G/Z(G) and for x € G, let Z denote the image of x in G.

Lemma 2.1. [18, Proposition 4] Let H be a group. If there exists p € w(H) such that p does not
divide any conjugacy class sizes of H, then the p-Sylow subgroup of H is an abelian direct factor

of H.

Lemma 2.2. Let H be a group and x,y € H.
(i) If zy = yx and ged(O(z),0(y)) = 1, then Cy(zry) = Ch(x) N Cy(y). In particular,
Cu(zy) < Cu(z) and |cly(x)| divides |clg(zy)|.
(i) If K < H, then cs(KZ(H)) = cs(K).
Proof. The proof of (i) is straightforward and we obtain (ii) from [3, Lemma 2.2] O
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Definition 2.3. A subgroup K of H is called isolated if for every h € H, KN K" =1 or K and
for all z in K — {1}, C(x) < K.

Lemma 2.4. For every i > 2,

(i) % € cs(S) and ‘%' is mazimal and minimal in cs(S) by divisibility.
(ii) For every a € cs(S), either a = %l or m; | a.

Proof. Since S is a simple group with the odd order component m;, [35] shows that S contains a
subgroup, namely H;, of the order m; which is abelian and isolated. So for every xz € H; — {1},
Cs(z) = H; and hence, |clg(z)| = 2L € ¢s(S). If y € §— {1} such that |cls(y)| | 2L, then

m; | |Cs(y)|. Since m; is an odd order component of S, we get that |Cs(y)| = m; and hence,

lels(y)| = %, S0 % is minimal in ¢s(S) by divisibility. Also, since H; is an abelian m;-Hall
subgroup of S, we can see at once that 7'%' is maximal in ¢s(S) by divisibility and hence, (i) follows.

For proving (ii), let o # % Since a € ¢s(.5), there exists an element y € S — {1} such that
lcls(y)| = a. On the contradiction, suppose that m; t . Thus ged(|Cs(y)|, m;) # 1. So there exists
a prime ¢ such that ¢ | ged(|Cs(y)|, m;) and hence, g € m; and Cs(y) contains a non-trivial element
x of order g. Therefore, O(zy) = lem(O(y), ¢). Since m; is a connected component of GK (S), we
get that y is a m;-element of S and hence, as mentioned in (i), y can be considered as an element of

H; which is an abelian m;-Hall subgroup of S. Therefore, m; | [Cs(y)l, so |cls(y)] | % and hence,
_ 18l

-, which is a contradiction. This shows that

by minimality of lnﬂ in ¢s(S), we get that |cls(y)

m; | a, as wanted in (ii). O
Lemma 2.5. |S| | |G/Z(G)|.

Proof. By Lemma 2.4(i), for every i > 2, % € ¢s(S). Also, since m is a connected component
of GK(S), for every non-trivial mj-element z; € S, |Cs(z1)| | m1 and hence HE(:SQ)m,- | |els(x1)]-
Therefore, lem{a : @ € ¢s(S)} = |S|. On the other hand, for every y € G, Z(G) < Cg(y) and
hence, |clg(y)| | |G : Z(G)] = |G/Z(G)|. Therefore, |S| =lem{a : a € cs(S) = es(G)} | |G/Z(G)],

as wanted. O

Chen in [17] proved that if G is centerless, then |S| = |G| and OC(S) = OC(G). In the following,

we are going to prove the similar facts for an arbitrary group G with cs(S) = ¢s(G).

Lemma 2.6. Let i > 2.

