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Adoptive T cell transfer therapy (ACT) using tumor infiltrating lymphocytes or lymphocytes

redirected with antigen receptors (CAR or TCR) has revolutionized the field of cancer

immunotherapy. Although CAR T cell therapy mediates robust responses in patients

with hematological malignancies, this approach has been less effective for treating

patients with solid tumors. Additionally, toxicities post T cell infusion highlight the need for

safer ACT protocols. Current protocols traditionally expand T lymphocytes isolated from

patient tumors or from peripheral blood to large magnitudes in the presence of high dose

IL-2 prior to infusion. Unfortunately, this expansion protocol differentiates T cells to a full

effector or terminal phenotype in vitro, consequently reducing their long-term survival and

antitumor effectiveness in vivo. Post-infusion, T cells face further obstacles limiting their

persistence and function within the suppressive tumor microenvironment. Therapeutic

manipulation of T cells with common γ chain cytokines, which are critical growth factors

for T cells, may be the key to bypass such immunological hurdles. Herein, we discuss

the primary functions of the common γ chain cytokines impacting T cell survival and

memory and then elaborate on how these distinct cytokines have been used to augment

T cell-based cancer immunotherapy.

Keywords: chimeric antigen receptor, T cell, adoptive cell transfer, gamma chain cytokines, TRUCKs

INTRODUCTION

The field of cancer immunotherapy, encompassing vaccines, checkpoint modulators, and adoptive
T cell transfer therapy (ACT), has improved treatment outcomes in patients by harnessing the
immune system to target their malignancy, sometimes resulting in cures (1). ACT uses either
tumor-infiltrating lymphocytes (TILs) already equipped with tumor-specificity or peripheral blood
lymphocytes genetically redirected with tumor-specific T cell receptors (TCRs) or chimeric antigen
receptors (CARs) (2). Two different groups in the 1980’s first revealed that T cells could be
successfully redirected with an antigen receptor. Kuwana and team engineered a CAR that
combined the immunoglobulin variable regions with a TCR constant region and they reported
specificity against phosphorylcholine-specific bacteria (3). Gross et al. then used a similar construct
but made the transformants specific for TNP-expressing cancer cell lines. They demonstrated that
these CAR T cells could secrete IL-2 and lyse tumor cells in an antigen-specific manner (4). In some
instances, engineering cells with a CAR instead of a TCR can be advantageous. This advantage
stems from the fact that CARs, similar to antibodies, are able to recognize free unmodified antigen
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while TCRs require antigen modification and presentation by the
major histocompatibility complex (MHC), which is often down-
regulated on tumor cells (5). However, unlike TCRs, CAR antigen
specificity is restricted to cell surface antigens.

Following the two initial studies, CAR designs have been
further modified to enhance their antitumor properties and
persistence. First-generation CARs use a single chain variable
fragment (scFv) for antigen recognition and an intracellular
signaling domain, CD3ζ or FcεRIγ (6). In recent years, the
incorporation of one or more co-stimulatory domains (i.e.,
second and third generation CARs) was instrumental to the
success of CAR T cell efficacy for patients in clinical trials.
As reviewed by Knochelmann et al., donor lymphocytes have
been further modified in many ways by (1) incorporating targets
to multiple antigens, (2) converting suppressive signals such
as TGF-β or IL-4 into activating signals, (3) overexpression of
chemokine receptors to enhance migration, and (4) secreting
cytokines or soluble factors to modulate donor TIL or CAR
T cells and endogenous immune cell function to induce a
proinflammatory or “hot” tumor microenvironment (7, 8).

