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Abstract. Graham Higman published two important papers in 1960. In the first of these papers he

proved that for any positive integer n the number of groups of order pn is bounded by a polynomial

in p, and he formulated his famous PORC conjecture about the form of the function f(pn) giving the

number of groups of order pn. In the second of these two papers he proved that the function giving

the number of p-class two groups of order pn is PORC. He established this result as a corollary to

a very general result about vector spaces acted on by the general linear group. This theorem takes

over a page to state, and is so general that it is hard to see what is going on. Higman’s proof of this

general theorem contains several new ideas and is quite hard to follow. However in the last few years

several authors have developed and implemented algorithms for computing Higman’s PORC formulae

in special cases of his general theorem. These algorithms give perspective on what are the key points

in Higman’s proof, and also simplify parts of the proof.

In this note I give a proof of Higman’s general theorem written in the light of these recent develop-

ments.

1. Introduction

Graham Higman wrote two immensely important and influential papers on enumerating p-groups

in the late 1950s. The papers were entitled Enumerating p-groups I and II, and were published in the

Proceedings of the London Mathematical Society in 1960 (see [4] and [5]). In the first of these papers
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Higman proves that if we let f(pn) be the number of p-groups of order pn, then

p
2
27

n2(n−6) ≤ f(pn) ≤ p(
2
15

+εn)n3
,

where εn tends to zero as n tends to infinity. Higman also formulated his famous PORC conjecture

concerning the form of the function f(pn). He conjectured that for each n there is an integer N

(depending on n) such that for p in a fixed residue class modulo N the function f(pn) is a polynomial

in p. For example, for p ≥ 5 the number of groups of order p6 is

3p2 + 39p+ 344 + 24 gcd(p− 1, 3) + 11 gcd(p− 1, 4) + 2 gcd(p− 1, 5).

(See [7].) So for p ≥ 5, f(p6) is one of 8 polynomials in p, with the choice of polynomial depending

on the residue class of p modulo 60. The number of groups of order p6 is Polynomial On Residue

Classes. In [5] Higman proved that, for any given n, the function enumerating the number of p-class

2 groups of order pn is a PORC function of p. He obtained this result as a corollary to a very general

theorem about vector spaces acted on by the general linear group. As another corollary to this general

theorem, he also proved that for any given n the function enumerating the number of algebras of

dimension n over the field of q elements is a PORC function of q.

In recent years several authors have developed algorithms for computing Higman’s PORC formulae

in various applications of his general theorem. Witty [11] wrote a thesis describing an algorithm for

computing the number of r-generator p-class two groups, and I have published a series of papers on

this topic and on computing the numbers of non-associative algebras of dimension d ([8], [9], [10]).

Eick and Wesche [2] describe an algorithm for computing the numbers of associative algebras over a

finite field which are nilpotent of class 2, and this algorithm has been implemented in GAP. These

algorithms simplify parts of Higman’s theory, and have given me a better understanding of his general

theorem and its proof. In this note I offer my insights into Higman’s remarkable theorem.

2. Algebraic families of groups

Higman introduces the notion of an algebraic family of groups. Let Q be the rational field and

suppose we have a homomorphism

φ : GL(m,Q) → GL(n,Q)

with the property that if A is a matrix in GL(m,Q) then φ(A) is a matrix in GL(n,Q) with entries

of the form r
s where r and s are polynomials over Q in the entries of A. (Of course the polynomials

r, s should depend only on φ and not on A.) Paraphrasing Higman slightly, he writes “Of course, the

least common multiple of the denominators s is a power of det(A)”. This stumped me for quite a

while, but eventually I consulted an expert in algebraic groups who assured me that this was a well

known, basic fact. In the end I managed to find my own elementary proof of this, but I have decided

not to include my proof in this note. So we assume that the entries in φ(A) are of the form r
det(A)k

where r is a polynomial over Q in the entries of A.
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Higman’s idea is that if K is any field whose characteristic does not divide the denominator of any of

the coefficients in the polynomials giving the entries in φ(A) then the coefficients in these polynomials

can be interpreted as elements of the prime subfield of K so that φ defines a homomorphism

φK : GL(m,K) → GL(n,K).

Higman calls the collection of images φK(GL(m,K)) an algebraic family of groups.

Now let φ : GL(m,Q) →GL(n,Q) give an algebraic family of groups, and let P be the (finite)

set of primes which divide denominators of coefficients in the polynomials giving the entries in φ(A).

Suppose that K is a finite field of order q, where the characteristic of K is not contained in P . Let V

be a vector space of dimension n over K. Then φK gives us an action of GL(m,K) on V . Higman [5]

proves the following theorem.

Theorem 2.1. (a) The number of orbits of V under the action of GL(m,K), considered as a function

of q, is PORC.

(b) For each integer k with 0 ≤ k ≤ n, the number of orbits of GL(m,K) on subspaces of V of

dimension k, considered as a function of q, is PORC.

Actually Higman’s algebraic families of groups are more general than this, as they are given by

homomorphisms

φ : GL(m1,Q)× GL(m2,Q)× · · · × GL(mr,Q) → GL(n,Q).

