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At very low orbital altitudes (.450 km) the aerodynamic forces can become major

attitude disturbances. Certain missions that would benefit from a very low operational

altitude require stable attitudes. The use of internal shifting masses, actively shifting the

location of the spacecraft center-of-mass, thus modulating, in direction and magnitude,

the aerodynamic torques, is here proposed as a method to reject these aerodynamic

disturbances. A reduced one degree-of-freedom model is first used to evaluate the

disturbance rejection capabilities of the method with respect to multiple system

parameters (shifting mass, shifting range, vehicle size, and altitude). This analysis shows

that small shifting masses and limited shifting ranges suffice if the nominal center-of-mass

is relatively close to the estimated center-of-pressure. These results are confirmed when

the analysis is extended to a full three rotational degrees-of-freedom model. The use

of a quaternion feedback controller to detumble a spacecraft operating at very low

altitudes is also explored. The analysis and numerical simulations are conducted using a

nonlinear dynamic model that includes the full effects of the shifting masses, a realistic

atmospheric model, and uncertain spacecraft aerodynamic properties. Finally, a practical

implementation on a 3U CubeSat using commercial-off-the-shelf components is briefly

presented, demonstrating the implementation feasibility of the proposed method.

Keywords: spacecraft aerodynamics, attitude stabilization, Very Low Earth Orbit, attitude control, shiftingmasses,

movable masses, CubeSat, aerodynamic disturbance

1. INTRODUCTION

Lowering the operational altitude of Earth observation spacecraft can increase the overall
cost-effectiveness of a space system (Shao et al., 2014). For example, by lowering the operational
altitude, the resolution of a given optical instrument, its radiometric performance and the
geospatial accuracy of its imagery are improved. For radar payloads, either the antenna size or
the transmission power can be reduced. Furthermore, a given launcher can usually deliver more
payload at lower altitude orbits or, for a given spacecraft mass, a less capable and potentially more
cost-effective launcher can be used (Virgili-Llop, 2014; Virgili-Llop et al., 2014a).

Lowering the operational altitude forces spacecraft to orbit through denser regions of the
atmosphere. The interaction of spacecraft with the residual atmosphere results in aerodynamic
forces that, at low altitudes, can become major orbit and attitude perturbations (Fortescue and
Stark, 1995). As the aerodynamic forces are only dominant in the lower part of the Low Earth Orbit
(LEO) range the term Very Low Earth Orbit (VLEO) is used in this paper to make clear that the
considered orbit range extends only up to ∼450 km in altitude (Virgili-Llop, 2014; Virgili-Llop
et al., 2014a).
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Although these aerodynamic perturbations are usually
perceived as drawbacks, they can also be seen as an advantage
(Virgili-Llop, 2014; Virgili-Llop et al., 2014a). As the orbital
lifetime is reduced, there is no need to de-orbit spacecraft at
the end of their operational life. Space debris also decay at a
faster rate and thus do not accumulate at the same pace in
VLEO, reducing the collision risk and greatly increasing the
required object density to generate a Kessler syndrome runaway
(Wertz et al., 2012). Additionally, the aerodynamic forces can
be harnessed to control the spacecraft’s orbit (Bevilacqua and
Romano, 2008; Virgili-Llop et al., 2014b; Virgili et al., 2015) and
attitude (Kumar et al., 1995, 1996; Psiaki, 2004; Gargasz, 2007;
Guettler, 2007).

Many missions that would benefit from lower operational
altitudes also require a constant and stable attitude (e.g., geodesy
spacecraft, Earth observation). In such missions, the attitude
perturbations caused by the aerodynamic forces need to be
eliminated. An effective and conceptually simple measure to
reduce the aerodynamic forces for a given operational altitude
is to minimize the spacecraft’s cross section area exposed to the
incident flow. For this very reason, spacecraft operating in VLEO
tend to be slender (Bowman and Lewis, 2002; Drinkwater et al.,
2007). To minimize the attitude perturbation it is also highly
desirable to design spacecraft with their Center-of-Mass (CoM)
as close as possible to the spacecraft’s Center-of-Pressure (CoP),
thus minimizing the force lever arm and ultimately reducing
the aerodynamic disturbance torque. Unfortunately, spacecraft
aerodynamics uncertainties (Moe and Moe, 2010; Prieto et al.,
2014) and atmospheric variability (Larsen and Fesen, 2009;
Pardini et al., 2012) introduce uncertainties and variability to
the CoP location. Additional practical design constrains on the
location of the CoM make the realization of an overlapping
CoP and CoM impossible in practice. A residual aerodynamic
disturbance torque will remain and will need to be rejected.

These attitude perturbations can be compensated for by using
traditional attitude control actuators (such as reaction wheels).
At VLEO the aerodynamic disturbances can be significant and
can present a secular component that can quickly saturate
momentum exchange devices. In this paper, we explore the use
of internal shifting masses as a method to control and ultimately
reject these undesired aerodynamic disturbances. The set of
internal shifting internal masses, actively change the spacecraft’s
CoM location, modulating, in direction and magnitude, the
aerodynamic torques. Specifically, we are interested in: devising
control methods to drive the shifting masses, evaluating the
disturbance rejection capabilities under realistic conditions, and
evaluating the implementation feasibility of the whole shifting
masses concept.

The use of shifting masses as attitude control actuators has
already been proposed in the past to help detumble spacecraft
(Edwards and Kaplan, 1974; Kunciw and Kaplan, 1976), control
the coning motion of a spinning spacecraft (Hamidi-Hashemi,
1993; Halsmer and Mingori, 1995; Janssens and van der Ha,
2014), control the pitch and yaw of solar-sails (Wie, 2004; Wie
and Murphy, 2007; Scholz et al., 2011) and, in general, to
complement traditional attitude control actuators (Kumar, 2010;
Ahn, 2012; Atkins and Henderson, 2012).

Of particular interest is the work by Chesi et al. (2017) who
proposes the use of aerodynamic drag to generate attitude control
torques modulated in magnitude and direction by actively
shifting a set of internal masses. Although Chesi’s work, simplifies
the effects of the shifting masses on the spacecraft dynamics,
ignores the variable and unpredictable nature of the Earth’s
atmosphere, and assumes that the aerodynamic properties are
known and constant, it shows the conceptual feasibility of using
shifting masses to control the aerodynamic torques. In particular,
it shows that by using a set of three shifting masses augmented
by reaction wheels or magnetic torquers and using an adaptive
non-linear feedback control law, a spacecraft could be slowly
brought, from any initial attitude and angular velocity, to a
desired attitude whilst minimizing the use of the reaction wheels
or magnetic torquers.

The work presented in this paper takes Chesi’s concept one
step forward by dropping the dynamic model simplifications,
introducing uncertainties into the aerodynamic properties, and
adding atmospheric variability. Additional contributions of the
work presented in this paper are a sensitivity analysis of the
method’s performance with respect to the CoP to CoM distance,
size of the spacecraft, and operating altitude. Additionally, an
assessment of the implementation feasibility of the concept is
briefly presented. As in Chesi et al. (2017), the assumptions used
to derive the dynamicmodel and the controllers are made explicit
throughout the paper and are marked with Asm.