The most notable recent successes with CAR T cell therapy
have resulted from the use of second generation CD19-CAR
T cells for B cell derived malignancies that incorporate CD28
or 4-1BB costimulatory domains. Administration of CD19-
CAR T cells leads to near complete eradication of CD19+

malignant and B cell lineage cells in patients with advanced
lymphomas (9–14) and multiple forms of chemo-refractory or
advanced leukemias (15–23). In many of these studies, CAR
T cell therapy induced long term remissions in patients who
had been heavily pre-treated with various ineffective therapies.
Due to their unprecedented success in multiple patients in
clinical trials, the second generation CD19-CAR containing 4-
1BB-CD3ζ (Tisagenlecleucel) was FDA approved for patients
with B cell acute lymphoblastic leukemia in 2017 and diffuse
large B cell lymphoma in 2018 while the second generation
CD19-CAR containing CD28-CD3ζ (Axicabtagene ciloleucel)
was approved for diffuse large B cell lymphoma in 2017
(7). Indeed, these therapies have revolutionized treatment for
many patients around the world suffering from advanced
hematological malignancies.

Though CAR T cell therapy has demonstrated incredible
success with certain hematologic cancers, challenges still remain
today in using this therapy to successfully treat patients with
solid tumors. There also remains challenges in managing
treatment-associated toxicity. Toxicities associated with CAR T
cell therapy can be numerous including (1) cytokine release
syndrome (CRS) which is characterized by a fever induced by
high serum levels of IL-6 and IFNγ (2) respiratory distress
and (3) neurological symptoms (23–26). All of these toxic side
effects can be lethal in individuals if left untreated (23–26). To
manage these adverse events, patients are treated with drugs
to block CRS such as IL-6 inhibition with tocilizumab (anti-
IL-6R) or corticosteroids (23, 24). For the treatment of solid
tumors, CAR T cell therapies have poor efficacy due to tumor
mediated suppression by (1) inhibitory receptor engagement, (2)
soluble factors, (3) recruitment of suppressive immune cells, (4)
nutrient deprivation and (5) loss of tumor antigen (5, 27–30).

As solid tumor-specific antigens are difficult to identify, patients
can experience toxic side effects due to on-target off-tumor
reactivity leading to autoimmune-like symptoms (26, 31–37).
Consequently, investigators have more recently designed CAR T
cell constructs containing an inducible suicide gene to rapidly
eliminate CAR T cells from the patient with a pharmacological
reagent. The hope is that this approach will theoretically reverse
or reduce the onset of these adverse events (38–42).

Novel ways to improve the potency of CAR T cells in the
tumor are desperately needed for patients that fail conventional
chemotherapies or other forms of cancer immunotherapy. T cell
function, survival, and proliferation are strongly influenced by
cytokine signaling. Notably, the members of the common γ chain
(γc) cytokine family play pivotal roles in fueling T cells to thrive,
lyse tumors and drive long-lived memory to tumor relapse or
metastasis. While IL-2 has been widely used to expand T cells
ex vivo in preparation for infusion into patients, preclinical work
reveals that other members of the γc cytokine family should be
considered for clinical use. Consequently, this review will detail
the basic biology of various γc cytokines, including IL-2, IL-
4, IL-7, IL-9, IL-15, and IL-21 and discuss how each cytokine
has have been used in cellular therapy. Lastly, we will discuss
a subset of fourth generation CARs known as TRUCKs (T cell
redirected for universal cytokine-mediated killing) in cancer
immunotherapy and discuss our vantage of how to best augment
their antitumor potency using γc cytokines in vitro and in vivo
to safely improve treatment outcomes in patients with advanced
blood or solid tumors.

OVERVIEW: COMMON γ CHAIN CYTOKINE
SIGNALING AND FUNCTION IN
T LYMPHOCYTE BIOLOGY

Common γ chain cytokines exert numerous functions on T
lymphocyte survival, function and proliferation. As illustrated
in Figure 1, the γc family consists of six members—IL-2,
IL-4, IL-7, IL-9, IL-15, and IL-21—which all have unique
receptors. Upon receptor ligation, γc cytokines through JAK1
and JAK3 activate various developmental pathways including
STAT1, STAT3, STAT5, MAPK, and PI3K/AKT pathways (43–
55). The one exception is IL-4, which in addition to STAT5,
MAPK and PI3K/AKT pathways, activates STAT6 signaling (56–
62). Below, we will further discuss receptor composition and the
biological functions exerted by each of these six γc cytokines.

