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Abstract. For a finite group H, let cs(H) denote the set of non-trivial conjugacy class sizes of H

and OC(H) be the set of the order components of H. In this paper, we show that if S is a finite

simple group with the disconnected prime graph and G is a finite group such that cs(S) = cs(G),

then |S| = |G/Z(G)| and OC(S) = OC(G/Z(G)). In particular, we show that for some finite simple

group S, G ∼= S × Z(G).

1. Introduction

In this paper, all groups are finite and for a group G and x ∈ G, CG(x) and clG(x) are the

centralizer of x in G and the conjugacy class in G containing x, respectively and cs(G) denotes the

set of non-trivial conjugacy class sizes of G.

A. Camina and R. Camina in [10] found a nilpotent group G and a non-nilpotent group H such

that cs(G) = cs(H) = {20, 10, 5, 4, 2}. This examples show that nilpotency can not be determined

by cs.

In [33], Navarro by constructing some examples showed that solvability can not be recognized

by cs.

J. Thompson (see [30, Problem 12.38]) conjectured that simplicity can be determined by cs in

the class of finite centerless groups. In a series of papers [2], [4]-[7], [17] and [34], the veracity of
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Thompson’s conjecture for some finite simple groups has been studied . In [9], A. Camina and R.

Camina asked about the structure of a group with the same cs as a simple group. In the other

word, it is interesting to know that whether simplicity can be determined by cs (up to an abelian

direct factor).

In 2015, it has been shown that if G is a group with cs(G) = cs(PSL2(q)), where q is a prime

power, then G ∼= PSL2(q)× Z(G) [8]. In this paper, we continue this investigation for some other

finite simple groups.

Throughout this paper, we use the following notation: For a natural number n, let π(n) be the

set of prime divisors of n and for a group H, let π(H) = π(|H|). Also, n.H denotes a central

extension of H by a cyclic group of order n. For a prime r and natural numbers a and b, |a|r is

the r-part of a, i.e., |a|r = rt when rt | a and rt+1 ∤ a and, gcd(a, b) and lcm(a, b) are the greatest

common divisor of a and b and the lowest common multiple of a and b, respectively. For the set of

primes π, x is named a π-element (π′-element) of a group H if π(O(x)) ⊆ π (π(O(x)) ⊆ π(H)−π).

For a group G, the prime graph GK(G) of G is a simple graph whose vertices are the prime divisors

of the order of G and two distinct prime numbers p and q are joined by an edge if G contains an

element of order pq. Denote by t(G) the number of connected components of the graph GK(G)

and denote by πi = πi(G), i = 1, . . . , t(G), the i-th connected component of GK(G). For a group

G of an even order, let 2 ∈ π1. If GK(G) is disconnected, then |G| can be expressed as a product

of co-prime positive integers mi(G), i = 1, 2, . . . , t(G), where π(mi(G)) = πi(G), and if there is

no ambiguity write mi for showing mi(G). These mi’s are called the order components of G and

the set of order components of G will be denoted by OC(G). List of all finite simple groups with

disconnected prime graph and their sets of order components have been obtained in [32] and [35].

2. The main results

Throughout this section, let S be a simple group with the disconnected prime graph and G be a

group with cs(S) = cs(G). Also, fix Ḡ = G/Z(G) and for x ∈ G, let x̄ denote the image of x in Ḡ.

Lemma 2.1. [18, Proposition 4] Let H be a group. If there exists p ∈ π(H) such that p does not

divide any conjugacy class sizes of H, then the p-Sylow subgroup of H is an abelian direct factor

of H.

Lemma 2.2. Let H be a group and x, y ∈ H.

(i) If xy = yx and gcd(O(x), O(y)) = 1, then CH(xy) = CH(x) ∩ CH(y). In particular,

CH(xy) ≤ CH(x) and |clH(x)| divides |clH(xy)|.
(ii) If K ≤ H, then cs(KZ(H)) = cs(K).

Proof. The proof of (i) is straightforward and we obtain (ii) from [3, Lemma 2.2] □
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Definition 2.3. A subgroup K of H is called isolated if for every h ∈ H, K ∩Kh = 1 or K and

for all x in K − {1}, CH(x) ≤ K.