(i) For every mi-element x € G — Z(QG), |ca(z)| = 151

i

(ii) For every m;-element @ € G, |cla(Z)| = ‘%'
Proof. If there exists a non-central m-element y € G such that |clg(y)| = %, then

ged(mi, |cla(y)]) = 1
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and Lemma 2.5 shows that m; | |Ca(y)/Z(G)| and hence, for every q € m;, Cg(y) contains a g-
Sylow subgroup of GG, so we can assume that for a given non-central g-element z, z € Cg(y) (up to
conjugation). Thus Lemma 2.2(i) guarantees that |clg(y)| = %, lclg(2)] | |cla(yz)| and hence, by
maximality and minimality of 2 in ¢s(S) = es(G), |ca(2)| = |cla(y)] = |da(yz)| = EL. On the
other hand, every non-central m;-element x of G can be written as a product of some 7;-elements of
the prime power orders which their orders are co-prime and at least one of them is non-central, so
by Lemma 2.2(i), % | |clg(x)|. Thus maximality of % in ¢s(G) by divisibility forces |clg(x)| = %,
as desired.

Now assume that for every non-central m/-element y € G, |cla(y)| # lS'. Thus since L%I €
cs(S) = cs(G), there exists a non-central m;-element z € G such that |clg(z)| = . Lemma 2.2(i)
allows us to assume that z is an element of order p® for some p € ;. If there ex1sts q € m — {p},
then since ged(my, |clg(z)|) = 1, we deduce that Cg(z) contains every g-element of G (up to
conjugation). Also, |S| | |G/Z(G)| and hence, G contains some non-central g-elements. Let w be

a non-central g-element of C(z). Then by Lemma 2.2(i), |clg(2)| = ‘%, |clg(w)| divide |clg(zw)],

so maximality and minimality of % in cs(S) = ¢s(G) forces |clg(w)| = |clg(zw)| = |cla(2)| = %
Now let u be a non-central p-element of G. Since |clg(w)| = % and p € m;, we have Cg(w)
contains a p-Sylow subgroup of G, so we can assume that v € Cg(w). Thus by Lemma 2.2(i),
lelg(w)| = ‘S‘ ,|clg(u)| divide |elg(uw)], so maximality and minimality of % in cs(S) = ¢s(G)
forces |clg(u )| = |clg(uw)| = |clg(u)| = % The same reasoning as above shows that for every

non-central m;-element z of a prime power order, |clg(x)

| = % Also since every non-central ;-
element x of G can be written as a product of some 7;-elements of the prime power orders which
their orders are co-prime and at least one of them is non- central by Lemma 2.2(i), ‘%l | |cla(z)].
Thus maximality of % in ¢s(G) by divisibility forces |clg(z)| = £, as desired.

Now let m; = {p}. Since ged(p, |clg(2)|) = 1, we deduce that C(;( ) contains a p-Sylow subgroup
P of G and hence, z € Z(P) — Z(G). If there exists a non-central p-element u of G such that

cla(u)| # |S| , then Lemma 2.4(ii) shows that m; | |clg(u)| and hence,

(2.1) G/Z(G)lp = [Ca(u)/Z(G)lplcla(u)lp > |S]p,

because u € Cg(u) — Z(G). On the other hand, our assumption implies that if y is a non-central
mi-element of G, then |clg(y)| # ‘%l Thus Lemma 2.4(ii) shows that m; | |clg(y)|. Also by (2.1),
p | |1Caly)/Z(G)|, so Ca(y) contains a non-central p-element v. Thus Lemma 2.2(i) shows that
lcla ()], [cla()| | |ela(yv)], so m; | |cla(yv)| and hence, |clg(v)| # % Consequently, Lemma
2.4(ii) forces m; | |clg(v)|. This shows that |clg(v)|, = |cla(vy)lp = |cla(y)]p = |milp, = |S|p and
hence, |Cq(v)|, = |Ca(vy)lp = [Ca(y)lp, > |G/Z(G)|p/|S|p, # 1, by (2.1). On the other hand,
Lemma 2.2(i) yields that Cq(vy) = Cq(v) N Ca(y) < Ca(v), Ca(y) and without loss of generality,
we can assume that Cp(vy) € Syl,(Cg(vy)). Thus the facts that “Cg(vy) < Cg(v),Ca(y) and
|ICa(vy)|p = |Ca(v)]p, = |Caly)l,” guarantee that Cp(v) = Cp(yv) = Cp(y). But v is a central
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p-element in Cg(vy), so v € Cp(vy) < P. Therefore, Z(P) < Cp(v) and hence, z € Z(P) < Cp(y).
Note that ged(O(y),p) = 1. Thus Lemma 2.2(i) gives |clg(y)|, |cla(2)| | |cla(yz)], so the above
statements show that mi,% | |cla(yz)|. Therefore, |S| | |cla(yz)| and consequently, |clg(yz)| &