IL-2
IL-2 is primarily produced by activated T cells upon TCR
and costimulatory signaling (43). As displayed in Figure 1,
the IL-2 receptor (IL-2R) is a trimeric receptor that consists
of IL-2Rα, IL-2Rβ and the γc where signaling is ultimately
mediated through IL-2Rβ and the γc (43, 44). High affinity IL-
2Rs (αβγ) are expressed on activated T cells and constitutively
expressed on T regulatory cells (Tregs) while the intermediate
affinity IL-2R (βγ) is expressed on natural killer (NK) cells and
memory CD8+ T cells (43). IL-2 has non-redundant functions
in both Treg and effector T cell biology. For Tregs, IL-2 is
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FIGURE 1 | Common γ chain cytokine signaling impacts the functional fate of T cells for adoptive cell transfer. The six members of the γc cytokine family (IL-2, IL-4,

IL-7, IL-9, IL-15, and IL-21) and the composition of their unique cytokine receptors. Signaling cascades from these receptors lead to distinct biological outcomes

impacting differentiation, effector function and memory development of T cells.

essential for thymic development, peripheral homeostasis, and
suppressive function (63–74). In IL-2-, IL-2Rα-, and IL-2Rβ-
deficient models, mice succumb to lethal autoimmunity within
8–12 weeks due to impaired thymic development of Tregs (63–
66). Conversely, effector T cells readily develop in IL-2-, IL-
2Rα-, and IL-2Rβ-deficient models. However, IL-2 is essential
for the optimal proliferation and differentiation of effector T
cells and this cytokine influences their contraction through
activation induced cell death (AICD) (75). Additionally, IL-2
plays distinct roles in the function of various CD4+ T helper
(Th) subsets. The differentiation of Th1, Th2, Th9, and iTreg
subsets is promoted by increased expression of IL-2 while
Th17 and Tfh differentiation is suppressed by IL-2 (76–81).
IL-2R signaling intensity influences the development, survival
and recall response of T cell memory (82–85). Low IL-2R
signaling favors the development of central memory T cells (Tcm)
whereas high IL-2R signaling favors the development of effector
memory T cells (Tem) and terminally-differentiated effector
cells (86). IL-2 also influences effector development through the
upregulation of IFNγ, perforin, granzyme B and Blimp-1, which
drive terminal effector differentiation and suppresses expression
of makers associated with memory (such as Bcl-6, CD127,
and CD62L) (86–89).

IL-4
The cytokine IL-4 has long been appreciated to impact humoral
immunity. IL-4 is primarily produced by CD4+ T cells
(specifically Th2 and Tfh cells), basophils, eosinophils, mast cells
and NKT cells (90–98). Along with the γc receptor, IL-4 binds
to IL-4Rα (Figure 1). Upon IL-4 receptor (IL-4R) signaling,
cascades promote the up-regulation of IL-4Rα, which induces

a positive feedback loop (62, 99, 100). IL-4 is required for the
differentiation of naïve CD4+ T cells to a Th2 phenotype. This
cytokine also induces and immunoglobulin class switching in B
cells, promotes the survival of T and B cells and drives long-term
development of CD8+ T cell memory (101). Humoral immunity
is dependent on IL-4, as IL-4-, or IL-4R-deficient mouse
models have impaired antibody production, high susceptibility
to parasitic infection and diminished Th2 differentiation (101).
IL-4 is thought to be controversial for cancer therapy because
multiple forms of cancer express the IL-4R. Increased IL-4R
expression has been observed in renal cell carcinoma, melanoma,
breast, glioblastoma, lung, prostate, bladder and head neck
cancers (102–107). Angiogenesis of human breast tumor cells has
been shown to be inhibited by the addition of IL-4, preventing
metastatic growth and proliferation (108, 109). However, since
both adipose tissue and cancer cells secrete IL-4 to promote a
suppressive tumor microenvironment, blocking IL-4R signaling
was found to decrease the viability of breast tumor cells (110).
Finally, recent data has emerged that, along with TGF-β, IL-4 can
support the generation of a new subset called Th9 cells. These
cells secrete IL-9 and have been reported to augment immunity to
tumors in ACT models (111, 112). Indeed, future investigations
are required to better understand the role of IL-4 in regulating
Th2 and Th9 cells in adoptive immunotherapy for cancer.