Lemma 2.4. For every i ≥ 2,

(i) |S|
mi

∈ cs(S) and |S|
mi

is maximal and minimal in cs(S) by divisibility.

(ii) For every α ∈ cs(S), either α = |S|
mi

or mi | α.

Proof. Since S is a simple group with the odd order component mi, [35] shows that S contains a

subgroup, namely Hi, of the order mi which is abelian and isolated. So for every x ∈ Hi − {1},
CS(x) = Hi and hence, |clS(x)| = |S|

mi
∈ cs(S). If y ∈ S − {1} such that |clS(y)| | |S|

mi
, then

mi | |CS(y)|. Since mi is an odd order component of S, we get that |CS(y)| = mi and hence,

|clS(y)| = |S|
mi

, so |S|
mi

is minimal in cs(S) by divisibility. Also, since Hi is an abelian πi-Hall

subgroup of S, we can see at once that |S|
mi

is maximal in cs(S) by divisibility and hence, (i) follows.

For proving (ii), let α ̸= |S|
mi

. Since α ∈ cs(S), there exists an element y ∈ S − {1} such that

|clS(y)| = α. On the contradiction, suppose that mi ∤ α. Thus gcd(|CS(y)|,mi) ̸= 1. So there exists

a prime q such that q | gcd(|CS(y)|,mi) and hence, q ∈ πi and CS(y) contains a non-trivial element

x of order q. Therefore, O(xy) = lcm(O(y), q). Since πi is a connected component of GK(S), we

get that y is a πi-element of S and hence, as mentioned in (i), y can be considered as an element of

Hi which is an abelian πi-Hall subgroup of S. Therefore, mi | |CS(y)|, so |clS(y)| | |S|
mi

and hence,

by minimality of |S|
mi

in cs(S), we get that |clS(y)| = |S|
mi

, which is a contradiction. This shows that

mi | α, as wanted in (ii). □

Lemma 2.5. |S| | |G/Z(G)|.

Proof. By Lemma 2.4(i), for every i ≥ 2, |S|
mi

∈ cs(S). Also, since π1 is a connected component

of GK(S), for every non-trivial π1-element x1 ∈ S, |CS(x1)| | m1 and hence Π
t(S)
i=2mi | |clS(x1)|.

Therefore, lcm{α : α ∈ cs(S)} = |S|. On the other hand, for every y ∈ G, Z(G) ≤ CG(y) and

hence, |clG(y)| | [G : Z(G)] = |G/Z(G)|. Therefore, |S| = lcm{α : α ∈ cs(S) = cs(G)} | |G/Z(G)|,
as wanted. □

Chen in [17] proved that if G is centerless, then |S| = |G| and OC(S) = OC(G). In the following,

we are going to prove the similar facts for an arbitrary group G with cs(S) = cs(G).

Lemma 2.6. Let i ≥ 2.

(i) For every πi-element x ∈ G− Z(G), |clG(x)| = |S|
mi

.

(ii) For every πi-element x̄ ∈ Ḡ, |clḠ(x̄)| =
|S|
mi

.

Proof. If there exists a non-central π′
i-element y ∈ G such that |clG(y)| = |S|

mi
, then

gcd(mi, |clG(y)|) = 1
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and Lemma 2.5 shows that mi | |CG(y)/Z(G)| and hence, for every q ∈ πi, CG(y) contains a q-

Sylow subgroup of G, so we can assume that for a given non-central q-element z, z ∈ CG(y) (up to

conjugation). Thus Lemma 2.2(i) guarantees that |clG(y)| = |S|
mi

, |clG(z)| | |clG(yz)| and hence, by

maximality and minimality of |S|
mi

in cs(S) = cs(G), |clG(z)| = |clG(y)| = |clG(yz)| = |S|
mi

. On the

other hand, every non-central πi-element x of G can be written as a product of some πi-elements of

the prime power orders which their orders are co-prime and at least one of them is non-central, so

by Lemma 2.2(i), |S|
mi

| |clG(x)|. Thus maximality of |S|
mi

in cs(G) by divisibility forces |clG(x)| = |S|
mi

,

as desired.