This paper is organized as follows. The spacecraft model is
briefly presented in section 2. Then the equations of motion of
a spacecraft with internal moving parts are derived in section
3. The uncertain nature of the aerodynamic disturbance caused
by a variable atmosphere and the uncertain aerodynamics is
subsequently presented in section 4. A reduced one rotational
degree-of-freedom model with one shifting mass driven by a
Proportional-Integral-Derivative (PID) controller is derived in
section 5. This PID controller is used to analyze the disturbance
rejection capabilities of the system with respect to several
parameters (shifting mass, shifting range, operating altitude and
vehicle size). Then we use a full three degrees-of-freedom model
with two shifting masses driven by a Linear Quadratic Regulator
(LQR) based controller moving along the pitch and yaw axes
and augmented by an ideal actuator in roll in section 6 to
confirm that the results obtained in the one rotational degree-of-
freedom reduced model also apply in a three degrees-of-freedom
model. Then, the detumbling capabilities of the proposed
method are briefly explored in section 6 with a quaternion
feedback controller. Finally, a practical implementation, only
using Commercial-Off-The-Shelf (COTS) components, on a 3U
CubeSat is presented in section 7.

2. SPACECRAFT MODEL

To keep the analysis as general as possible, a spherically shaped
spacecraft has been used. Although a spheric spacecraft may be
initially perceived as a simplistic case, it can already be used
to illustrate the effects of aerodynamic uncertainties without
dwelling into more complex shapes. Also, the simple relationship
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between the size of the sphere (its radius) and its mass properties
(inertia and mass) is used to extract the general trends with
respect to spacecraft size.

• Asm.1: The spacecraft is spherically shaped.

The spherically shaped spacecraft hosting the shifting masses
(host spacecraft) is assumed to be composed of a homogeneous
density sphere and a fixed discrete point mass (not a shifting
mass) as shown in Figure 1. The discrete point mass is added
to the host vehicle to obtain a host spacecraft CoM that is
not coincident with the sphere’s geometric center. It is worth
mentioning at this point that the shifting masses are not part
of the host spacecraft. Excluding the shifting masses greatly
simplifies the equations of motion as it is shown in section 2.

The mass of a homogeneous density sphere is MS =
ρS4/3πR

3 and its inertia JS = Iρs8/15πR
5, with ρS denoting the

sphere’s density, R the sphere’s radius, and I the identity matrix.
The mass of the fixed discrete point mass MP can be expressed
as a fraction κ of the homogeneous sphere’s mass MP = κMS.
The total mass of the host vehicleM0 is simplyM0 = MS (1+ κ).
Let the host spacecraft’s CoM define the origin of the spacecraft’s
body frame B0 with the discrete point mass located along the î
axis, as depicted in Figure 1.

The goal of the attitude control system is to keep the attitude

of the spacecraft stable with respect to the orbital frame (k̂orbit
points nadir, îorbit along the inertial velocity vector, and ĵorbit
completes the right hand triad). In this case, the desired attitude
will be to align the axes of the body frame B0 with the axes of the
orbital frame, thus in the desired attitude î represents the roll axis,

ĵ the pitch axis, and k̂ the yaw axis.
As the location of the discrete point mass is artificially

restricted to the î axis, the desired attitude represents an
aerodynamic equilibrium attitude (in the absence of wind and

FIGURE 1 | Spacecraft model with its homogeneous sphere, the discrete

point mass along the î axis and a generic shifting mass mn.

atmospheric co-rotation). The implications of this assumption
will become clear in section 4.4, but briefly stated, by selecting an
aerodynamic equilibrium attitude we avoid secular aerodynamic
torques. If an arbitrary attitude was selected the location of the
shifting masses would be biased in order to provide this secular
torque (essentially moving the system’s CoM and forcing the
desired attitude to become an equilibrium one).

• Asm.2: The desired attitude is an aerodynamic equilibrium
attitude (in the absence of wind and atmospheric co-rotation).

The inertia properties of the host spacecraft J0 can be computed
using Equation (1), with the distance between the point mass and
the sphere’s center denoted by dMP . If dMP > 0 the CoM will be
located in the positive side of î and if dMP < 0 then the CoM will
be in the negative side of î. The location of the host spacecraft’s

CoM from the sphere center is simply dCoM0 =
κdMP
(1+κ) .

J0 = JS +
MS (1+ κ)

κ





0 0 0

0 d2MP
0

0 0 d2Mp



 (1)

Note that the host spacecraft is symmetric with respect to the

roll axis î and thus the definition of the pitch ĵ and yaw k̂ axes
is arbitrary.

To this host vehicle, whose mass and inertia properties are
fixed, known and constant, a set ofN shifting massesmn is added,
altering the mass, inertia, and CoM location of the resulting
combined system. As the body reference frame is defined with
respect to the CoM of the host spacecraft, excluding the shifting
masses, the system’s CoM, including the shifting masses, will be
variable and thus will not be located at the origin of the body
reference frame B0.

3. DYNAMIC MODEL

The equations of motion for a system of connected rigid bodies
is derived in this section. These equations of motion, which
take into account the dynamic effects of the shifting masses,
are used during the numerical simulations and serve as the
starting dynamic model used to derive the controllers. The
following assumptions are made to simplify the formulation of
the dynamics.

• Asm.3: The host spacecraft is a rigid body.
• Asm.4: The shifting masses are rigid bodies.

Under these assumptions, the fundamental equation describing
the rotational motion of a system of connected rigid bodies is
given by Equation (2) (Grubin, 1962; Edwards and Kaplan, 1974).

τ = Ḣ + S× a (2)

In Equation (2) τ denotes the external torques around an
arbitrary reference point, Ḣ the time derivative of the system’s
angular momentum around this reference point, S the system’s
first moment of mass with respect to the reference point, and
a denotes the inertial acceleration of the reference point. The
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system’s reference point can be arbitrarily selected and can move
in an arbitrary manner. It is interesting to note that if the
acceleration of the reference point is a = 0 or if the reference
point is selected as the system’s CoM (S = 0) then the usual
expression τ = Ḣ is recovered.

As introduced in the previous section, the system is composed
of a host vehicle to which N shifting masses are added. To
simplify the derivation of the equations, and without loosing
generality, it will be considered that the reference point of the
system is the host vehicle’s CoM (which excludes the shifting
masses). This reference point is the origin of the body frame B0
as shown in Figure 1. This assumption is useful, as by definition,
the host vehicle’s mass M0 and its inertia J0 are constant when
projected into B0. Additionally, the movement of the shifting
masses can be easily known with respect to the host spacecraft
reference frame B0.

TheN shiftingmasses have their own reference frames Bn with
their origin located at the CoM of the shifting mass. The shifting
masses can be rigid bodies or pointmasses. If they are rigid bodies

the inertia of the shifting masses in Bn will be denoted as J
Bn
n and

when expressed in B0 it will be simply denoted as Jn.
The location of a shifting mass with respect to the reference

point (the origin of B0) will be denoted as rn. The ṙn and r̈n
terms will denote the inertial linear velocity and acceleration of
the shifting mass expressed in the B0 frame. The inertial angular
velocity of the host vehicle frame B0 is denoted by ω0 and the
term ωn denotes the inertial angular velocities of the Bn frames
expressed in the B0 frame.

The inertial angular velocity of the shifting mass can be
computed using the following equation, with ω

′
n being the

relative angular velocity of the shifting mass reference Bn with
respect to the host vehicle reference B0.

ωn = ω0 + ω
′
n (3)

In such a multibody system, the total angular momentum H is
composed of the sum of the angular momentum of host vehicle
H0 and of the shifting massesHn, as shown in Equation (4).

H = H0 +
N
∑

n=1

Hn (4)

H0 = J0ω0 (5)

Hn = Jnωn +mnrn × ṙn (6)

The linear inertial velocity of the shifting mass ṙn can be simply
computed using the transport theorem, resulting in the following
equation, where ṙ′n denotes the relative velocity of the shifting
mass with respect to B0.

ṙn = ṙ′n + ω0 × rn (7)

To use Equation (2) the angular momentum needs to be
differentiated. Deriving (Equation 4) it follows that the total
angular momentum time derivative is the sum of the host vehicle

and shifting masses angular momentum time derivatives (using
the transport theorem where appropriate).