IL-7
In contrast to IL-2, cytokine IL-7 is not produced by
hematopoietic cells but rather is secreted by stromal cells
(113–115). Its receptor consists of the γc and a unique
IL-7Rα (Figure 1) (113). The fundamental role of IL-7 has
been demonstrated in both humans and in mice with
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deficiency in either IL-7 or the IL-7 receptor (IL-7R) resulting
in impaired thymic development of mature lymphocytes
resembling severe combined immune deficiency (116–118).
Moreover, IL-7 supports the survival and homeostasis of naïve
and memory T cells (119–124). Upon activation and IL-
7R signaling, the IL-7R is down-regulated on naïve T cells.
Interestingly, IL-7R is re-expressed on Tcm and Tem cells (125–
128). It is important that cells express IL-7R as IL-7 signaling
promotes the homeostasis and survival of naïve and memory T
cells via the up-regulation of Bcl-2 and the suppression of pro-
apoptotic mediators (49, 129–131). Unlike IL-2, IL-7 does not
induce Treg proliferation, as IL-7Rα is expressed at low levels
on this suppressive lymphocyte population (132, 133). Due to
the deleterious role of Tregs in cancer immunotherapy, many
investigators are now exploring the role of IL-7 in potentiating
checkpoint modulators or T cell therapies, as discussed in greater
detail later in this review.

IL-9
IL-9 was initially described as a T cell growth factor. However,
IL-9 is more recently appreciated for its role in the proliferation
and differentiation of mast cells as well as its involvement in B
cell maturation (134–137). IL-9 is primarily produced by various
CD4+ T cell subsets (naïve, Th2, Th9, Th17, and Tregs) but can
also be made by mast cells, NKT cells and type 2 innate lymphoid
cells (ILC2) (112, 138–145). As shown in Figure 1, IL-9 signals
through the γc and IL-9Rα which is expressed on activated T
cells, mast cells and macrophages (52, 146). In IL-9- and IL-
9 receptor (IL-9R)-deficient mice, there was no effect on T cell
differentiation or development, but these mice had diminished
mast cell proliferation (147). Additional investigations revealed
that experimental autoimmune encephalomyelitis was markedly
reduced in IL-9R-deficient mice compared to wild-type cohorts,
as CD4+ T cells and macrophages from these mice secreted less
IL-17 and IL-6, respectively (148). Importantly, IL-9 also plays
roles in regulating transplant tolerance, promoting anti-parasitic
immunity, exacerbating allergy and autoimmunity (149). The
role of IL-9 in tumor immunity has been controversial, both
promoting antitumor immunity and enhancing transformation
and tumor growth. It has been reported that IL-9 overexpression
promotes cell proliferation, metastasis and survival of pancreatic
cancer and lymphomas (150–152). However, the adoptive
transfer of antitumor Th9 or Tc9 cells regress melanoma
in mice through IL-9-dependent mechanisms and are highly
cytolytic, hyperproliferative, and persistent post transfer into
animals (153–157).

IL-15
As depicted in Figure 1, IL-2 and IL-15 share common receptor
subunits, IL-2Rβ and the γc, only differing between the unique
α subunits (53). IL-15Rα is expressed on activated monocytes
and dendritic cells and because of IL-15Rα’s high affinity for IL-
15, IL-15 can be trans-presented to IL-2Rβ and the γc on NK
and CD8+ T cells, unlike IL-2 which is primarily cis-presented
(53, 158). Also, in contrast to IL-2, IL-15 is primarily produced by
innate immune cells (including dendritic cells, macrophages and
monocytes) (159–162). IL-15 and IL-15R signaling are important

for the development and homeostasis of NK cells and CD8+ T
cells though the up-regulation of anti-apoptotic markers Mcl-
1 and Bcl-2 while inhibiting AICD (163–174). This discovery
became clear in studies using IL-15- and IL-15R-deficient mouse
models, which have impaired NK cell and CD8+ T memory
cell development and compromised lymph node homeostasis
(164, 175). IL-15, unlike IL-2, preferentially expands CD8+ T
cell memory and NK cells in the presence of Treg cells while
promoting resistance to Treg suppression (176, 177).