It may be that Higman’s main reason for this generalization is that he proves (b) (for r = 1) by

considering the action of GL(k,K)×GL(m,K) on the space of k × n matrices, with GL(k,K) acting

on the left by matrix multiplication, and GL(m,K) acting on the right via φK . So to prove (b) for

r = 1 he proves (a) for r = 2, and more generally to prove (b) for a direct product of r general linear

groups he proves (a) for a direct product of r+1 general linear groups. The proof of Higman’s theorem

given below avoids this complication, so I will restrict my attention to the case r = 1. Nevertheless

the proof given here can easily be adapted to prove Theorem 2.1 for Higman’s more general algebraic

families, the only difference being that the notation would be more complicated.

3. Two examples of algebraic families of groups

3.1. GL(V ) acting on V ∧V . Suppose that V is a vector space of dimension n over a field K. Then

there is a natural action of GL(V ) on the exterior square V ∧ V , which we can describe as follows.

Suppose that V has basis v1, v2, . . . , vn over K, and let g ∈GL(V ) have matrix A = [aij ] with

respect to this basis, so that vig =
∑

j aijvj . Then V ∧V has a basis consisting of the elements vi ∧ vj

with i < j, and

(vi ∧ vj)g =
∑
k,m

aikajm(vk ∧ vm) =
∑
k<m

(aikajm − aimajk)(vk ∧ vm).
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So the matrix giving the action of g on V ∧ V with respect to the basis vi ∧ vj with i < j has entries

of the form aikajm − aimajk. We have a homomorphism

φ : GL(n,K) → GL(

(
n

2

)
,K)

and if A ∈GL(n,K) then the entries in φ(A) are integer polynomials in the entries of A. So we have

an algebraic family of groups. Theorem 2.1 implies that if K is a field of order q then the number of

orbits of GL(n,K) on V ∧ V is PORC as a function of q, as is the number of orbits of GL(n,K) on

subspaces of V ∧ V of dimension k (0 ≤ k ≤
(
n
2

)
).

3.2. Algebras over a field K. Higman’s general theorem also implies that for every dimension m

the number of algebras of dimension m over a field K of order q is a PORC function of q. (See [9].) By

“algebra” we mean a vector space with a bilinear product. There is no requirement that the product

satisfy any other condition such as associativity. If B is an algebra of dimension m over K, and if we

pick a basis v1, v2, . . . , vm for B as a vector space over K then for each pair of basis elements vi, vj we

can express the product vivj as a linear combination

vivj =
∑
k

λijkvk

for some scalars λijk ∈ K. These scalars are structure constants for the algebra B, and completely

determine B. If we pick another basis w1, w2, . . . , wm, and if

wiwj =
∑
k

µijkwk

then we obtain another set of structure constants µijk. We can express the elements of the second

basis as linear combinations of elements of the first basis, and vice versa:

wi =

m∑
j=1

ajivj (1 ≤ i ≤ m),

vj =

m∑
k=1

bkjwk (1 ≤ j ≤ m),

where [aji] and [bkj ] are m×m matrices over K which are inverse to each other. So

wiwj =

m∑
r,s=1

ariasjvrvs

=

m∑
r,s,t=1

ariasjλrstvt

=
m∑

r,s,t,k=1

ariasjλrstbktwk.
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It follows that

µijk =

n∑
r,s,t=1

ariasjλrstbkt.

If we think of the sets of structure constants as vectors in an m3 dimensional vector space over K

then this gives us a homomorphism from GL(m,K) into GL(m3,K) where the image of a matrix A

in GL(m,K) has entries of the form f
detA where f is an integer polynomial in the entries of A. Two

sets of structure constants give isomorphic algebras if and only if they lie in the same orbit under the

action of GL (m,K), and so Theorem 2.1 (a) implies that the number of m-dimensional algebras over

K, considered as a function of q = |K|, is PORC.

4. Diagonal matrices in GL(m,Q)

Let φ : GL(m,Q) →GL(n,Q) give an algebraic family of groups. If A ∈GL(m,Q) then the entries

in φ(A) have the form r
det(A)k

where r is a polynomial over Q in the entries of A, and we let P be the

finite set of primes which divide denominators of coefficients in the polynomials r. Let R be the ring

of rationals of the form a
b where only primes in P divide b.

Theorem 4.1. There is a matrix Q with entries in R and with detQ = ±1 such that if A is a diagonal

matrix in GL(m,Q) then Q−1φ(A)Q is diagonal. Furthermore, if A has eigenvalues λ1, λ2, . . . , λm

then φ(A) has eigenvalues of the form λn1
1 λn2

2 · · ·λnm
m for some integers ni.

To my mind this is the cleverest and trickiest part of Higman’s proof of Theorem 2.1. But note

that in the case of the two examples given in Section 3 there is nothing to prove. In the first example

φ(A) is diagonal with eigenvalues λiλj (i < j), and in the second example φ(A) is diagonal with

eigenvalues
λiλj

λk
(i, j, k = 1, 2, . . . ,m). Similarly in Eick and Wesche’s algorithm [2] to compute the

numbers of class two associative algebras they consider the action of GL(V ) on V ⊗ V , and in this

case if A is diagonal with eigenvalues λ1, λ2, . . . , λm then φ(A) is diagonal with eigenvalues λiλj

(i, j = 1, 2, . . . ,m). Of course this is only true if we choose the “right” basis for V ⊗ V . Theorem 4.1

implies that if we have an algebraic family of groups giving an action of GL(m,Q) on a vector space

W , then we can always choose a basis of W with respect to which diagonal matrices in GL(m,Q) act

diagonally on W .