Ḣ = Ḣ0 +
N
∑

n=1

Ḣn (8)

Ḣ0 = J0ω̇0 + ω0 ×H0 (9)

Ḣn = Jnω̇n + ωn ×Hn +mnrn × r̈n (10)

The inertial acceleration of the shifting masses can be computed
with the transport theorem, resulting in the following well
known equation.

r̈n = ω0 × (ω0 × rn)+ ω̇0 × rn + 2ω0 × ṙ′n + r̈′n (11)

Note how ṙ′n and r̈′n are the shifting masses relative velocity and
acceleration with respect to B0. These ṙ

′
n and r̈′n magnitudes can

be measured inside the host spacecraft.
Moving on with the other terms in Equation (2), the first

moment of mass is defined as in the following equation.

S =
N
∑

n=1

mnrn (12)

The inertial acceleration of the origin of B0 (the reference point
in Equation 2) can then be written as follows.

a = r̈B0 = r̈CoM − r̈′CoM (13)

The r̈′CoM term denotes the acceleration of the system’s CoMwith
respect to B0 (the relative movement of the system’s CoM) and
r̈CoM is the inertial acceleration of the system’s CoM (due to the
external forces F). The r̈CoM acceleration can be easily computed
using Newton’s second law and r̈′CoM is obtained by computing
the relative CoM acceleration as follows.

r̈CoM = F

M0 +
∑N

n=1mn

(14)

r̈′CoM =
∑N

n=1 mnr̈n

M0 +
∑N

n=1mn

(15)

With the equations above, Equation (2) can be fully expanded as
in Equation (16).

J0ω̇0 + ω0 × J0ω0 +
N
∑

n=1

Jnω̇n +
N
∑

n=1

ωn × (Jnωn +mnrn × ṙn)

+
N
∑

n=1

(mnrn × r̈n)+ ......+ 1

M0 +
∑N

n=1mn

(

N
∑

n=1

mnr̈n

)

×
N
∑

n=1

mnrn = τ + F

M0 +
∑N

n=1 mn

×
N
∑

n=1

mnrn (16)
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It is interesting to note that (Equation 16) also contains the
case of momentum exchange devices (reaction wheels and
control moment gyroscopes) and thus these devices can be easily
incorporated into this analysis.

The aerodynamic effects on the attitude dynamics of the
system are represented by the external torques τ and forces F.
It is important to note that the torques τ are computed around
the fixed reference point (the host vehicle CoM) and not with
respect to the moving system’s CoM. The term in Equation (16)
that contains the external forces F accommodates this difference.
It is also important to note that (Equation 16) contains several
terms that depend on the shifting masses relative velocities and
accelerations, thus accommodating the dynamic effects of the
shifting masses.

3.1. Point Mass Simplification
A very useful simplification is obtained when it is assumed that
the shifting masses are point masses and do not posses inertia
Jn = 0. In such a case, the rotation of the shifting masses is
irrelevant and their translation is the only parameter that affect
the dynamics. Under such assumption the general equations of
motion (Equation 16) can be simplified as in Equation (17).

J0ω̇0 + ω0 × J0ω0 +
N
∑

n=1

(mnrn × r̈n)

+ 1

M0 +
∑N

n=1mn

(

N
∑

n=1

mnr̈n

)

×
N
∑

n=1

mnrn = ......

= τ + F

M0 +
∑N

n=1 mn

×
N
∑

n=1

mnrn (17)

For a single point mass and introducing the concept of reduced
mass µ (Equation 18), the equation can be further simplified
to finally obtain (Equation 19), recovering the expression from
Edwards and Kaplan (1974).

µ = mM0

M0 +m
(18)

J0ω̇0 + ω0 × J0ω0 + µr × r̈ = τ + µF

M0
× r (19)

4. AERODYNAMIC MODELING

The residual atmosphere present at orbital altitudes causes
spacecraft to experience aerodynamic forces (mainly
aerodynamic drag). Orbital decay is the main effect of
aerodynamic drag but these aerodynamic forces will also induce
aerodynamic torques and thus perturb the spacecraft’s attitude.

In general, Equation (20) can be used to compute these
aerodynamic forces, where ρ denotes the atmospheric density,
V∞ the relative velocity of the spacecraft with respect to the flow,
Aref an arbitrary reference area (usually taken as the spacecraft’s
cross section area), and Cf the force coefficients (along the three
different axes). Special cases of Equation (20) use, instead of the

generic force coefficients Cf , the drag CD (anti velocity), and
lift CL (normal to velocity) coefficients, which leads to the well
known drag and lift (Equations 21, 22).

F = 1

2
ρV2

∞ArefCf (20)

D = 1

2
ρV2

∞ArefCD (21)

L = 1

2
ρV2

∞ArefCL (22)

From Equation 20 (or Equations 21, 22) the atmospheric density
ρ, the relative velocity with respect to the flow V∞ and the
force coefficients CD and CL need to be estimated (using the
environment and gas-surface interaction models) before the
aerodynamic forces can be computed.

It is worth noting at this point that the atmospheric density
approximately increases exponentially with decreasing altitude
and thus the aerodynamic forces magnitude will also increase
exponentially with decreasing orbital altitude. The aerodynamic
disturbance is therefore strongly dependent on the altitude and
dominates at very low orbital altitudes.

Ideally, the controller that regulates the shifting masses
position would know the direction and magnitude of the relative
flow V∞, the atmospheric density ρ, and the aerodynamic
properties of the spacecraft Cf . With this information it would
be able to accurately estimate the aerodynamic torque that
the spacecraft is experiencing and drive the shifting masses
to reject it. Unfortunately, the atmospheric environment is
highly variable and poorly predictable (Larsen and Fesen, 2009;
Pardini et al., 2012) and spacecraft aerodynamics are not
particularly well understood (Moe and Moe, 2010; Prieto et al.,
2014). As a consequence, the controller will not be able to
obtain accurate estimates of the aerodynamic torque magnitude
or direction.

In the numerical simulations conducted in this paper, state
of the art atmospheric and spacecraft aerodynamic models (see
following sections) are used to obtain what it is assumed to be the
truth values. The controller will then estimate these magnitudes
using simplified aerodynamics and atmospheric models. This set-
up ensures the presence of realistic atmospheric variability and
realistic aerodynamic properties, while emulating the uncertainty
that a controller will be subjected to.

4.1. Atmospheric Density Model
For this study, the NRLMSISE-00 (Picone et al., 2002)
atmospheric model is used to estimate the atmospheric density
ρ. This specific atmospheric model offers a good balance
between model accuracy and computational complexity (ECSS
Secretariat, 2008).

• Asm.5: The atmosphere density behaves as predicted by the
NRLMSISE-00 model.

The Earth’s atmosphere not only exhibits vertical density
variations but also horizontal ones (as the day-to-night density
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changes among others). Thus, a spacecraft orbiting in a circular
orbit will experience density variations (that will modify the
magnitude of the aerodynamic forces). Figure 2 shows the
density variations, with respect to the orbit’s mean density
(using the NRLMSISE-00 model), for a 10:30 Local Time
of the Ascending Node (LTAN) circular Sun-synchronous
orbit at different orbital altitudes in moderate solar activity
(ISO 14222, 2013). Figure 2 exemplifies how variable the density
is and thus how variable the magnitude of the drag, and
consequently the aerodynamic torque, is during these typical
Sun-synchronous orbits.

4.2. Wind Model
It is not uncommon to assume that a spacecraft’s inertial velocity
is equal to the spacecraft’s relative velocity with respect to the
incoming flow. This assumption ignores that the atmosphere co-
rotates with the Earth (Challinor, 1968; King-Hele, 1987, 1992)
and that there is atmospheric time-varying wind (Killeen et al.,
1982; King-Hele and Walker, 1988). These two effects will make
the direction and magnitude of the relative flow V∞ differ, in
direction and magnitude, from the inertial velocity.