IL-21
IL-21 has been reported to improve antitumor T cell immunity
but has also been identified as a potentmediator of autoimmunity
(178). IL-21 is primarily produced by activated CD4+ T cells,
particularly Th17 and Tfh but can also be produced by NKT cells
(179–181). As shown in Figure 1, the IL-21 receptor (IL-21R) is
comprised of the γc and IL-21Rα (182, 183). Receptor expression
is low on resting T cells but is upregulated upon TCR activation
or IL-21 stimulation (183–185). Both adaptive and innate
immune cells are influenced by IL-21 as T, B, NKs, macrophages
and DCs all express the IL-21R (179, 181, 183, 184, 186). IL-21
promotes the proliferation, survival and differentiation of Th17
and Tfh subsets while enhancing the function of cytotoxic CD8+

T cells (187–197). Additionally, IL-21 blunts Treg expansion
by suppressing Foxp3 expression and favors the enrichment of
antigen-stimulated CD8+ T cells (198). Th17 and Th2 immune
responses are impaired while Tregs are increased in IL-21- and
IL-21R-deficient mice (190, 191, 199, 200).

Collectively, γc cytokines play a major role influencing the
development, differentiation, and survival of innate and adaptive
immune cells. For cancer treatment, γc cytokines have been used
systemically as monotherapies to harness endogenous immune
responses, or in combination with ACT to improve antitumor
efficacy. The presence of γc cytokines at various points in the
T cell development including priming, ex vivo expansion, or
post adoptive transfer can influence the function of tumor-
specific T cells. As both IL-4 and IL-9 have not been thoroughly
explored for ACT and have controversial roles in both promoting
tumorigenesis and mediating antitumor immunity, we will focus
the rest of our discussion on the clinical uses of IL-2, IL-7, IL-
15, and IL-21 for immunotherapy, and their potential to improve
patient responses to T-cell based therapies.

CLINICAL USES OF IL-2, IL-7, IL-15, AND
IL-21 IN CANCER IMMUNOTHERAPY

Interleukin-2: T Cell Proliferation at the
Cost of Treg Expansion
Currently, IL-2 is the only γc cytokine to be FDA-approved
to treat patients with cancer. In anti-cancer therapies, this
cytokine is commonly administered to patients to augment
the engraftment and function of adoptively transferred T
cells. For treatment of several autoimmune disorders such as
type 1 diabetes, HCV-induced vasculitis and graft vs. host
disease (GVHD), IL-2 is administered at low doses and has
been beneficial for patients because it targets the constitutive
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expression of the high affinity IL-2R leading to selective
proliferation of Tregs (201–204). Conversely, effector T cells do
not readily express the high affinity IL-2R. High dose IL-2 is
administered to cancer patients to support the proliferation and
function of cytotoxic T lymphocytes (CTLs) (205, 206). In fact,
since the 1980s high dose IL-2 has been used to treat patients
with renal cell carcinoma and metastatic melanoma (207–210).
Standard treatment protocols involve the administration of
720,000 IU IL-2/kg every 8 h for up to 14 consecutive doses. Using
high-dose IL-2 for patients with renal cell carcinoma, 14% of
patients (255 patients total) had an objective response, while 12
patients experienced a complete response (209). Similar efficacy
was observed with high-dose IL-2 treatment for metastatic
melanoma, where 16% of patients (270 patients total) had an
objective response with 17 patients having a complete response
and 26 patients experiencing a partial response (210). High dose
IL-2 treatment was FDA-approved for renal cell carcinoma in
1992 and for metastatic melanoma in 1998 (211, 212). However,
due to toxicities associated with this therapy such as hypotension,
capillary leak syndrome, cardiac toxicity, and renal failure, many
cancer centers stopped using this therapy to treat patients (213–
215). Today, IL-2 is mainly used to expand TILs or CARs ex vivo
for ACT and is administered to the patient to support donor cell
expansion post-transfer.