Let A ∈GL(m,Q) be a diagonal matrix with eigenvalues λ1, λ2, . . . , λm. The entries in φ(A) are

R-linear combinations of products λn1
1 λn2

2 · · ·λnm
m with ni ∈ Z. Let λni1

1 λni2
2 · · ·λnim

m (1 ≤ i ≤ k) be the

distinct products of eigenvalues of A and their inverses which occur in φ(A). We can write

φ(A) =
k∑

i=1

Eiλ
ni1
1 λni2

2 · · ·λnim
m ,
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where E1, E2, . . . , Ek are n×nmatrices with entries in R. If we let B be a diagonal matrix in GL(m,Q)

with eigenvalues µ1, µ2, . . . , µm then

φ(B) =
k∑

i=1

Eiµ
ni1
1 µni2

2 · · ·µnim
m

and

φ(AB) =

k∑
i=1

Ei(λ1µ1)
ni1(λ2µ2)

ni2 · · · (λmµm)nim .

Since φ(A)φ(B) = φ(AB) for all λ1, λ2, . . . , λm, µ1, µ2, . . . , µm ∈ Q \ {0} this implies that EiEj = 0

for all i ̸= j and that E2
i = Ei for all i.

So the matrices E1, E2, . . . , Ek can be simultaneously diagonalized. This means that we can find a

non-singular n× n matrix C such that every column of C is an eigenvector with eigenvalue 0 or 1 for

each of E1, E2, . . . , Ek. We can take the entries in C to be integers. Since EiEj = 0 for i ̸= j and since

φ(A) is non-singular, each column of C has eigenvalue 1 for exactly one of the matrices E1, E2, . . . , Ek.

We can order the columns of C so that the first few columns are eigenvectors with eigenvalue 1 for E1,

so that the next few columns are eigenvectors with eigenvalue 1 for E2, and so on. For i = 1, 2, . . . , n

let ei be the column vector with 1 in the ith place, and 0 in every other place.

We consider elementary row operations on C of the following three forms:

(1) Swap two rows.

(2) Subtract an integer multiple of one row from another.

(3) Multiply a row by −1.

If a is the greatest common divisor of the entries in the first column of C then we can apply a

sequence of row operations to reduce the first column of C to ae1. Then we can apply a sequence of

row operations to rows 2, 3, . . . , n to reduce the second column of C to be1+ ce2 for some b, c. Next we

apply a sequence of row operations to rows 3, 4, . . . , n to reduce the third column to de1 + ee2 + fe3

for some d, e, f . Continuing in this way we eventually reduce C to an upper triangular integer matrix.

Applying this sequence of row operations to C corresponds to premultiplying C by a sequence of

elementary matrices. Multiplying these elementary matrices together we obtain an integer matrix

Q with detQ = ±1 such that QC is upper triangular. Let QC = D and let Fi = QEiQ
−1 for

i = 1, 2, . . . , k. Then FiFj = 0 for i ̸= j and F 2
i = Fi for all i. Let Vi = ker(Fi − 1) and let dimVi = di

for i = 1, 2, . . . , k. Then the first d1 columns of D form a basis for V1, the next d2 columns of D form

a basis for V2, and so on. However

• the first d1 columns of D span the same space as e1, e2, . . . , ed1 ,

• the next d2 columns span the same space as

ed1+1 + v1, ed1+2 + v2, . . . , ed1+d2 + vd2

for some v1, v2, . . . , vd2 ∈ V1,

http://dx.doi.org/10.22108/ijgt.2018.112574.1498
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• the next d3 columns span the same space as

ed1+d2+1 + w1, ed1+d2+2 + w2, . . . , ed1+d2+d3 + wd3

for some w1, w2, . . . , wd3 ∈ V1 + V2,

• and so on.

Now let E be the n× n matrix with columns

e1, e2, . . . , ed1 , ed1+1 + v1, . . . , ed1+d2 + vd2 , ed1+d2+1 + w1, . . . , ed1+d2+d3 + wd3 , . . . ,

so that the first d1 columns of E form a basis for V1, the next d2 columns form a basis for V2, and so

on. Then

ed1+1 + v1 = F2(ed1+1 + v1) = F2ed1+1

since F1F2 = 0. All the entries in the matrix F2 lie in R, and so all the entries in v1 lie in R. Similarly,

all the entries in v2, v3, . . . , vd2 , w1, . . . , wd3 , . . . lie in R. So E is an upper triangular matrix with 1’s

down the diagonal and with all the entries above the diagonal lying in the ring R. It follows that Q−1E

is a matrix with entries in R and with determinant ±1, and such that E−1Qφ(A)Q−1E is diagonal.

This completes the proof of Theorem 4.1.

From now on we replace φ : GL(m,Q) →GL(n,Q) by φ∗, where

φ∗(A) = E−1Qφ(A)Q−1E.

In other words, we assume that φ(A) is diagonal whenever A is diagonal.

5. Matrices in Jordan form

For each integer k ≥ 1 let Jk be the k × k Jordan matrix with 1’s down the diagonal and 1’s down

the superdiagonal. Higman considers a non-singular matrix to be in Jordan form if it can be expressed

in the form

(5.1) λ1Jk1 ⊕ λ2Jk2 ⊕ · · · ⊕ λrJkr

for some eigenvalues λ1, λ2, . . . , λr and some integers k1, k2, . . . , kr. (This is possible since the eigen-

values are non-zero.) So let A ∈GL(m,Q) be a matrix of form (5.1). For the moment assume that the

eigenvalues λ1, λ2, . . . , λr are all distinct. Actually, it helps to think of λ1, λ2, . . . , λr as indeterminates.