The atmospheric wind is also highly variable, spatially and
temporally. Figure 3A shows an example distribution of the
wind. As the atmospheric wind has not been as extensively
studied as other atmospheric properties, the existing models
are less accurate (Larsen and Fesen, 2009). In this work, the
HWM07 (Drob et al., 2008) wind model is used. It has to
be noted that this model only provides zonal and meridional
wind profiles representative of the climatological averages for
various geophysical conditions. Vertical winds, which usually
have smaller magnitudes, are not included in the model. Real
instantaneous values may show finer temporal and spatial
variations than the ones provided by the model and their effects
would need to be considered if this concept is brought to
operational use.

FIGURE 2 | Density variations during a typical circular Sun-synchronous orbit

at different operational altitudes.

• Asm.7: The atmosphere co-rotates and its wind behaves as
predicted by the HWM07 model.

Figure 3B shows the sideslip angle caused by the atmospheric
co-rotation and wind (using the HWM07 model) assuming that
a spacecraft is aligned with its inertial velocity in a 10:30 LTAN
circular Sun-synchronous orbit at different altitudes in moderate
solar activity (ISO 14222, 2013).

4.3. Gas-Surface Interaction Model
In the orbital environment (>200 km in altitude) the residual
atmosphere can no longer be considered as a continuum but,
given its low density, needs to be considered as a rarefied-gas
(Bird, 1994). The mean free path λ of an atmospheric gas particle
is, in general, much greater than a representative spacecraft
dimension (λ > 100 m at 200 km altitude; Virgili-Llop, 2014).
Consequently, it can be assumed that the interactions between
gas particles (collisions) are very rare, and thus they can be
safely neglected. Therefore, the Gas-Surface Interactions (GSI)
completely dominate the interaction of the spacecraft with its
surrounding gas.

• Asm.8: Gas-gas particle interactions are negligible.

The GSI are dependent on several gas and surface parameters.
As these interactions occur at the molecular scale, molecular
scale parameters are also relevant (e.g., lattice configuration and
surface roughness among others). The high thermal velocity
of the gas particles (∼1 km/s at 350 km), due to the high
temperature and low density of the gas, produces a flow that is not
collimated. The non collimated flow leads to particles colliding
with surfaces that would intuitively appear to be shadowed from
the flow.

There are several GSI models (Bird, 1994) and in this study
the Sentman model (Sentman, 1961) will be used as it is the de
facto standard to compute spacecraft aerodynamic coefficients
at low altitudes (Moe and Moe, 2005, 2010). A comprehensive
description of the models used in spacecraft aerodynamics can
be found elsewhere (Moe and Moe, 2010; Prieto et al., 2014).

• Asm.9: The lift and drag coefficients behave according to the
Sentman model.

The Sentman model takes into account the thermal velocity
distribution of the gas particles and assumes that all the incident
gas particles that collide with a surface are adsorbed to be later
diffusely reemitted. In the LEO range this seems to be true from
the limited available orbital data (Gregory and Peters, 1987; Moe
et al., 1998). The particles are then reemitted with partial thermal
equilibrium with the spacecraft surface. The degree of thermal
equilibrium is denoted by the energy accommodation coefficient
σa. In this model, the Cd and Cl can be written, following a
notation similar to Sutton (2009) and Doornbos (2011), as in
Equations (23, 25).

Cd =
[

P√
π

+ γQZ + γ

2

vre

V∞

(

γ
√
πZ + P

)

]

(23)
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FIGURE 3 | Wind pattern according to the HWM93 (Hedin et al., 1996) model at 450 km with moderate solar activity (ISO 14222, 2013) during northern hemisphere

summer solstice (A) and yaw angle caused by atmospheric co-rotation and wind during a circular sun-synchronous orbit at different operational altitudes (B).

CD =
∫

CddA

Aref
(24)

Cl =
[

lGZ + l

2

vre

V∞

(

γ
√
πZ + P

)

]

(25)

CL =
∫

CldA

Aref
(26)

γ = cos (ϕ) (27)

l = sin (ϕ) (28)

G = 1

2s2
(29)

P = 1

s
e−γ

2s2 (30)

Q = 1+ G (31)

Z = 1+ erf (γ s) (32)

The ϕ term denotes the angle between the flow and the surface
local normal vector (0◦ when the surface is normal to the flow
and 90◦ when it is parallel), vre the most probable velocity of
the reemitted gas particles, V∞ the relative bulk velocity between
the spacecraft and the incident gas particles (the same one as in
Equations 20–22), Aref an arbitrary reference area (usually the
cross section area of the spacecraft), s the ratio between V∞ and
the most probable thermal velocity of the gas vth (s = V∞

vth
), and

erf (x) denotes the error function.
According to Koppenwallner (2009) the vre/V∞ ratio can be

written as in Equation (33), with Rg denoting the gas constant
and Tw the temperature of the surface (wall).

vre

V∞
=
√

1

2

[

1+ σa
(

4RgTw

V2∞
− 1

)]

(33)

In the VLEO range the atomic oxygen is one of the dominant
species. These atomic oxygen gas molecules get adsorbed into
the spacecraft surfaces masking the original surface properties.
Having a surface covered with atomic oxygen rises the
accommodation coefficient to a level between 0.8 and 1 (Moe and
Moe, 2005). The spacecraft surface temperature will be assumed
constant at Tw = 300K.

Note that the drag and lift coefficients are dependent on the
atmospheric parameters through the vre/V∞ and s parameters.
As the atmosphere has temporal and spatial variability (vertical
but also horizontal) the force coefficients will in general be
variable during an orbit. These changes in the force coefficients
are small and can be safely ignored given that the variability
of the atmosphere (changes in atmospheric density and relative
flow direction and magnitude) is orders of magnitude larger.
Additionally, although the Sentman model can provide the lift
coefficientCL, it is, in general, an order of magnitude smaller than
the drag coefficient CD and thus it will be neglected in this study
(Doornbos, 2011).

• Asm.10: The changes of vre/V∞ and s during an orbit
are negligible when compared to the atmospheric
density variability.

4.4. Aerodynamic Properties of a Sphere
Equation (34) can be used to compute the drag coefficient CD of
a sphere. The reference area is set as the cross section area of the
sphereAref = πR2. In Equation (34), θsc and φsc are the azimuthal
and polar spherical coordinate angles.

CD =
∫

Cd (ϕ) dA

πR2
=
∫ π

0

∫ 2π
0 Cd (θsc,ψsc) sinφscdθscdφsc

π
(34)

Equation (35) computes the angle between the flow and the local
normal vector ϕ (required by the Sentmanmodel) using the polar
spherical coordinate angles.

cosϕ = cos (π/2− φsc) cos θsc (35)
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Due to the sphere’s symmetry, the drag coefficient is constant
regardless of the orientation of the sphere with respect to the
flow (greatly simplifying the analysis). By using Equation (34) a
sphere’s drag coefficient is found to be around CD ≈ 2.1. Figure 4
clearly shows how the drag coefficient of a sphere changes with
altitude, solar activity and energy accommodation coefficient,
making this magnitude variable and uncertain.

The orientation of the body reference frame B0 with respect
to the orbital frame will be denoted by the common roll φ, pitch
θ and yaw ψ Euler angles. When roll, pitch and yaw are 0 the
body frame is aligned with the orbit frame. The relative flow
direction will be defined with its own reference frame where
the flow direction will be in −îflow axis. The orientation of this
flow reference frame will be denoted by a flow pitch θflow and
flow yaw ψflow.