As IL-2 promotes the differentiation of naive CD8+ T cells to
full effectors and generates Tregs in the ACT products (Figure 2),
immunologists have focused on preferentially targeting IL-2 to
effector T cells. One promising way to target IL-2 to effectors
has been by complexing this cytokine with anti-IL-2 antibodies.
This IL-2 complex uniquely presents IL-2 to the intermediate
but not high affinity IL-2Rs thereby reducing Treg expansion
(216–219). The importance of targeting IL-2 to transferred T cells
has also shown promise in the field of cancer immunotherapy.
For example, Rubinstein and colleagues discovered that IL-
2Rα on transferred T cells sustained signaling by promoting
recycling of endocytosed IL-2 back to the cell surface (220).
This recycling mechanism raised the possibility of engineering
TILs or CARs to express IL-2Rα to improve IL-2-based therapies
(220). Furthermore, other groups have recently discovered novel
ways to specifically target transferred T cells with IL-2. In
fact, Sockolosky et al. engineered a synthetic IL-2 and IL-2R
(distinct from native IL-2 and the IL-2R) and expressed them
on transferred T cells. The synthetic IL-2R did not interact with
native IL-2, could mediate IL-2R signaling, thereby leading to the
selective proliferation of CTLs and regression of melanoma in
mice (221).

TIL therapies require expansion of ample numbers of
lymphocytes from the suppressive tumor microenvironment.
Ex vivo, patient tumor samples are treated with high dose IL-
2 to preferentially expand TIL. These TIL are then rapidly
expanded in the presence of anti-CD3, IL-2 (6000IU/mL) and
irradiated feeder cells for several weeks in order to propagate
them to the billions (222). After expansion, TIL are infused
into the patient who has been preconditioned with a non-
myeloablative preparative regimen (2, 212, 223). Upon transfer,
IL-2 is administered to patients to promote the expansion of
donor TILs in vivo because these cells have increased IL-2Rα as

expression is positively regulated by TCR and IL-2R signaling
(43). In a preclinical model using Epstein Barr Virus positive
tumors, EBV-specific CTLs were engineered to express IL-2 or
IL-15. Transgenic expression of IL-2 or IL-15 increased T cell
expansion in vitro and in vivo ultimately enhancing their in vivo
efficacy (224). Treatingmelanoma patients with ex vivo expanded
TIL and high dose IL-2 (720,000 IU/kg) led to complete remission
in 20 of 93 patients and some patients experienced long-term
remission (225). Transducing melanoma TIL to continually
secrete IL-2 bypassed the need for exogenous administration of
IL-2 to the patient. These modified cells survived in the patient
but surprisingly did not improve clinical outcomes compared to
TIL administered with exogenous IL-2 (226, 227).

Similar to TIL therapies, IL-2 promotes the proliferation of
CAR T cells. Yet this cytokine also drives their differentiation
into terminal effector phenotypes. In pancreatic ductal
adenocarcinoma xenograft models, treatment of mesothelin-
specific CAR T cells with a TNFα and IL-2-secreating adenovirus
increased their activation, proliferation and antitumor response
in mice (228). IL-2 also increases resistance of CD28-CD3ζ
CARs in vitro to TGFβ-mediated suppression compared to
4-1BB-CD3ζ CARs. CD28 costimulation activates Lck, which
promotes IL-2 production and if Lck is nonfunctional, CAR T
cells have impaired antitumor activity (229). It has also been
reported that CAR T cells expanded with IL-2 (100 IU/mL) for
3 days, compared to 10 days, generated lymphocytes with an
increased proportion of “younger” memory-like cells (230, 231).
With longer culture time and increased differentiation, CARs
mediated slightly reduced anti-leukemia immunity in mice
(230). Ablation of IL-2Rα on CAR T cells did not improve their
function but did decrease their expansion capabilities in vitro
(230). While IL-2 promotes the differentiation of naïve T cells
to an effector phenotype, IL-2Rβ signaling has been clearly
shown to improve the function of CAR T cells. In a recent
study conducted by Kagoya et al. CAR T cells were engineered
to express a truncated IL-2Rβ domain (232). This truncated
domain increased STAT3 and STAT5 signaling and improved
their expansion in vivo. When these cells were transferred into
mice bearing leukemia or melanoma, they had improved survival
and regressed hematological and solid tumors more effectively
compared to their traditional CAR cohorts (232). To circumvent
the negative attributes of IL-2, investigators have also been
turning their focus to other γc cytokines including IL-7, IL-15,
or IL-21 which may prove to be better candidates to improve
methodology for ACT therapy.