¢s(S), which is a contradiction. This contradiction shows that for every non-central m;-element
_ 18l

m;’

u € G, |cg(u) as wanted in (i).

Now let Z be a mi-element of G. So there exists a non-central m;-element y € G such that
& = y. Therefore, (i) shows that |clg(y)| = % Fix Cs(y) = C/Z(G). Note that Cg(y) is a normal
subgroup in C, because for every g € C, (§) ~'4g = ¥, so there exists z € Z(G) such that g~ tyg = yz
and hence, for every h € Cg(y), (97 hg) 'y(g~'hg) = y which means that g~ 'hg € Cg(y). If there
exists a mi-element § € C (%), then we can assume that g is a 7i-element of G and g~ lyg = yz,
for some z € Z(G). Since O(y) = O(yz) = lem(O(y),0(z)), we get that z is a m;-element of
Z(@G). Also, ygy~! = gz and hence, O(g) = O(gz) = lem(O(g),0(2)), so O(z) | O(g). This forces
z = 1 and hence, g € Cg(y). If there exists g € G such that gcd(O(g),mi),gcd(O(g),%) # 1
and g € Ca(y), then we have g = g192 = gag1, where g1 is a m-element and go is a w/-element
of G. Therefore, y € Ca(g1) N Ca(g2). So the above statements show that g2 € Cg(y). Also,
if g1 & Ca(y), then we have g1 € C' — Cg(y) and hence, p | |C/Cq(y)|, for some p € m;. Since
C < G, we get that |C/Cq(y)| | |cla(y)| = %, so p | %, which is a contradiction. This shows
that g1 € Cg(y). The same reasoning shows that every m;-element of C' lies in Cg(y) and hence,
C = Ca(y), so llg(@)| = |cla(y)] = L, as wanted in (ii). O

Remark 2.7. Let ¢ € ©(S) and @ be a q-Sylow subgroup of S. Then since S is simple and
Z(Q) # 1, we deduce that there exists a non-trivial element a € ¢s(S) = ¢s(G) such that q t a, so
if a = |clg(y)| for some y € G, then y is a non-central element of G and Cg(y) contains a g-Sylow
subgroup of G.

Theorem 2.8. (i) |G/Z(G)| =15].
(i) OC(G/Z(G)) = 0C(S).

Proof. (i) By Lemma 2.5, |S| | |G/Z(G)|. Now let there exist ¢ € 7(G/Z(G)) — w(S). Then since
q1|S|, we get that ¢ does not divide any conjugacy class sizes of G and hence, Lemma 2.1 forces
the ¢-Sylow subgroup of G to be a subgroup of Z(G), so q &€ m(G/Z(G)), which is a contradiction.
This yields that 7(G/Z(G)) = n(S). If ¢ € ©(G/Z(G)) = ©(S) such that |G/Z(G)|, # |S]q, then
we have |G/Z(G)|q > |S|q, by Lemma 2.5. If ¢ ¢ 72, then since for a non-central mo-element y € G,

q||Ca(y)/Z(Q)|, we can assume that Cg(y) contains a non-central g-element z. But |clg(y)| = %,
by Lemma 2.6(i) and hence, Lemmas 2.2(i) and 2.4(i) show that |clg(2)| = |clg(yz)| = %, S0