Let ROB denote the rotation matrix from body to orbital and
ROF the rotation matrix from flow to orbital and thus RBF =
RT
OBROF is the rotation from the flow to the body reference frame.

With these definitions the aerodynamic force in body axes is
defined by Equation (36), withD denoting the aerodynamic drag.

Faero = RBF





−D
0
0



 (36)

The CoP of the sphere is aligned with the direction of the flow
îflow (see Figure 5). The location of the center of pressure from
the sphere’s center can be computed using (Equation 37). Again
this magnitude is slightly dependent on the altitude but it will be
assumed as constant (it will eventually be shown that the location
of the real CoP of the sphere is not relevant).

dCoP

R
=
∫

Cd (ϕ) xdA

πR2CD

=
∫ π

0

∫ 2π
0 Cd (θsc,φsc) sin

2 φsc cos θscdθscdφsc

πCD
≈ 0.66

(37)

The location of the spacecraft CoP in body axes pCoP can then be
written as in Equation (38).

pCoP =





−dCoM0

0
0



+ RBF





dCoP
0
0



 (38)

Due to the sphere’s symmetry, the relative flow îflow, the CoP,
and the sphere’s geometric center are aligned. Therefore, there
is no torque with respect to the sphere’s geometric center. The
aerodynamic torque with respect the host vehicle CoM is then
only a function of dCoM0 as shown in Equation (39). It can then
be assumed that torque-wise, the effective CoP is located at the
sphere’s geometric center.

τ aero = pCoP × Faero =





−dCoM0

0
0



× Faero (39)

Although in this work a spherically shaped spacecraft has been
used, an analogous analysis can be conducted for spacecraft with
more complex shapes.

It may be useful when devising the controllers to simplify these
aerodynamic force and torque equations. If the control method
fulfills its goal the spacecraft attitude will be in close vicinity
of its target attitude φ ≈ 0, θ ≈ 0, ψ ≈ 0 (small angles
approximation). Additionally, the atmospheric co-rotation and
wind do not cause the relative flow to have large deviations with
respect to the inertial velocities (see Figure 3B) making θflow
and ψflow also small. Under these assumptions, the Euler angles
of the spacecraft with respect to the flow (rotation represented
by RBF) can be approximated using φ′ = −φ, θ ′ = θflow −
θ and ψ ′ = ψflow − ψ (which will also be small angles)
and the aerodynamic forces in body axes can be subsequently
approximated by Equation (40).

Faero ≈ −D





cos (θflow − θ) cos (ψflow − ψ)
cos (θflow − θ) sin (ψflow − ψ)
− sin (θflow − θ) cos (ψflow − ψ)



 ≈ D





−1
−ψ ′

θ ′





(40)

FIGURE 4 | Variation of a sphere drag coefficient with altitude, solar activity (A) and energy accommodation coefficient (B).

Frontiers in Robotics and AI | www.frontiersin.org 8 February 2019 | Volume 6 | Article 7

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Virgili-Llop et al. Attitude Stabilization by CoM Shifting

A simplified expression for the aerodynamic torque can also be
obtained using the same small angle approximation as shown in
Equation (41).

τ aero ≈ D





0
θ ′dCoM0

ψ ′dCoM0



 (41)

From Equation (41) it can be clearly seen that the equilibrium
attitude is that attitude where the flow, the host vehicle CoM,
and the sphere’s geometric center are aligned (θ ′ = ψ ′ = 0).
When there is a misalignment of this equilibrium attitude, the

FIGURE 5 | Location of the sphere’s Center-of-Pressure.

aerodynamic torques will provide a restoring torque if the sphere
center is behind the host vehicle CoM dMp > 0, making the
spacecraft oscillate around this equilibrium point (marginally
stable). If the host vehicle CoM is leading the center of the sphere
dMp < 0 the system is unstable.

In a marginally stable configuration dMP > 0 the natural
frequency of the oscillation can be approximated (using the small
angles approximation) with Equation (42).

ωn =
√

DdCoM0

I
(42)

The natural frequency will, in general, be small and thus it can
be normalized with the orbital mean motion to make it easier
to read. Figure 6 shows the natural frequency (normalized with
the orbit period) for two different sphere sizes (R = 10 cm and
R = 25 cm) with different CoM to CoP distances, at different
altitudes and using the numerical parameters shown in Table 1.

As the magnitude of the aerodynamic force is proportional
to the area ∼ R2, larger spacecraft with equivalent natural
frequencies will exhibit smaller perturbations as will have larger
inertias ∼ R5. Another expected result is that as the altitude
increases and the aerodynamic disturbance weakens, the natural
frequency also decreases. Thus, it is readily apparent that the
aerodynamic disturbances will be more important for small
spacecraft at low altitudes. The simulations that have been
conducted have then been focused on small spacecraft examples.

It is important to note that by definition, the host vehicle
CoM is displaced with respect to the sphere center only along
the B0 î direction. This condition has been imposed to simplify
the analysis but it is expected to be met by VLEO spacecraft. In a
generic case, the CoM can be displaced in any direction and then
a secular aerodynamic torque will appear when the spacecraft
is at the target attitude (ignoring the direction variability of the
relative flow direction). Therefore, it is highly desirable to have
the CoM and effective CoP (center of the sphere) aligned with
the B0 î axis in order to avoid these secular torques. As it is

FIGURE 6 | Natural frequency (normalized with the orbit period) for different CoM and altitudes for R = 10 cm (A) and R = 25 cm (B).
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TABLE 1 | Numerical parameters.

Parameter Value

κ 0.1

ρs 500 kg m2

CD 2.2

σCD
0.22 (10 % of the nominal CD = 2.2)

Solar activity indices Moderate activity as in ISO 14222 (2013).

expected that VLEO spacecraft designers will take this issue into
consideration it can be safely assumed that the CoM and CoP,
for the target attitude, will be reasonably aligned. Any residual
misalignment can be corrected by a bias in the position of the
shifting masses (resulting in a reduction of their shifting range
and control authority) and thus the initial assumption of host
vehicle CoM displaced only along the B0 î direction can be
recovered (without loss of generality).

The mission of the shifting masses is then to stabilize
the spacecraft in the presence of these aerodynamic attitude
disturbance eliminating the need to use other actuators for this
purpose (thus potentially delaying saturation and saving power
and mass).

The assumption that the host vehicle CoM is displaced
with respect to the sphere center roughly along the B0 î

direction represents one of the limitations of the proposed
method. The shifting masses are only able to reject the
aerodynamic disturbances for the limited set of attitudes where
this assumptions holds. For arbitrary attitudes, the aerodynamic
torques may be too strong to be compensated by the shifting
masses. However, in the context of VLEO, these strong secular
torques may be a burden for other attitude control methods as
well (e.g., rapidly saturating reaction wheels) and thus holding
attitudes far from the aerodynamic equilibrium points is an
intrinsic challenge for spacecraft operating in VLEO.

5. REJECTION CAPABILITIES UNDER A
REDUCED MODEL WITH ONE
ROTATIONAL DEGREE-OF-FREEDOM

A potential application of the shifting masses is disturbance
rejection. For simplicity, it is worth to start the rejection
capability analysis with a reduced model that only considers
one rotational degree-of-freedom. This analysis provides insight
into the rejection capabilities and the shifting mass system
requirements with respect to the system’s parameters. It is also
of particular interest to explore how the spacecraft size and
operating altitude drive the required shifting mass and range in
order to meet pre-specified performance requirements.

The yawψ rotation has been selected for this one-dimensional
analysis as the co-rotation and predominant wind act on this
particular axis. Additionally, a single shifting point mass will be
used and the controller will be based on linearized dynamics. The
goal of the shifting mass is then to stabilize the spacecraft around
ψ = 0 and reject the disturbance induced by ψflow.