Now assume that for every non-central π′
i-element y ∈ G, |clG(y)| ̸= |S|

mi
. Thus since |S|

mi
∈

cs(S) = cs(G), there exists a non-central πi-element z ∈ G such that |clG(z)| = |S|
mi

. Lemma 2.2(i)

allows us to assume that z is an element of order pα for some p ∈ πi. If there exists q ∈ πi − {p},
then since gcd(mi, |clG(z)|) = 1, we deduce that CG(z) contains every q-element of G (up to

conjugation). Also, |S| | |G/Z(G)| and hence, G contains some non-central q-elements. Let w be

a non-central q-element of CG(z). Then by Lemma 2.2(i), |clG(z)| = |S|
mi

, |clG(w)| divide |clG(zw)|,
so maximality and minimality of |S|

mi
in cs(S) = cs(G) forces |clG(w)| = |clG(zw)| = |clG(z)| = |S|

mi
.

Now let u be a non-central p-element of G. Since |clG(w)| = |S|
mi

and p ∈ πi, we have CG(w)

contains a p-Sylow subgroup of G, so we can assume that u ∈ CG(w). Thus by Lemma 2.2(i),

|clG(w)| = |S|
mi

, |clG(u)| divide |clG(uw)|, so maximality and minimality of |S|
mi

in cs(S) = cs(G)

forces |clG(u)| = |clG(uw)| = |clG(u)| = |S|
mi

. The same reasoning as above shows that for every

non-central πi-element x of a prime power order, |clG(x)| = |S|
mi

. Also since every non-central πi-

element x of G can be written as a product of some πi-elements of the prime power orders which

their orders are co-prime and at least one of them is non-central, by Lemma 2.2(i), |S|
mi

| |clG(x)|.
Thus maximality of |S|

mi
in cs(G) by divisibility forces |clG(x)| = |S|

mi
, as desired.

Now let πi = {p}. Since gcd(p, |clG(z)|) = 1, we deduce that CG(z) contains a p-Sylow subgroup

P of G and hence, z ∈ Z(P ) − Z(G). If there exists a non-central p-element u of G such that

|clG(u)| ≠ |S|
mi

, then Lemma 2.4(ii) shows that mi | |clG(u)| and hence,

(2.1) |G/Z(G)|p = |CG(u)/Z(G)|p|clG(u)|p > |S|p,

because u ∈ CG(u) − Z(G). On the other hand, our assumption implies that if y is a non-central

π′
i-element of G, then |clG(y)| ≠ |S|

mi
. Thus Lemma 2.4(ii) shows that mi | |clG(y)|. Also by (2.1),

p | |CG(y)/Z(G)|, so CG(y) contains a non-central p-element v. Thus Lemma 2.2(i) shows that

|clG(y)|, |clG(v)| | |clG(yv)|, so mi | |clG(yv)| and hence, |clG(v)| ̸= |S|
mi

. Consequently, Lemma

2.4(ii) forces mi | |clG(v)|. This shows that |clG(v)|p = |clG(vy)|p = |clG(y)|p = |mi|p = |S|p and

hence, |CG(v)|p = |CG(vy)|p = |CG(y)|p ≥ |G/Z(G)|p/|S|p ̸= 1, by (2.1). On the other hand,

Lemma 2.2(i) yields that CG(vy) = CG(v) ∩ CG(y) ≤ CG(v), CG(y) and without loss of generality,

we can assume that CP (vy) ∈ Sylp(CG(vy)). Thus the facts that “CG(vy) ≤ CG(v), CG(y) and

|CG(vy)|p = |CG(v)|p = |CG(y)|p” guarantee that CP (v) = CP (yv) = CP (y). But v is a central
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p-element in CG(vy), so v ∈ CP (vy) ≤ P . Therefore, Z(P ) ≤ CP (v) and hence, z ∈ Z(P ) ≤ CP (y).