Ca(y) = Cg(z). Now let @ be a ¢-Sylow subgroup of G containing z. Then Remark 2.7 forces
Cc(Q) to contain a non-central element w. Without loss of generality, we can assume that w

is of a prime power order. Since Cg(Q) < Cq(z) = Cq(y), we get that w € Cg(y). On the
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other hand, ¢ 1 |clg(w)| and hence, |clg(w)| # %, so it can be concluded from Lemmas 2.4(ii)
and 2.6(1) that mg | |clg(w)| and w is a wh-element of C(y). Thus Lemma 2.2(i) shows that
lcla(w)], lcla(y)| = % | |cdlg(wy)| and hence, |S] | |clg(wy)], so |cla(wy)| € ¢s(S) = ¢s(G), which
is a contradiction. This guarantees that if ¢ ¢ mp, then |G/Z(G)|; = |S|q- Now assume that
q € mo. By considering the elements of ¢s(S) = ¢s(G), we can find a non-central element v € G of
a prime power order such that |clg(v)| = %, where k; is a divisor of m;. By Lemma 2.6(i), we
can assume that v is a m-element of G and by our assumption, ¢ | |Cq(v)/Z(G)| and hence, we
can assume that C(v) contains a non-central g-element x. Since ¢ € 7y, we conclude from Lemma
2.6(i) that |clg(x)| = % and by Lemma 2.2(i), |clg(z)],|clg(v)| | |clg(vz)|, so |S| | |clg(vz)| and
hence, |clg(vx)| € cs(S) = ¢s(G), which is a contradiction. This shows that |G/Z(G)|, = |5|4, as
wanted in (i). Now we are going to prove (ii). Let 1 < i,j < ¢(S) such that i # 1,j. If there
exist p € m; and ¢ € 7; such that p and ¢ are adjacent in GK (@), then G contains a p-element

z such that ¢ | |Ca(7)|. Also by Lemma 2.6(ii), |clm(Z)| = %, so |cla(7)|g = |Slq = |Gy, and

hence, |Cs(Z)|; = 1, which is a contradiction. Thus p and ¢ are not adjacent in GK(G). On
the other hand, (i) and Lemma 2.6(ii) show that the order of the centralizer of every non-trivial
m;-element of G is m; and hence, 7; is a connected component of G. Now let p,q € m; such that
p and ¢ are adjacent in GK(S). So ¢s(S) = ¢s(G) contains an element « such that |af, < |S],
and |a|y < |S|q. Let y be an element of G such that |clg(y)| = . Then since |G/Z(G)| = |S], we
get that p,q | |Ca(y)/Z(G)| and since Cq(y)/Z(G) < Ca(y) < Ca(y™), for every natural number
m, we can assume that O(y) is a prime power and p,q | |Ca(y)|. So if p or ¢ | O(y), then p and
q are adjacent in GK(G) and if O(y) is a power of a prime r, where r € {p, ¢}, then we have p,r
and ¢, r are adjacent in GK(G). This shows that there exists a path between p and ¢ and hence,
for every path in GK(S) between elements of 7y, there exists a path in GK(G) between elements

of 71, so since mjs, for j > 2, are connected components of GK(G), we get that 7 is a connected
component of GK (G), too. Also |G| = |S| and hence, OC(G) = OC(S), as desired in (ii). O

Definition 2.9. [17] For a group H, the number of isomorphism classes of groups with the same
set OC(H) of order components is denoted by h(OC(H)). If h(OC(H)) = k, then H is called
k-recognizable by the set of its order components and if k = 1, then H is simply called OC-

characterizable or OC'-recognizable.

In many papers, it has been shown that many finite simple groups with disconnected prime

graphs are OC-characterizable, for example see [11]-[29].
Corollary 2.10. If S is OC-characterizable, then G/Z(G) = S.