• Reduced Model Controller Asm.1: Single rotational
degree-of-freedom (yaw axis).

• ReducedModel Controller Asm.2: Shiftingmass is a point mass.
• Reduced Model Controller Asm.3: The mass and inertia

properties of the host vehicle and of the shifting mass
are known.

• Reduced Model Controller Asm.4: The relative position,
velocity and acceleration of the shifting mass are known.

Under these assumptions, the equation of motion in Equation
(19) can be further simplified, yielding Equation (43). The
position, velocity and acceleration of the unique shifting mass
with respect to the body axes is denoted by x, y and the shifting
mass velocity with respect to the body reference frame B0
by ẋ′, ẏ′.

[

Jz + µ
(

x2 + y2
)]

ψ̈ + µ
[

2
(

xẋ′ + yẏ′
)

ψ̇ + xÿ′ − yẍ′
]

= τz +
µ

M0

[

Fxy− Fyx
]

(43)

The aerodynamic disturbances have low frequencies (similar
to the orbit frequency) and so it is expected that the motion
of the shifting mass will be also slow (small velocities and
accelerations), thus limiting the dynamic effects of the shifting
mass. Additionally, as the shifting mass m is small compared to
the host vehicle mass µ≪ 0, the dynamic effects of the shifting
mass will be further reduced and they can therefore be safely
neglected during the controller design.

• Reduced Model Controller Asm.5: Shifting mass velocities and
accelerations have negligible effects on the dynamics.

As the shifting range is also small the change on the system’s
inertia is also small and thus the system’s inertia will be
considered as constant (using the initial shifting masses position
x0 and y0) during the controller design. These assumptions
further simplify the equations of motion to Equation (44). It also
has to be noted that only aerodynamic forces and torques will
be considered.

[

Jz + µ
(

x20 + y20
)]

ψ̈ = τz +
µ

M0

[

Fxy− Fyx
]

(44)

• Reduced Model Controller Asm.6: Constant system inertia.

The shifting masses modulate τ̂ aero by actively changing the
location of the system CoM. Using the aerodynamic properties
of a sphere and using the small angles approximation, Equation
(45) can be obtained.

[

Jz + µ
(

x20 + y20
)]

ψ̈ = D

(

ψ ′dCoM0 +
µ

M0

[

−y+ ψ ′x
]

)

(45)

• Reduced Model Controller Asm.7: The system remains at all
times close to its target attitude (small angles approximation).

It is immediately clear from Equation (45) that to generate a
control torque it is much more effective for the mass to move
perpendicular to the relative flow (in this case y) than parallel to
it (along x). So in order to limit the system complexity, it will be
assumed that the shifting mass only moves in y (perpendicular
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to the flow if ψ ′ is small). Shifting the mass only along one
direction reduces the volume and the complexity of the shifting
mass system while maximizing its effectiveness. It is understood
that (Equation 45) has been simplified for small angles and thus
shifting the mass along y will only be perpendicular to the flow
direction only for ψ = ψflow = 0, if there is a large misalignment
the y shifting mass will start to loose efficacy.

• Reduced Model Controller Asm.8: The shifting mass only
moves along the ĵ axis.

Another important consideration that it is apparent from
Equation (45) is that the maximum torque provided by the
shifting mass is τmax = ±D m

M0+mymax. It is clear that the mass
of the shifting mass and the available shifting range are the two
variables at the designer disposal to regulate the control authority
of the system.

The atmospheric density and the magnitude and direction of
the flow are inherently unknown to the controller. An estimated
density, purely based on the altitude (no horizontal variability)
will be used by the controller. Additionally, the controller will
assume that the incident flow matches the inertial velocity
magnitude and direction.

• Reduced Model Controller Asm.9: Constant
atmospheric density.

• Reduced Model Controller Asm.10: Relative flow velocity
matches the spacecraft’s inertial velocity.

Under these conditions, the system equations can be written
as Equation (46) which corresponds to the transfer function
written in Equation (47). This represents a simple second
order Single Input Single Output system and a Proportional-
Integral-Derivative (PID) controller can be easily designed and
implemented to reject the aerodynamic disturbances while
keeping the spacecraft stable at ψ = 0.

[

Jz + µ
(

x20 + y20
)]

ψ̈ = D

(

−ψ
[

µ

M0
x0 + dCoM0

]

− µ

M0
y

)

(46)

T (s) = ψ (s)

y (s)
= b

J′s2 + k
(47)

J′ = Jz + µ
(

x20 + y20
)

(48)

k = D

(

µ

M0
x0 + dCoM0

)

(49)

b = −D
µ

M0
(50)

This controller also carries the underlying assumption that
the shifting mass can instantaneously move, without lag,
from one position to another one. This will be relaxed in
subsequent sections.

• Reduced Model Controller Asm.11: Shifting mass movement
has infinite bandwidth.

To explore the design space and the system response it will
be assumed that the PID controller is tuned so that the closed
loop system has a specific bandwidth and phase margin. In
these fixed controller conditions a Montecarlo simulation can
be performed to extract the required shifting mass range for a
given spacecraft size and the uncertain aerodynamic properties
and environmental conditions.

Although the controller is build upon a linearized model (see
all Reduced Model Controller Asm.), the numerical simulations
use the full dynamic equations and the high-fidelity environment
models (only using the genericAsm.). To emulate the uncertainty
on the aerodynamic properties, the actual drag coefficient used in
the numerical simulation differs from the one used to design the
controller. Although the CoP is considered known, given that a
spherical shape is used, the uncertainty on the drag coefficient
can also be used to emulate an uncertainty in the CoP position.
Sun-synchronous circular orbits with 10:30 ammean LTAN have
been used.

The Montecarlo simulations are initialized with ideal stable
attitudes ψ = 0 and ψ̇ = 0 and thus emulate steady state
conditions. Each Montecarlo run simulates 4 consecutive orbits
and 100 simulations are used to extract the statistics (with error
bars denoting the 95% confidence interval).

Figure 7 shows themaximum shifting range and attitude error
(3σ values) for a 10 cm radius spherical satellite for different
mass fractions of the shifting mass m/M0 and for a CoM leading
the CoP by 3% of the sphere radius R. Figure 8 shows how the
required shifting range and attitude error change for different
CoP to CoM distances dCoM0 and with a fixed shifting mass
fraction kept at 3% of the host vehicle massM0.

The system bandwidth in the controllers used to generate
(Figures 7,8) has been kept at four times the natural frequency
of the system 4ωn and the phase margin set to 30 deg. This allows
a comparison of the system performance even if the altitude or
spacecraft size are changed.

For the 10 cm radius case it is quite clear that the proposed
method is able to reject the aerodynamic disturbances and
maintain a reasonably stable attitude (with respect to 10 cm sized
spacecraft standards Polat et al., 2016) with mass fraction and
shifting range requirements compatible with the spacecraft mass
and dimension constrains (considering that realistic uncertainty
in the parameters has been taken into account). Note how the
proposed method is able to stabilize the spacecraft even if the
CoM is behind the CoP (unstable configuration). As expected the
required mass fraction and required shifting range decrease as
the CoP gets closer to the CoM. It is also worth pointing that the
unstable configuration dp < 0 requires higher shifting range than
their stable counterparts.

The attitude error, which is constant in Figure 7 due to the
constant bandwidth employed, can be decreased if the bandwidth
of the close looped system is increased. The required shifting
range can be decreased by decreasing the phase margin. But
both measures have limits. By decreasing the phase margin
the controller is less robust and increasing the bandwidth
increases the gains which imposes more strict requirements
on the sensors and actuators. The PID gains for the 10 cm
radius case are shown in Figure 9 when the angular and
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FIGURE 7 | Required 3σ shifting range (A) and 3σ attitude error (B) with respect to the shifting mass fraction for a 10 cm radius spherical spacecraft.