Note that gcd(O(y), p) = 1. Thus Lemma 2.2(i) gives |clG(y)|, |clG(z)| | |clG(yz)|, so the above

statements show that mi,
|S|
mi

| |clG(yz)|. Therefore, |S| | |clG(yz)| and consequently, |clG(yz)| ̸∈
cs(S), which is a contradiction. This contradiction shows that for every non-central πi-element

u ∈ G, |clG(u)| = |S|
mi

, as wanted in (i).

Now let x̄ be a πi-element of Ḡ. So there exists a non-central πi-element y ∈ G such that

x̄ = ȳ. Therefore, (i) shows that |clG(y)| = |S|
mi

. Fix CḠ(ȳ) = C/Z(G). Note that CG(y) is a normal

subgroup in C, because for every g ∈ C, (ḡ)−1ȳḡ = ȳ, so there exists z ∈ Z(G) such that g−1yg = yz

and hence, for every h ∈ CG(y), (g
−1hg)−1y(g−1hg) = y which means that g−1hg ∈ CG(y). If there

exists a π′
i-element ḡ ∈ CḠ(ȳ), then we can assume that g is a π′

i-element of G and g−1yg = yz,

for some z ∈ Z(G). Since O(y) = O(yz) = lcm(O(y), O(z)), we get that z is a πi-element of

Z(G). Also, ygy−1 = gz and hence, O(g) = O(gz) = lcm(O(g), O(z)), so O(z) | O(g). This forces

z = 1 and hence, g ∈ CG(y). If there exists g ∈ G such that gcd(O(g),mi), gcd(O(g), |S|mi
) ̸= 1

and ḡ ∈ CḠ(ȳ), then we have g = g1g2 = g2g1, where g1 is a πi-element and g2 is a π′
i-element

of G. Therefore, ȳ ∈ CḠ(ḡ1) ∩ CḠ(ḡ2). So the above statements show that g2 ∈ CG(y). Also,

if g1 ̸∈ CG(y), then we have g1 ∈ C − CG(y) and hence, p | |C/CG(y)|, for some p ∈ πi. Since

C ≤ G, we get that |C/CG(y)| | |clG(y)| = |S|
mi

, so p | |S|
mi

, which is a contradiction. This shows

that g1 ∈ CG(y). The same reasoning shows that every πi-element of C lies in CG(y) and hence,

C = CG(y), so |clḠ(ȳ)| = |clG(y)| = |S|
mi

, as wanted in (ii). □

Remark 2.7. Let q ∈ π(S) and Q be a q-Sylow subgroup of S. Then since S is simple and

Z(Q) ̸= 1, we deduce that there exists a non-trivial element α ∈ cs(S) = cs(G) such that q ∤ α, so
if α = |clG(y)| for some y ∈ G, then y is a non-central element of G and CG(y) contains a q-Sylow

subgroup of G.

Theorem 2.8. (i) |G/Z(G)| = |S|.
(ii) OC(G/Z(G)) = OC(S).

Proof. (i) By Lemma 2.5, |S| | |G/Z(G)|. Now let there exist q ∈ π(G/Z(G)) − π(S). Then since

q ∤ |S|, we get that q does not divide any conjugacy class sizes of G and hence, Lemma 2.1 forces

the q-Sylow subgroup of G to be a subgroup of Z(G), so q ̸∈ π(G/Z(G)), which is a contradiction.

This yields that π(G/Z(G)) = π(S). If q ∈ π(G/Z(G)) = π(S) such that |G/Z(G)|q ̸= |S|q, then
we have |G/Z(G)|q > |S|q, by Lemma 2.5. If q ̸∈ π2, then since for a non-central π2-element y ∈ G,

q | |CG(y)/Z(G)|, we can assume that CG(y) contains a non-central q-element z. But |clG(y)| = |S|
m2

,

by Lemma 2.6(i) and hence, Lemmas 2.2(i) and 2.4(i) show that |clG(z)| = |clG(yz)| = |S|
m2

, so

CG(y) = CG(z). Now let Q be a q-Sylow subgroup of G containing z. Then Remark 2.7 forces

CG(Q) to contain a non-central element w. Without loss of generality, we can assume that w

is of a prime power order. Since CG(Q) ≤ CG(z) = CG(y), we get that w ∈ CG(y). On the
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other hand, q ∤ |clG(w)| and hence, |clG(w)| ̸= |S|
m2