Proof. Since by Theorem 2.8(ii), OC(G) = OC(S), the result follows from the OC-recognizability
of S. (]
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Definition 2.11. [31] A central extension of a group H is a group K such that K/Z(K)= H. A
central extension of H which is perfect is called a covering group of H. Also, if K is a covering
group of H such that K % H, then K is named a proper covering group of H. It was shown by
Schur that there is a unique covering group of the mazimal order, called the full covering group
of H. The center of the full covering group of H is denoted by M(H) and it is called the Schur
multiplier of H.

Theorem 2.12. If S is OC-characterizable and there is no proper covering group of S with the
same cs as ¢s(S), then G = S x Z(QG).

Proof. On the contrary, suppose that G is the smallest group such that cs(S) = ¢s(G) and G 2
S x Z(G). Then since by Corollary 2.10, G/Z(G) = S and G'Z(G)/Z(G) is a normal subgroup
of G/Z(G), we get that G'Z(G)/Z(G) = 1 or G/Z(G). Also G is non-solvable and hence, the
former case can not occur. Thus G'Z(G)/Z(G) = G/Z(G) and hence, G’Z(G) = G, so Lemma
2.2(ii) shows that cs(S) = ¢s(GQ) = ¢s(G'Z(G)) = ¢s(G'). Thus our assumption forces G' = G, so
G is perfect and hence, G is a proper covering group of S with the same cs as ¢s(S). This is a
contradiction with our assumption. Therefore G = S x Z(G), as desired. (Note that some part of

this proof is similar to that of in [8].) O
Theorem 2.13. If S is OC-characterizable and M (S) =1, then G =2 S x Z(G).

Proof. Tt follows immediately from Theorem 2.12. O
Theorem 2.14. If S is one of the groups in Table 1 (up to isomorphism), then G = S x Z(G).

Proof. Since S is OC-characterizable, by the references stated in the third column of Table 1, we
deduce from Theorem 2.13 that if M(S) = 1, then G = S x Z(G), as desired. In the following, we
are going to study the remaining cases, with the help of [1]. For this aim let H be a covering group
of S such that S 2 H. Then considering M (S) shows that:

o If S = Mo, then H = 2.M5 and hence, 792 € c¢s(H) — ¢s(S), so e¢s(H) # cs(S).

e If S = J,, then H = 2.J5 and hence, 5040 € cs(H) — ¢s(S), so cs(H) # cs(.9).

o If S=HS, then H = 2.HS and hence, 30800 € cs(H) — cs(S), so cs(H) # cs(S).

o If S = RU, then H = 2.RU and hence, 57002400 € cs(H) — ¢s(5), so cs(H) # cs(9).

o If S = J3, then H = 3.J3 and hence, 620160 € cs(H) — ¢s(S), so c¢s(H) # cs(S).

o If S = McL, then H = 3.McL and hence, 99792000 € cs(H) — ¢s(S), so c¢s(H) # ¢s(S).

o If S = Suz, then H = 2.5uz,3.Suz or 6.5uz and hence, 4670265600 or 415134720 €
cs(H) — cs(S), so es(H) # cs(S).

o If S = Mg, then H = 2.Ms,3. Moo, 4.Mas,6.Maos or 12.Mss and hence, 27720 € cs(S) —
cs(H), 12320 € es(S) — es(H) or 2310 € c¢s(H) — es(5), so c¢s(H) # es(9).
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o If S = Suz(8), then H = 2.5uz(8) or H = 4.Suz(8) and hence, 455 € ¢s(S) — ¢s(H), so
cs(H) # es(S).

o If S = (G2(3), then H = 3.G2(3) and hence, 2184 € c¢s(H) — ¢s(5), so c¢s(H) # es(5).

o If S =(G5(4), then H = 2.G5(4) and hence, 131040 € cs(H) — ¢s(S), so cs(H) # es(5).