FIGURE 8 | Required 3σ shifting range (A) and 3σ attitude error (B) with respect to the CoP to CoM distance dCoM0
for a 10 cm radius spherical spacecraft.

angular velocity errors are provided in rad and rad/s. As
expected, the gains increase as the system becomes more difficult
to control, that is with increasing dCoM0 or reducing mass
fraction of the shifting mass. It is important to note that
the high derivative gain may impose certain requirements on
the attitude velocity estimates that the attitude determination
subsystem needs to provide to the controller (specially in terms of
noise levels).

It is also interesting to note that the relative shifting range
increases slightly with altitude or spacecraft size as a relative
larger shifting is required to generate the same acceleration at
higher altitude or for spacecraft with larger inertias. As in this
analysis the controller bandwidth is kept constant relative to the
natural frequency, larger spacecraft display larger attitude errors
(as their natural frequency is significantly lower). For a 25 cm
radius spherical satellite the attitude error and required shifting
range for different altitudes, mass fractions, and CoP to CoM
distances is shown in Figures 10, 11.

Lower natural frequencies do reduce the proportional and
derivative gains and thus spacecraft of bigger size or operating at
higher altitudes have a wider margin to increase their controller
bandwidth and reduce the attitude error whilst maintaining
reasonable gains.

The tuning employed in this examples appears to
give satisfactory results with the selected parameters and
uncertainties. These examples illustrate the general trends
and provide performance estimates that can be later used as
initial guesses.

6. THREE ROTATIONAL
DEGREES-OF-FREEDOM CASE

The previous analysis has been conducted using a reduced model
and only considering a single rotational degree-of-freedom. That
analysis is useful as provides generic results and shows the trends
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FIGURE 9 | PID gains (A) for different mass fractions and (B) for different CoP to CoM distances dCoM0
for a 10 cm radius spherical spacecraft.

FIGURE 10 | Required shifting range (A) and attitude error (B) with respect to the shifting mass fraction for a 25 cm radius spherical spacecraft.

FIGURE 11 | Required shifting range (A) and attitude error (B) with respect to the CoP to CoM distance for a 25 cm radius spherical spacecraft.
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when the different parameters are varied. In this section two
simple controllers for the three rotational degree-of-freedom case
will be presented to demonstrate the applicability of the proposed
method to a multidimensional case.

6.1. Shifting Masses Driver
For the PID controller it was assumed that the shifting masses
motion had infinite bandwidth. As the movement of the masses
was slow that did not pose any problem. In reality the controller
will specify the position of shifting masses and then the
masses will need to move to those positions using a limited
acceleration and velocity. For the three rotational degrees-of-
freedom controllers an underlying PID controller will control the
motion of the shifting masses to their desired location.

Although the underlying shifting masses actuators may be
capable of rapid motion and aggressive acceleration, these
magnitudes may need to be bounded in order to limit the
dynamic effects of the shifting masses motion (which are
currently ignored by the controllers and thus could potentially
degrade the controller’s performance). This is specially relevant
when the shifting masses controller may request abrupt shifting
masses position changes (e.g., when alternating saturation
positions are requested).

Equation (43) can be used to select these velocity and
acceleration limits. For example these limits can be selected so
that the effects due to the shifting masses velocity or acceleration
is no greater than a certain fraction η of the aerodynamic torque
created by that shifting mass, as shown in Equations (51, 52).

ẏ′max < η
D

2ψ̇maxM0

(51)

ÿ′max < η
Dymax

M0x0
(52)

These proposed limits are mainly dominated by the host vehicle
mass M0 and by the atmospheric density (through the drag
D). As the host vehicle mass is proportional to the radius of
the spacecraft these limits can also be set with respect of the
vehicle size and in this analysis a simple shiftingmass acceleration
and velocity limit of R/10 m/s2 and R m/s respectively has
been employed.

Another option which would regulate itself would be to
include the dynamic effects of the shifting masses motions
into the controller. The controller would then avoid sudden
accelerations or try to compensate the dynamic effects caused by
the shifting mass motion.

6.2. Linear Quadratic Regulator Approach
Given the good performance of the PID controller on a
one rotational degree-of-freedom case, it seems that a Linear
Quadratic Regulator (LQR) based controller may also have a
good performance for an attitude hold scenario (steady state) in
a three rotational degrees-of-freedom case. When the system is
linearized around the equilibrium point all the non-linearities
from the presence of the shifting masses disappear or are
neglected as it is assumed that the shifting masses move slowly

and their mass fractions are small. When building this controller
many of the assumptionsmade for the PID one rotational degree-
of-freedom controller are carried over.

• LQR Controller Asm.1: Linearized dynamics.
• LQR Controller Asm.2: Shifting masses are point masses.
• LQR Controller Asm.3: The mass and inertia properties of the

host vehicle and of the shifting masses are known.
• LQR Controller Asm.4: The relative position, velocity and

accelerations of the shifting masses are known.
• LQR Controller Asm.5: Shifting masses velocities and

accelerations have negligible effects on the dynamics.
• LQR Controller Asm.6: Constant system inertia.
• LQR Controller Asm.7: The system remains at all times close to

its target attitude (small angles approximation).
• LQR Controller Asm.8: Constant atmospheric density.
• LQR Controller Asm.9: Relative flow velocity matches the

spacecraft’s inertial velocity.

When the spacecraft is in the vicinity of its equilibrium point
the masses that shift perpendicular to the relative flow provide
the maximum efficacy. As the goal is to keep the spacecraft
stable then using only two shifting masses (with mass m1 and

m2), respectively moving along the B0 pitch ĵ and yaw k̂ axes,
maximizes the available torque while minimizing the system’s
complexity and the required volume.

• LQR Controller Asm.10: Two masses moving along the ĵ and

k̂ axes.

As the shifting masses are unable to provide any control torque
parallel to the flow then an additional third actuator is required.
In this analysis an ideal actuator acting on roll î providing τroll
has been assumed.

• LQR Controller Asm.11. Ideal roll actuator to augment the
otherwise underactuated system.

In the typical case where the system is in the vicinity of the
equilibrium point, this configuration and the LQR type controller
is well suited. For a detumbling case, where the system does
not remain in the linear region, an LQR controller may be
less efficient than other non-linear controllers. It is also worth
mentioning that, as the aerodynamic force is the dominant
perturbation and only acts perpendicular to the flow direction
(nominally along pitch and yaw), it is expected that the roll
actuator will not be required to provide significant torques when
the system is in the stable around the target equilibrium attitude.

As in all LQR based controllers, the weight matrices have to be
carefully adjusted to obtain the desired combination of attitude
error, shifting mass range and sufficiently small gains (so that the
requirements on the sensors can be met). Figures 12, 13 show a
steady state example of the evolution of the attitude, the shifting
masses displacement and roll torque when an LQR controller is
used and when the gravity gradient perturbation is also included.

A 25 cm spherical satellite operating at a 300 km Sun-
Synchronous and with 6% of the mass allocated to the shifting
masses (3% for each mass) and an estimated distance between the
CoP and the host vehicle CoM of 3% of the radius have been used.
In this case the spacecraft is operating in the unstable orientation
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FIGURE 12 | Roll, pitch and yaw using the LQR controller.

(CoP leading the CoM). Uncertainty in the drag coefficient CD

has also been included. Although the controller is based on the
linearized equations of motion, in the simulator the full equations
ofmotion have been used. As seen in Figures 12, 13 the controller
is able to maintain the system stable with small shifting masses
and shifting range.