, so it can be concluded from Lemmas 2.4(ii)

and 2.6(i) that m2 | |clG(w)| and w is a π′
2-element of CG(y). Thus Lemma 2.2(i) shows that

|clG(w)|, |clG(y)| = |S|
m2

| |clG(wy)| and hence, |S| | |clG(wy)|, so |clG(wy)| ̸∈ cs(S) = cs(G), which

is a contradiction. This guarantees that if q ̸∈ π2, then |G/Z(G)|q = |S|q. Now assume that

q ∈ π2. By considering the elements of cs(S) = cs(G), we can find a non-central element v ∈ G of

a prime power order such that |clG(v)| = |S|
k1
, where k1 is a divisor of m1. By Lemma 2.6(i), we

can assume that v is a π1-element of G and by our assumption, q | |CG(v)/Z(G)| and hence, we

can assume that CG(v) contains a non-central q-element x. Since q ∈ π2, we conclude from Lemma

2.6(i) that |clG(x)| = |S|
m2

and by Lemma 2.2(i), |clG(x)|,|clG(v)| | |clG(vx)|, so |S| | |clG(vx)| and
hence, |clG(vx)| ̸∈ cs(S) = cs(G), which is a contradiction. This shows that |G/Z(G)|q = |S|q, as
wanted in (i). Now we are going to prove (ii). Let 1 ≤ i, j ≤ t(S) such that i ̸= 1, j. If there

exist p ∈ πi and q ∈ πj such that p and q are adjacent in GK(Ḡ), then Ḡ contains a p-element

x̄ such that q | |CḠ(x̄)|. Also by Lemma 2.6(ii), |clḠ(x̄)| =
|S|
mi

, so |clḠ(x̄)|q = |S|q = |Ḡ|q, and
hence, |CḠ(x̄)|q = 1, which is a contradiction. Thus p and q are not adjacent in GK(Ḡ). On

the other hand, (i) and Lemma 2.6(ii) show that the order of the centralizer of every non-trivial

πi-element of Ḡ is mi and hence, πi is a connected component of Ḡ. Now let p, q ∈ π1 such that

p and q are adjacent in GK(S). So cs(S) = cs(G) contains an element α such that |α|p < |S|p
and |α|q < |S|q. Let y be an element of G such that |clG(y)| = α. Then since |G/Z(G)| = |S|, we
get that p, q | |CG(y)/Z(G)| and since CG(y)/Z(G) ≤ CḠ(ȳ) ≤ CḠ(ȳ

m), for every natural number

m, we can assume that O(ȳ) is a prime power and p, q | |CḠ(ȳ)|. So if p or q | O(ȳ), then p and

q are adjacent in GK(Ḡ) and if O(ȳ) is a power of a prime r, where r ̸∈ {p, q}, then we have p, r

and q, r are adjacent in GK(Ḡ). This shows that there exists a path between p and q and hence,

for every path in GK(S) between elements of π1, there exists a path in GK(Ḡ) between elements

of π1, so since πjs, for j ≥ 2, are connected components of GK(Ḡ), we get that π1 is a connected

component of GK(Ḡ), too. Also |Ḡ| = |S| and hence, OC(Ḡ) = OC(S), as desired in (ii). □

Definition 2.9. [17] For a group H, the number of isomorphism classes of groups with the same

set OC(H) of order components is denoted by h(OC(H)). If h(OC(H)) = k, then H is called

k-recognizable by the set of its order components and if k = 1, then H is simply called OC-

characterizable or OC-recognizable.

In many papers, it has been shown that many finite simple groups with disconnected prime

graphs are OC-characterizable, for example see [11]-[29].

Corollary 2.10. If S is OC-characterizable, then G/Z(G) ∼= S.

Proof. Since by Theorem 2.8(ii), OC(Ḡ) = OC(S), the result follows from the OC-recognizability

of S. □
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Definition 2.11. [31] A central extension of a group H is a group K such that K/Z(K) ∼= H. A

central extension of H which is perfect is called a covering group of H. Also, if K is a covering

group of H such that K ̸∼= H, then K is named a proper covering group of H. It was shown by

Schur that there is a unique covering group of the maximal order, called the full covering group

of H. The center of the full covering group of H is denoted by M(H) and it is called the Schur

multiplier of H.