Let

Λ = λ1Ik1 ⊕ λ2Ik2 ⊕ · · · ⊕ λrIkr ,

J = Jk1 ⊕ Jk2 ⊕ · · · ⊕ Jkr .

Then A = ΛJ = JΛ. By Theorem 4.1 we may suppose that φ(Λ) is diagonal, with eigenvalues

which are products of the eigenvalues λ1, λ2, . . . , λr and their inverses. Suppose that the products that

http://dx.doi.org/10.22108/ijgt.2018.112574.1498
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arise as eigenvalues of φ(Λ) are m1,m2, . . . ,ms, and let Q be a permutation matrix chosen so that

L = Q−1φ(Λ)Q = m1It1 ⊕m2It2 ⊕ · · · ⊕msIts

for some positive integers t1, t2, . . . , ts. Let M = Q−1φ(J)Q. Then LM = ML and so

M = E1 ⊕ E2 ⊕ · · · ⊕ Es

where Ei is a ti× ti matrix for i = 1, 2, . . . , s, and where the entries in Ei all lie in R . The matrix J is

conjugate to all its power J i (i = 1, 2, . . .) and soM is also conjugate to all its powers. This implies that

1 is the only eigenvalue ofM . And this implies that we can find invertible matricesX1, X2, . . . , Xs with

rational entries such that X−1
i EiXi is in Jordan form (with 1 as the only eigenvalue) for i = 1, 2, . . . , s.

Let

X = X1 ⊕X2 ⊕ · · · ⊕Xs.

So

(5.2) X−1Q−1φ(A)QX = LX−1MX

is in Jordan form. Note that the matrices Q,X do not depend on the values of λ1, λ2, . . . , λr. Fur-

thermore LX−1MX is in Jordan form even if λ1, λ2, . . . , λr are not all distinct. Now suppose that p

is a prime which does not divide the denominator of any of the entries in X and does not divide the

numerator of detX. If K is a finite field of characteristic p then we can interpret X and Q as non

singular matrices with entries in the prime subfield of K, so equation (5.2) also gives the Jordan form

of φK(A) if A is a matrix in GL(m,K) of the form (5.1). Note that the sizes of the Jordan blocks in

X−1MX and the number of blocks of each size depends only on the integers k1, k2, . . . , kr. Also the

eigenvalues of φK(A) corresponding to the Jordan blocks in X−1MX have the form

mi = λni1
1 λni2

2 · · ·λnir
r

for some integers nij which depend only on k1, k2, . . . , kr.

There will be a finite number of “exceptional” characteristics which divide one of the denominators

of the entries in X, or divide the numerator of detX. Let K be a finite field with exceptional

characteristic p. Let A be a matrix in GL(m,K) of the form (5.1). We follow the same analysis as

above and obtain the same expression

Q−1φK(A)Q = LM = ML

as above. Now Jpm = Im, and this implies that φK(Jpm) = In. If λ is an eigenvalue of φK(J) then

λpm is an eigenvalue of φK(Jpm), and so λpm = 1 which implies that λ = 1. So, just as above, we can

find invertible matrices X1, X2, . . . , Xs with entries in GF(p) such that X−1
i EiXi is in Jordan form

(with 1 as the only eigenvalue) for i = 1, 2, . . . , s. This gives the Jordan form of φK(A) for all fields

of characteristic p.
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It might be helpful to give a simple example. Let K be a field and let A = aJ2 ⊕ bJ3 for some

a, b ∈ K. If the characteristic of K is 0 or is a prime p > 3 then the Jordan form of A⊗A is

a2J1 ⊕ a2J3 ⊕ abJ2 ⊕ abJ2 ⊕ abJ4 ⊕ abJ4 ⊕ b2J1 ⊕ b2J3 ⊕ b2J5.

The exceptional characteristics are p = 2, 3. In characteristic 2 the Jordan form of A⊗A is

a2J2 ⊕ a2J2 ⊕ abJ2 ⊕ abJ2 ⊕ abJ4 ⊕ abJ4 ⊕ b2J1 ⊕ b2J4 ⊕ b2J4,

and in characteristic 3 it is

a2J1 ⊕ a2J3 ⊕ abJ3 ⊕ abJ3 ⊕ abJ3 ⊕ abJ3 ⊕ b2J3 ⊕ b2J3 ⊕ b2J3.

This example illustrates that it is much easier in practice than in theory to show for a given char-

acteristic that when A is of form (5.1) then the Jordan form of φ(A) depends only on the integers

k1, k2, . . . , kr and on the values of λ1, λ2, . . . , λr. There are only finitely many possible choices for

k1, k2, . . . , kr which sum to m. For each such choice we treat the eigenvalues λ1, λ2, . . . , λr as indeter-

minates and compute the Jordan form of φ(A) in characteristic zero. We then identify the exceptional

characteristics, and compute the Jordan form in each exceptional characteristic.

Note that this example also covers the case when a = b (in which case A⊗A has only 1 eigenvalue)

and the case a = −b (when A⊗A has two eigenvalues). In all other cases A⊗A has three eigenvalues.