6.3. Quaternion Feedback With Partial
Feedback Linearization
A more general approach that does not rely on linearization
uses the well known quaternion feedback with a partial feedback
linearization approach (Wie and Barba, 1985; Wie et al., 1989).
The estimated aerodynamic torque τaero is also used to help
with the feedback linearization but the terms related the shifting
masses motion are left out as they are assumed to be negligible.
Again, many of the assumptions are carried over.

• Quat. Feedback Controller Asm.1: Shifting masses are
point masses.

• Quat. Feedback Controller Asm.2: The mass and inertia
properties of the host vehicle and of the shifting masses
are known.

• Quat. Feedback Controller Asm.3: The relative position,
velocity and accelerations of the shifting masses are known.

• Quat. Feedback Controller Asm.4: Shifting masses velocities
and accelerations have negligible effects on the dynamics.

• Quat. Feedback Controller Asm.5: Constant system inertia.
• Quat. Feedback Controller Asm.6: Constant

atmospheric density.
• Quat. Feedback Controller Asm.7: Relative flow velocity

matches the spacecraft’s inertial velocity.

Under this control law the requested torque can be written as in
Equation (53).

τ req = −KpJqe − KdJωe + ω0 × Jω0 − τ aero (53)

In Equation (53) qe denotes the vector elements of the error
quaternion (Wie and Barba, 1985; Wie et al., 1989), ωe denotes

the angular velocity error (for a stable attitude with respect to the
orbit frame a pitch that matches the orbital motion needs to be
included), J is the inertia matrix and the Kp and Kd diagonal
matrices being the proportional and derivative gains in each
axis respectively.

Some guidance to select the gains can be obtained by
assuming small angles, a single degree-of-freedom, and that the
shifting mass motion dynamics effects are negligible. In that
case, the system reduces to a second order system and thus the
proportional Kp and derivative gains Kd for each axis (kp and kd)
can be related to the desired closed loop natural frequencyωn and
a damping ratio ξ as shown in Equation (54) (Wie et al., 1989).

kp = 2ω2
n kd = 2ξωn (54)

The quaternion feedback is particularly suited to be used when
large attitude misalignments are present and thus it will be
employed here for a detumbling scenario. If it is assumed that the
system is composed by three shifting masses each moving along

the body B0 roll î, pitch ĵ and yaw k̂, the aerodynamic torque
provided by the shifting masses can be written as follows (see
Equation 17).

τ sm = Faero

M +m1 +m2 +m3
×





m1r1
m2r2
m3r3



 (55)

Withm1,m2, andm3 denoting the shifting masses and r1, r2 and

r3 their shifting ranges along î, ĵ and k̂ respectively. Note how
Equation (55) is the last term of Equations (16, 17).

As the controller has no information about the actual direction
and magnitude of the aerodynamic force, an estimate Faero needs
to be used in the steering logic. A relative flow matching the
inertial velocity and a mean atmospheric density are used to
obtain this estimate. It is clear from Equation (55) that the
shifting masses aerodynamic torque is perpendicular to the Faero
and thus other actuators should provide the required torque that
is parallel to Faero.

The shifting masses position to achieve the requested
perpendicular torque can be obtained using (Equation 56). Note
that (Equation 56) is equivalent to the expression used to drive
the magnetic torquers (replacing the magnetic field with the
aerodynamic force Faero and the magnetic moment with the
mr product).





m1r1
m2r2
m3r3



 =
τ req × Faero (M +m1 +m2 +m3)

Faero · Faero
(56)

The resulting shifting masses provided torque τ sm is just
the component perpendicular to the flow direction and then
additional actuators need to provide the parallel torque. To keep
it consistent with past numerical examples only two shifting

masses shifting along the body’s B0 pitch ĵ or yaw k̂ axes will
be used (thus r1 = 0). These couple of shifting masses will
be complemented by a single ideal actuator acting along the B0
roll î axis.
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FIGURE 13 | Shifting (A) and roll torque (B) required for an LQR controller.

FIGURE 14 | 3σ maximum stabilization time for a 25 cm radius spacecraft in a

400 km altitude orbit.

• Quat. Feedback Controller Asm.8: Two shifting masses moving

along the ĵ and k̂ axes .
• Quat. Feedback Controller Asm.9. Ideal roll actuator to

partially provide the required torque parallel to Faero.

This configuration has been used to stabilize a 25 cm spacecraft
with a random initial attitude and an initial angular velocity
in a random orientation with a magnitude between ±0.5 deg/s
(chosen with a random uniform distribution). Figure 14 shows
the mean and the 3σ maximum stabilization time obtained by
a 25 sample MonteCarlo simulation. The control law gains have
been set according to Equation (54) with a bandwidth of twice
the spacecraft natural frequency and ξ = 0.7. The shifting masses
represent 6% of the host vehicle mass (3% each shiftingmass) and
the CoM leads the CoP by 3% of the spacecraft radius.

7. PRACTICAL IMPLEMENTATION ON THE
SHIFT-MASS SAT 3U CUBESAT

Small spacecraft are more sensitive to aerodynamic disturbances
due to their high area to inertia ratio. A CubeSat operating
at low altitude is thus a good first candidate to implement
the proposed aerodynamic disturbance rejection method. This
implementation exercise using a CubeSat, which are highly
constrained platforms in terms of mass and volume, also serves
as a practical feasibility check of the whole concept.

A preliminary design of the “Shift-Mass Sat” 3U CubeSat with
three orthogonal shifting masses is shown in Figure 15. All the
components, subsystems and shiftingmasses, are COTS to ensure
their commercial availability. More detailed information on this
design can be found in Polat (2016).

The three 150 g shifting masses approximately take 75%
of a 1U volume and have a 70 mm useful travel range.
Magnetic torquers augment the shifting masses and complete the
actuator set.

The performance of this design, paired with an LQR
controller, has been evaluated using a numerical simulation.
The CoM position, mass, inertia, shifting mass and travel
range, magnetic dipole moment of the magnetic torquers, and
aerodynamic properties used for the simulation have been
derived from the prototype design. It is worth pointing that for
this particular design, the shifting masses have a 1.82 mm control
authority on the combined system’s CoM position to modulate
the aerodynamic torque direction and magnitude.

The LQR controller is used for detumbling and to keep the
spacecraft stable. A gain scheduling scheme, where less aggressive
gains are employed during the detumbling phase is employed.
The initial angular velocity of the CubeSat is chosen as 0.01
rad/s in all axis and the orbit altitude is set at 300 km. The
shifting masses movement and Euler angles of one of these
simulations are presented in Figure 16 showing the feasibility of
the proposed method.
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FIGURE 15 | Prototype 3U CubeSat design with shifting masses (A) and detail of the three orthogonal shifting masses (B).

FIGURE 16 | Euler angles (A) and shifting masses positions (B).

It is also worth noting that in Figure 16B the shifting masses
exhibit a bias when the spacecraft is stabilized. This is because the
CubeSat center of mass is not completely centered around the
roll axis.

8. CONCLUSIONS

In conclusion, using a set of shifting masses that shift the
spacecraft’s center-of-mass is a viable method to reject the
aerodynamic disturbances present at Very Low Earth Orbit.
Despite the highly non-linear dynamics of a spacecraft with
internal moving parts simple controllers based on the linearized
equations of motion suffice to keep the spacecraft stable. The
requirements imposed on the attitude determination subsystem
and the shifting masses (shifting range and mass fraction) are
well within practical limits. Achieving stabilization from arbitrary
initial attitude and small angular velocities is also possible.
A prototype implementation on a 3U CubeSat only using

Commercial-Off-the-Shelf components and an Linear Quadratic
Regulator controller demonstrates its technological feasibility.

Further research could be directed to develop other types
of controllers, specially non-linear controllers, to drive the
shifting masses in order to increasing the performance of the
system. However, rigorously proving their stability can be a
challenging endeavor.
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