Theorem 2.12. If S is OC-characterizable and there is no proper covering group of S with the

same cs as cs(S), then G ∼= S × Z(G).

Proof. On the contrary, suppose that G is the smallest group such that cs(S) = cs(G) and G ̸∼=
S × Z(G). Then since by Corollary 2.10, G/Z(G) ∼= S and G′Z(G)/Z(G) is a normal subgroup

of G/Z(G), we get that G′Z(G)/Z(G) = 1 or G/Z(G). Also G is non-solvable and hence, the

former case can not occur. Thus G′Z(G)/Z(G) = G/Z(G) and hence, G′Z(G) = G, so Lemma

2.2(ii) shows that cs(S) = cs(G) = cs(G′Z(G)) = cs(G′). Thus our assumption forces G′ = G, so

G is perfect and hence, G is a proper covering group of S with the same cs as cs(S). This is a

contradiction with our assumption. Therefore G ∼= S × Z(G), as desired. (Note that some part of

this proof is similar to that of in [8].) □

Theorem 2.13. If S is OC-characterizable and M(S) = 1, then G ∼= S × Z(G).

Proof. It follows immediately from Theorem 2.12. □

Theorem 2.14. If S is one of the groups in Table 1 (up to isomorphism), then G ∼= S × Z(G).

Proof. Since S is OC-characterizable, by the references stated in the third column of Table 1, we

deduce from Theorem 2.13 that if M(S) = 1, then G ∼= S × Z(G), as desired. In the following, we

are going to study the remaining cases, with the help of [1]. For this aim let H be a covering group

of S such that S ̸∼= H. Then considering M(S) shows that:

• If S = M12, then H = 2.M12 and hence, 792 ∈ cs(H)− cs(S), so cs(H) ̸= cs(S).

• If S = J2, then H = 2.J2 and hence, 5040 ∈ cs(H)− cs(S), so cs(H) ̸= cs(S).

• If S = HS, then H = 2.HS and hence, 30800 ∈ cs(H)− cs(S), so cs(H) ̸= cs(S).

• If S = RU , then H = 2.RU and hence, 57002400 ∈ cs(H)− cs(S), so cs(H) ̸= cs(S).

• If S = J3, then H = 3.J3 and hence, 620160 ∈ cs(H)− cs(S), so cs(H) ̸= cs(S).

• If S = McL, then H = 3.McL and hence, 99792000 ∈ cs(H)− cs(S), so cs(H) ̸= cs(S).

• If S = Suz, then H = 2.Suz, 3.Suz or 6.Suz and hence, 4670265600 or 415134720 ∈
cs(H)− cs(S), so cs(H) ̸= cs(S).

• If S = M22, then H = 2.M22, 3.M22, 4.M22, 6.M22 or 12.M22 and hence, 27720 ∈ cs(S) −
cs(H), 12320 ∈ cs(S)− cs(H) or 2310 ∈ cs(H)− cs(S), so cs(H) ̸= cs(S).
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• If S = Suz(8), then H = 2.Suz(8) or H = 4.Suz(8) and hence, 455 ∈ cs(S) − cs(H), so

cs(H) ̸= cs(S).

• If S = G2(3), then H = 3.G2(3) and hence, 2184 ∈ cs(H)− cs(S), so cs(H) ̸= cs(S).

• If S = G2(4), then H = 2.G2(4) and hence, 131040 ∈ cs(H)− cs(S), so cs(H) ̸= cs(S).