6. The type of a matrix in GL(m,K)

Let K be a field, and let A be a matrix in GL(m,K). Let the primary invariant factors of A be

p1(x)
e1 , p2(x)

e2 , . . . , pk(x)
ek where p1, p2, . . . , pk are monic irreducible polynomials in K[x]. Let the

distinct irreducible polynomials which occur in the sequence p1, p2, . . . , pk be q1, q2, . . . , qt (with t ≤ k).

For 1 ≤ i ≤ t let Si be the multiset of exponents e such that qei is one of the primary invariant factors

of A. Then the type of A is the multiset of ordered pairs

{(deg q1, S1), (deg q2, S2), . . . , (deg qt, St)}.

For example, if the primary invariant factors of A are p(x)2, p(x)3, q(x), q(x), q(x)4 where p and q

are distinct monic irreducible polynomials, then the type of A is

{(deg p, {2, 3}), (deg q, {1, 1, 4})}.

(Note that repeated entries in these multisets are significant.) So the type of A records the degrees

of the different irreducible polynomials which arise in the primary invariant factors of A, together

with the multiset of exponents associated with each of these irreducible polynomials. There are only

finitely many possible types of matrices in GL(m,K). In addition if K has order q then the number

of matrices in GL(m,K) of a given type is a polynomial in q. Green [3] proves that the size of the

conjugacy class of A is a polynomial in q, with the polynomial depending only on the type of A. A

formula for this polynomial is given on page 181 of [6].
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If A is a matrix in Jordan form, and if A has the form (5.1), then the type of A depends only on

which equalities λi = λj (i < j) hold between the eigenvalues of A. And for a given characteristic the

type of φ(A) depends only on which equalities mi = mj (i < j) hold between the eigenvalues of φ(A).

Thus in the example given at the end of the last section the type of A depends only on whether a = b

or not, and the type of A⊗A depends on whether a = b or a = −b.

We want to use the results of Section 5 to compute the type of φ(A) even when the characteristic

polynomial of A does not split into linear factors, and we proceed as follows. Suppose that A ∈
GL(m,K) where K is a finite field of order q. Let L be the splitting field of the characteristic

polynomial of A. Then let B be the Jordan form of A when considered as a matrix in GL(m,L).

Suppose that p(x)e is a primary invariant factor of A, where p(x) has degree d, and where λ is a root

of p(x) in L. Then the rational canonical form of A has the companion matrix of p(x)e as one of its

blocks, and corresponding to this we have

λJe ⊕ λqJe ⊕ λq2Je ⊕ · · · ⊕ λqd−1
Je

as a sum of blocks in B. Using the results of Section 5, the Jordan form of φL(B) has the form

m1Jt1 ⊕m2Jt2 ⊕ · · · ⊕msJts

for some positive integers t1, t2, . . . , ts, and some products m1,m2, . . . ,ms of the eigenvalues of B and

their inverses. The integers t1, t2, . . . , ts depend only on the type of A and the characteristic of K.

We need to investigate the eigenvalues of B and the products m1, . . . ,ms more closely. Let the

distinct irreducible polynomials which divide the primary invariant factors of A be q1, q2, . . . , qt, and

let A have type

T = {(n1, S1), (n2, S2), . . . , (nt, St)},

where ni = deg qi. We pick a root λi of the polynomial qi for i = 1, 2, . . . , t. Then the eigenvalues of

B are {λqr

i : 1 ≤ i ≤ t, 0 ≤ r < ni}, and

B =
t⊕

i=1

⊕
j∈Si

ni−1⊕
k=0

λqk

i Jj .

The eigenvalues λi satisfy the equations

(6.1) λqni

i = λi (i = 1, 2, . . . , t).

They also satisfy the non-equations

(6.2) λqr

i ̸= λi (0 < r < ni, i = 1, 2, . . . , t),

(6.3) λqr

i ̸= λqs

j (i ̸= j, 0 ≤ r < ni, 0 ≤ s < nj).

The products m1,m2, . . . ,ms giving the eigenvalues of φL(B) are of the form

λh1
1 λh2

2 · · ·λht
t
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where h1, h2, . . . , ht are integer polynomials in q. Note that these polynomials depend only on the

type of A and on the characteristic of K. The map mi 7−→ mq
i gives a permutation of m1,m2, . . . ,ms

and we can work out this permutation using the relations (6.1). Provided we know which relations

mi = mj hold for these particular values of λ1, λ2, . . . , λt, and also know which of these relations do

not hold, then we can work out the type of φK(A). As we will see in Section 8, as well as being able

to calculate the type of φK(A) we also need to be able to calculate the dimension of the eigenspace of

φK(A) with eigenvalue 1. This is just the number of eigenvalues mi (1 ≤ i ≤ s) which are equal to 1

(for these particular values of λ1, λ2, . . . , λt).

Now suppose that µ1, µ2, . . . , µt ∈ L satisfy the relations (6.1) and the non-relations (6.2), (6.3). If

we let gi be the minimum polynomial of µi over K for i = 1, 2, . . . , t then

t⊕
i=1

⊕
j∈Si

ni−1⊕
k=0

µqk

i Jj

is conjugate to matrices in GL(m,K) with primary invariant factors

{gji : 1 ≤ i ≤ t, j ∈ Si},

and all these matrices have type T . In this sense, µ1, µ2, . . . , µt determines a conjugacy class of

matrices of type T in GL(m,K). As we range over all possible solutions µ1, µ2, . . . , µt the conjugacy

classes determined by µ1, µ2, . . . , µt range over all possible conjugacy classes of matrices of type T .