If S = PSL,(q), where n > 2 is prime, (n,q) # (3,2), (3,4) and ged(n,q—1) = n, then H =
n.PSLy(q) = SLy(q). Let GF(q) be a field with ¢ elements and (GF(q))* = GF(q) — {0}.
Then (GF(q))* is a cyclic group of order ¢ — 1. Since n | ¢ — 1, we can assume that
(GF(q))* contains an element ¢ of the order n. Set z = diag(1,£,£2,...,6" 1) € SL,(q)
and Z = Z(SL,(q)), where diag(1,&,£2,...,£" 1) means a diagonal matrix with numbers
1,£,€2,...,6" 1 on a diagonal. We can check at once that Cpsi,(q)(®Z) = (11 Z) x (122Z),

where for ay,...,a,_1 € (GF(q))*, i = diag(ay,...,an_1, (a1 a,—1)~!) and

Ty =

= O O O
o = O O

1
0
0
0

and hence, |clpsy,, (q)(Z)| = % € ¢s(PSLy(q)). We claim that % & cs(SLy(q)).
If not, then there exists y € SLy(q) such that |Csp, ) (y)| = n(g —1)""!. Since y €
Csr.(q(y) and ged(|Csr, () (y)],q) = 1, we get that y is a semi-simple element of SL,(q),
so there exists a maximal torus T of SL,(q) containing y. Thus 7" < Cgy, () (y) and
hence, |T| divides n(q¢ — 1)"~!. This forces |T| = (¢ — 1)"~! and hence, we can as-
sume that y = diag(y1,...,Yn—1,Yn = (Y1 Yn_1)" ') for some y1,...,y,1 € (GF(q))*.
Since |Cgp,(q)(y)] = n(g —1)"!
Csr, W) =T, s0 |Csp,(o)(y)| = (¢ —1)"', which is a contradiction. This shows that
cs(S) # es(H).

o If S = PSU,(q), where n > 2 is prime, (n,q) # (3,2),(5,2) and ged(n,q + 1) = n,
then H = n.PSU,(q) = SU,(q) and hence, by replacing GF(q) with GF(¢?) in the case
S = PSLy(q), we can see that cs(H) # cs(9).

, we can check at once that y;s are distinct and hence,

The above consideration shows that if S is one of the groups mentioned in Table 1 with M (S) # 1,
then there is no proper covering group of S with the same cs as ¢s(S) and hence, Theorem 2.12
forces G = S x Z(G), as desired. Note that if S = PSL3(2) = PSL»(7), then it has been shown in
[8] that G = S x Z(G). So theorem follows. O
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TABLE 1.
Group S Conditions References |M(S)
for OC-recognition
My, Maz, May [14] 1
Ji,Jy,He, HN, Ly, Th
Cos,Cos, Figz, M
Mys, Jo, HS, RU 4] 2
Js, McL [14] 3
Suz [14] 6
Mo, [14] 12
2@, (3201 2 Fy (220 n>1 [13] 1
Sz(22n+1) n>2 1
Sz(8) [13] 4
Ga(q) q# 23,4 [12],[15] !
G2(3) [12],[15] 3
Ga(4) [12],[15] 2
| Fs(q) | | [16] R
| Es(q) | gdBg-1=1 | [29] I
| Fi(q) | q>2 | Pupy [ 1
PSL,(q) n > 2 is prime and [26] ged(n, g —1)
(n,q) # (3,2), (3,4)
PSLy(2) = PSLy(7) 8] 2
PSU,(q) n > 2 is prime [24] ged(n, g+ 1)
and (n, q) # (3,2),
(5,2)
Cn(2™) either n =2 and m > 2 or [22] 1
n=2">4 [25]
D1 (2) | n > 3 is prime | [19] | 1
2D, (2™) either m =1 [20] 1
andn=2“4+12>5
orn=2%>4 [27]
| 2E6(q) | ged(3,q+1)=1andg#2 | 28] | 1 |
| 5Da(q?) | | [11] I
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