• If S = PSLn(q), where n > 2 is prime, (n, q) ̸= (3, 2), (3, 4) and gcd(n, q−1) = n, then H =

n.PSLn(q) ∼= SLn(q). Let GF (q) be a field with q elements and (GF (q))∗ = GF (q)− {0}.
Then (GF (q))∗ is a cyclic group of order q − 1. Since n | q − 1, we can assume that

(GF (q))∗ contains an element ξ of the order n. Set x = diag(1, ξ, ξ2, . . . , ξn−1) ∈ SLn(q)

and Z = Z(SLn(q)), where diag(1, ξ, ξ2, . . . , ξn−1) means a diagonal matrix with numbers

1, ξ, ξ2, . . . , ξn−1 on a diagonal. We can check at once that CPSLn(q)(xZ) = ⟨τ1Z⟩⋊ ⟨τ2Z⟩,
where for a1, . . . , an−1 ∈ (GF (q))∗, τ1 = diag(a1, . . . , an−1, (a1 · · · an−1)

−1) and

τ2 =


0 1 · · · 0

0 0 · · · 0

0 0 · · · 1

1 0 · · · 0

 ,

and hence, |clPSLn(q)(xZ)| = |SLn(q)|
n(q−1)n−1 ∈ cs(PSLn(q)). We claim that |SLn(q)|

n(q−1)n−1 ̸∈ cs(SLn(q)).

If not, then there exists y ∈ SLn(q) such that |CSLn(q)(y)| = n(q − 1)n−1. Since y ∈
CSLn(q)(y) and gcd(|CSLn(q)(y)|, q) = 1, we get that y is a semi-simple element of SLn(q),

so there exists a maximal torus T of SLn(q) containing y. Thus T ≤ CSLn(q)(y) and

hence, |T | divides n(q − 1)n−1. This forces |T | = (q − 1)n−1 and hence, we can as-

sume that y = diag(y1, . . . , yn−1, yn = (y1 · · · yn−1)
−1) for some y1, . . . , yn−1 ∈ (GF (q))∗.

Since |CSLn(q)(y)| = n(q − 1)n−1, we can check at once that yis are distinct and hence,

CSLn(q)(y) = T , so |CSLn(q)(y)| = (q − 1)n−1, which is a contradiction. This shows that

cs(S) ̸= cs(H).

• If S = PSUn(q), where n > 2 is prime, (n, q) ̸= (3, 2), (5, 2) and gcd(n, q + 1) = n,

then H = n.PSUn(q) ∼= SUn(q) and hence, by replacing GF (q) with GF (q2) in the case

S = PSLn(q), we can see that cs(H) ̸= cs(S).

The above consideration shows that if S is one of the groups mentioned in Table 1 with M(S) ̸= 1,

then there is no proper covering group of S with the same cs as cs(S) and hence, Theorem 2.12

forces G ∼= S ×Z(G), as desired. Note that if S ∼= PSL3(2) ∼= PSL2(7), then it has been shown in

[8] that G ∼= S × Z(G). So theorem follows. □
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Table 1.

Group S Conditions References |M(S)|
for OC-recognition

M11,M23,M24 [14] 1

J1, J4,He,HN,Ly, Th

Co2, Co3, F i23,M

M12, J2,HS,RU [14] 2

J3,McL [14] 3

Suz [14] 6

M22 [14] 12

2G2(3
2n+1), 2F4(2

2n+1) n ≥ 1 [13] 1

Sz(22n+1) n ≥ 2 1

Sz(8) [13] 4

G2(q) q ̸= 2, 3, 4 [12],[15] 1

G2(3) [12],[15] 3

G2(4) [12],[15] 2

E8(q) [16] 1

E6(q) gcd(3, q − 1) = 1 [29] 1

F4(q) q > 2 [21],[23] 1

PSLn(q) n > 2 is prime and [26] gcd(n, q − 1)

(n, q) ̸= (3, 2), (3, 4)

PSL3(2) ∼= PSL2(7) [8] 2

PSUn(q) n > 2 is prime [24] gcd(n, q + 1)

and (n, q) ̸= (3, 2),

(5, 2)

Cn(2
m) either n = 2 and m > 2 or [22] 1

n = 2u ≥ 4 [25]

Dn+1(2) n > 3 is prime [19] 1

2Dn(2
m) either m = 1 [20] 1

and n = 2u + 1 ≥ 5

or n = 2u ≥ 4 [27]

2E6(q) gcd(3, q + 1) = 1 and q ̸= 2 [28] 1

3D4(q
3) [11] 1
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