Furthermore each such conjugacy class arises the same number of times. We get the same conjugacy

class if we replace µ1, µ2, . . . , µt by ν1, ν2, . . . , νt where νi is conjugate to µi for all i. Also if (ni, Si) =

(nj , Sj) then we obtain the same conjugacy class if we swap µi and µj . We can make this precise as

follows. Write the entries (ni, Si) from T in a list

[(n1, S1), (n2, S2), . . . , (nt, St)]

and let G be the group of permutations π of {1, 2, . . . , t} such that

[(n1, S1), (n2, S2), . . . , (nt, St)] = [(n1π, S1π), (n2π, S2π), . . . , (ntπ, Stπ)].

Then as we range over all possible solutions in L of (6.1), (6.2) and (6.3) we run through all possible

conjugacy classes of elements in GL(m,K) with type T , and each conjugacy class arises

(6.4) n1n2 · · ·nt|G|

times.

To help clarify these ideas we investigate two simple examples. Let K be a finite field of order q, and

let A ∈GL(m,K) have primary invariant factors g2h3 where g and h are different monic irreducible

polynomials of degree 2. So A has type

{(2, {2}), (2, {3})}.
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Let λ be a root of g and let µ be a root of h in the splitting field L of gh over K. Then the Jordan

form of A over L is

B = λJ2 ⊕ λqJ2 ⊕ µJ3 ⊕ µqJ3.

The eigenvalues of B satisfy λq2 = λ, µq2 = µ, λ ̸= λq, µ ̸= µq, λ ̸= µ, λ ̸= µq. These equalities

and inequalities determine the type of A. (We also have inequalities λq ̸= µ, λq ̸= µq but these are

redundant.) We can run over all conjugacy classes of GL(m,K) of type {(2, {2}), (2, {3})} by running

over all possible choices of λ, µ in GF(q2) satisfying these equations and non equations, and each

conjugacy class will arise 4 times, since swapping λ and λq or µ and µq gives the same conjugacy class.

As a second example, suppose that K is a finite field of order q, and that A ∈GL(m,K) has a

single primary invariant factor g3 where g is an irreducible quadratic. So A has type {2, {3}}. If we

pick a root λ of g in GF(q2) then the Jordan form of A when considered as a matrix over GF(q2) is

λJ3 ⊕ λqJ3. The eigenvalue λ satisfies λq2 = λ, λ ̸= λq. Provided the characteristic of K is at least 5,

the Jordan form of A⊗A over GF(q2) is

λ2J1 ⊕ λ2J3 ⊕ λ2J5 ⊕ λq+1J1 ⊕ λq+1J1 ⊕ λq+1J3

⊕λq+1J3 ⊕ λq+1J5 ⊕ λq+1J5 ⊕ λ2qJ1 ⊕ λ2qJ3 ⊕ λ2qJ5.

All the eigenvalues of A⊗A lie in the set {λ2, λq+1, λ2q}, and we have

(λ2)q = λ2q, (λq+1)q = λq+1, (λ2q)q = λ2.

We also have

λ2 ̸= λq+1, λ2q ̸= λq+1,

so the type of A⊗A as a matrix overK depends on whether or not the equation λ2 = λ2q is satisfied. So

to compute the numbers of times matrices A⊗A of these two types arise as A ranges over conjugacy

classes of type {2, {3}} we need to count the numbers of choices of λ in GF(q2) which satisfy the

following two sets of equations and non-equations

λq2 = λ, λ ̸= λq, λ2 = λ2q,

λq2 = λ, λ ̸= λq, λ2 ̸= λ2q.

(We need to divide these answers by 2 to account for the fact that swapping λ and λq gives the same

conjugacy class.) The dimension of the eigenspace of A⊗ A with eigenvalue 1 is six if λq+1 = 1, and

zero otherwise.

7. Choosing elements from finite fields

Higman [5] proves the following theorem.

Theorem 7.1. The number of ways of choosing a finite number of elements from GF(qn) subject to a

finite number of monomial equations and inequalities between them and their conjugates over GF(q),

considered as a function of q, is PORC.
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Here we are choosing elements x1, x2, . . . , xk (say) from the finite field GF(qn) (where q is a prime

power) subject to a finite set of equations and non-equations of the form

xn1
1 xn2

2 · · ·xnk
k = 1

and

xn1
1 xn2

2 · · ·xnk
k ̸= 1

where n1, n2, . . . , nk are integer polynomials in the Frobenius automorphism x → xq of GF(qn). Hig-

man calls these equations and non-equations monomial. For example, as I showed in the first example

at the end of Section 6, one way of computing the number of conjugacy classes of matrices A ∈GF(q)

of type {(2, {2}), (2, {3})} is to count the number of choices of λ, µ in GF(q2) satisfying

λq2 = λ, µq2 = µ, λ ̸= λq, µ ̸= µq, λ ̸= µ, λ ̸= µq,

and then divide by 4. Of course you can write these equations and non-equations as

λq2−1 = 1, µq2−1 = 1, λq−1 ̸= 1, µq−1 ̸= 1, λµ−1 ̸= 1, λµ−q ̸= 1,

to match Higman’s notation. Higman’s proof of Theorem 7.1 involves 5 pages of homological algebra,

but a shorter more elementary proof can be found in [8] and in [10].

To prove Theorem 7.1 you actually only need to prove that the number of ways of choosing a finite

number of elements from GF(qn) subject to a finite number of monomial equations between them and

their conjugates over GF(q), considered as a function of q, is PORC. To see this suppose that we have

a set S of equations and a set T of non-equations. Let T ∗ be the set of equations obtained from T

be replacing all the ̸=’s by =’s. For each subset U ⊆ T ∗ let nU be the number of solutions to the

equations S ∪ U . Then the number of solutions to the equations S and the non-equations T is∑
U⊆T ∗

(−1)|U |nU .

In [8] and in [10] I show that to find the number of ways of choosing a finite number of elements

from GF(qn) subject to a finite number of monomial equations S we write the equations in S as the

rows of a matrix. We also have to add in equations xq
n−1

i = 1 to make sure that the solutions lie in

GF(qn). For example, we represent the equations

xq
2−1

1 = 1, xq+1
1 x−2

2 = 1, xq
n−1

1 = 1, xq
n−1

2 = 1

by the matrix 
q2 − 1 0

q + 1 −2

qn − 1 0

0 qn − 1

 .

For any given value of q this matrix is an integer matrix and the number of solutions to the equations

is the product of the elementary divisors in the Smith normal form of the matrix. In [10] I show
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that the the number of solutions to a set of monomial equations, when considered as a function of q,

is PORC. In fact I show that the number of solutions can be expressed in the form df(q) for some

primitive polynomial f(x) ∈ Z[x], where

d = α+

r∑
i=1

αi gcd(q − ni,mi)

for some rational numbers α, α1, α2, . . . , αr, some integers m1,m2, . . . ,mr with mi > 1 for all i, and

for some integers ni with 0 < ni < mi for all i. In addition I give an algorithm for computing d and f .

8. Proof of Theorem 2.1

Let φ : GL(m,Q) →GL(n,Q) give an algebraic family of groups, and let K be a finite field of order

q, such that φK(A) is defined for A ∈GL(m,K). If we let V be a vector space of dimension n over K

then we have a natural action of φK(A) on V , and this gives an action of GL(m,K) on V . We want

to prove that the number of orbits of GL(m,K) on V , when considered as a function of q, is PORC.

The number of orbits is given by Burnside’s Lemma. It is

1

|GL(m,K)|
∑

A∈GL(m,K)

fix(φK(A)),

where fix(φK(A)) is qd where d is the dimension of the eigenspace of φK(A) with eigenvalue 1. The

number of orbits of GL(m,K) on k-dimensional subspaces of V is given by the same formula, where

now fix(φK(A)) is the number of k-dimensional subspaces W of V such that WφK(A) = W . So we

need to show that the functions defined by these two formulae are PORC.

We simplify the problem as follows. There are only finitely many possible types for matrices

A ∈GL(m,K), and so it is sufficient to show that for each type T∑
A has type T

fix(φK(A))

is PORC. Actually, there is a slight problem here since that would only show that the number of orbits

had the form
f(q)

|GL(m, q)|
for some PORC function f . However, as Higman observes in [5], if k(x) is the quotient of two PORC

functions, and if k(x) only takes integral values, then k(x) is PORC. This is because a rational function

of x which takes integral values for infinitely many integral values of x is a polynomial.

Since the size of the conjugacy class of an element of type T in GL(m, q) is a polynomial in q which

only depends on T , if we pick a set ST of representatives for the conjugacy classes of type T then it

is only necessary to show that ∑
A∈ST

fix(φK(A))
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is PORC for each possible type T . As we saw in Section 6, if A ∈GL(m, q) has type

T = {(n1, S1), (n2, S2), . . . , (nt, St)},

then the conjugacy class of A is determined by a set of eigenvalues λ1, λ2, . . . , λt satisfying the equations

(8.1) λqni

i = λi (i = 1, 2, . . . , t),

and satisfying the non-equations

(8.2) λqr

i ̸= λi (0 < r < ni, i = 1, 2, . . . , t),

(8.3) λqr

i ̸= λqs

j (i ̸= j, 0 ≤ r < ni, 0 ≤ s < nj).

These eigenvalues can be taken to lie in L =GF(qd) where d is the least common multiple of

{n1, n2, . . . , nt}. As we run through all possible solutions to these equations and non-equations in

L then the conjugacy classes in GL(m,K) determined by the solutions run through all conjugacy

classes of elements of type T with each conjugacy class arising the same number of times. (This

number is given by equation (6.4) from Section 6.) So it is sufficient to show that∑
λ1,λ2,...,λt

fix(φK(A))

is PORC where now the sum runs over all solutions in L to the equations (8.1) and non-equations (8.2),

(8.3), and where A ∈GL(m,K) is chosen to lie in the conjugacy class determined by the solution.

So let λ1, λ2, . . . , λt satisfy the equations (8.1) and non-equations (8.2), (8.3). As we showed in

Section 6, if A lies in the conjugacy class of GL(m,K) determined by λ1, λ2, . . . , λt then φL(A) has

Jordan normal form

m1Jt1 ⊕m2Jt2 ⊕ · · · ⊕msJts

for some positive integers t1, t2, . . . , ts, and some products m1,m2, . . . ,ms of the form

λh1
1 λh2

2 · · ·λht
t

where h1, h2, . . . , ht are integer polynomials in q. The integers t1, t2, . . . , ts and the polynomials

h1, h2, . . . , ht depend only on the type T and the characteristic of K.

Now consider the proof of Theorem 2.1 (a). In this case, for any given solution λ1, λ2, . . . , λt,

fix(φK(A)) is qd where d is the number of equations mi = 1 which are satisfied. The sequence

m1,m2, . . . ,ms and the size of the Jordan block associated with each mi depend on the characteristic

as well as on the type T , so for the moment we assume that K has fixed characteristic p. For every

subset S ⊆ {1, 2, . . . , s} let US be the set of equations mi = 1 for i ∈ S and let VS be the set of

non-equations mi ̸= 1 for i /∈ S. Then Theorem 7.1 shows that the number of λ1, λ2, . . . , λt satisfying

the equations and non-equations (8.1), (8.2), (8.3), US , VS is PORC when considered as a function of

q. For all the solutions fix(φK(A)) = q|S|. Every solution of (8.1), (8.2) and (8.3) satisfies (8.1), (8.2),

(8.3), US , VS for exactly one subset S, and so for each integer d the number of solutions to (8.1), (8.2)
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and (8.3) for which fix(φK(A)) = qd is PORC, and hence for each characteristic p we obtain a PORC

function fp(q) such that ∑
λ1,λ2,...,λt

fix(φK(A)) = fp(q)

whenever q is a power of p. But as we saw in Section 5, there is a finite set of exceptional characteristics,

and for all other characteristics the sequencem1,m2, . . . ,ms and the size of the Jordan block associated

with each mi depend only on T . So for each exceptional characteristic p we obtain a PORC function

fp(q) giving ∑
λ1,λ2,...,λt

fix(φK(A))

when q is a power of p, and we obtain one further PORC function giving this sum for all other

characteristics. It follows that ∑
λ1,λ2,...,λt

fix(φK(A))

is PORC as a function of q.

Finally consider the proof of Theorem 2.1 (b). Now fix(φK(A)) is the number of k-dimensional

subspaces W of V such that WφK(A) = W . Eick and O’Brien [1] show that this number is given

by a polynomial in q, and that the polynomial only depends on the type of φK(A). Furthermore

they give an algorithm for computing this polynomial. As above, for the moment we assume that

the characteristic of K is a fixed prime p. For any given solution λ1, λ2, . . . , λt, the type of φK(A) is

determined by which equations mi = mj hold (and which do not hold).

For every subset S ⊆ {(i, j) : 1 ≤ i < j ≤ s} let US be the set of equations mi = mj for (i, j) ∈ S

and let VS be the set of non-equations mi ̸= mj for (i, j) /∈ S. Then Theorem 7.1 shows that the

number of λ1, λ2, . . . , λt satisfying the equations and non-equations (8.1), (8.2), (8.3), US , VS is PORC

when considered as a function of q. All the solutions to these equations give matrices φK(A) of the

same type, and every solution to (8.1), (8.2) and (8.3) satisfies (8.1), (8.2), (8.3), US , VS for exactly

one subset S. So for every possible type TT of n×n matrices, the number of solutions of (8.1), (8.2),

(8.3) which give matrices φK(A) of type TT is PORC, and hence for each characteristic p we obtain

a PORC function fp(q) such that ∑
λ1,λ2,...,λt

fix(φK(A)) = fp(q)

whenever q is a power of p.

The rest of the proof of Theorem 2.1 (b) follows in the same way as the proof of Theorem 2.1 (a).

It may help clarify the argument above if we look again at the example given at the end of Section

5. We were looking at the Jordan form of A ⊗ A when A has type T = {(1, {2}), (1, {3})}. Matrices

A = aJ2⊕bJ3 where aq−1 = 1, bq−1 = 1, a ̸= b give a complete set of representatives for the conjugacy

classes of matrices of type T over GF(q).
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If q = pk where p > 3 is prime then the Jordan form of the tensor square of aJ2 ⊕ bJ3 is

a2J1 ⊕ a2J3 ⊕ abJ2 ⊕ abJ2 ⊕ abJ4 ⊕ abJ4 ⊕ b2J1 ⊕ b2J3 ⊕ b2J5.

So in the notation used above s = 9 and

(m1,m2, . . . ,m9) = (a2, a2, ab, ab, ab, ab, b2, b2, b2).

Since the sequence m1,m2, . . . ,m9 has repetitions, many of the non-equations mi ̸= mj are impossible.

Also since a ̸= b many of the equations mi = mj are impossible. But this makes no difference to the

argument above since the PORC formula giving the number of solutions to an impossible set of

equations and non-equations will be 0. In our example A⊗A will have type

{(1, {1, 1, 3, 3, 5}), (1, {2, 2, 4, 4})}

if a2 = b2, and type

{(1, {1, 3}), (1, {2, 2, 4, 4}), (1, {1, 3, 5})}

if a2 ̸= b2.

Similarly, to determine how may of m1,m2, . . . ,m9 are equal to 1, we only need to determine which

of a2, ab, b2 are equal to 1. If a2 = 1 or if b2 = 1 then ab = 1 is impossible, since a ̸= b. So we need

only compute the number of solutions to aq−1 = 1, bq−1 = 1, a ̸= b when combined with each of the

following five sets of equations and non-equations:

a2 = 1, ab ̸= 1, b2 = 1,

a2 = 1, ab ̸= 1, b2 ̸= 1,

a2 ̸= 1, ab ̸= 1, b2 = 1,

a2 ̸= 1, ab = 1, b2 ̸= 1,

a2 ̸= 1, ab ̸= 1, b2 ̸= 1.
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