Interleukin-7: Naïve and Memory Cell
Proliferation Without Treg Expansion
Similar to IL-2, IL-7 promotes the proliferation of naïve and
memory T cells. Thus, IL-7 is a promising cytokine for cancer
immunotherapy. The benefit of IL-7 for ACT was first shown
in preclinical models treating CTL’s in vitro with either IL-7 or
IL-2. When transferred into mice, IL-7-treated CTLs controlled
metastatic disease to the same extent as those treated with IL-2
(233). In clinical trials using recombinant human IL-7 (rhIL-
7) as a monotherapy, IL-7 was shown to be well tolerated
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FIGURE 2 | Use of γc cytokines for ex vivo T cell expansion generates T cells with variable memory phenotypes. γc cytokines promote different biological programs

that influence the differentiation of T cells. While IL-2 promotes robust proliferation it also promotes terminal effector differentiation. IL-7 and IL-15 maintain the

homeostasis and survival of memory T cells and treatment ex vivo promotes a Tscm/Tcm phenotype. IL-21 slows T cell expansion but prevents differentiation and

maintains a naïve-like T cell phenotype. With respect to antitumor immunity, less differentiated cell products are more therapeutic leading to the understanding that

IL-2 is not the best option for ex vivo expansion.

by patients with advanced malignancies (234, 235). Rosenberg
and colleagues treated a cohort of 12 patients (11 metastatic
melanoma and 1 metastatic sarcoma) with 8 doses of IL-7 and
found dose-dependent increases in CD4+ and CD8+ T cells
with a decrease in Tregs (234). Following this work, Sportes
and colleagues conducted an IL-7 dose-escalation study on 16
patients with non-hematologic non-lymphoid cancers and found
similar results with increased CD8+ T cells and decreased Tregs
(235). TCR-repertoire analysis of T cells indicated a more diverse
repertoire, signifying IL-7’s role in promoting a broader immune
response and the selective expansion of naïve T cells (235).
Culturing naïve T cells from healthy donors with IL-7, expands
T stem cell memory (Tscm) cells to a greater extent than IL-2
treatment (236). These Tscm were defined as CD62L+ CCR7+

CD45RA+ CD45RO+ IL-7Rα+ CD95+ and were shown to have
increased expansion as well as a high capacity for self-renewal
(236). IL-7 preferentially expanded naïve T cells to a Tscm
phenotype compared to Tcm and Tem, likely because naïve cells
express more IL-7R, as portrayed in Figure 2. As Tscm have been
reported by several groups to mediate potent memory responses
to tumors, it has become increasingly clear that IL-7 has promise
in the clinical setting (237–240).

IL-7 has been used in CAR T cell therapy, often in
combination with other cytokines, during the in vitro expansion
phase. For example, CAR T cells expanded in the presence

of IL-7, IL-4 and IL-21 were found to express less inhibitory
receptors compared to IL-2-expanded cells. These cells also had
an increased Tscm/Tcm phenotype and co-expressed CD27 and
CD28 (241). In the presence of IL-7 and IL-15, CAR T cells
possess a naïve/Tscm phenotype with improved proliferation
upon antigenic-rechallenge compared to IL-2-treated CARs (242,
243). IL-7/IL-15 expanded CAR T cells have increased in vivo
persistence, leading to improved antitumor immunity (244).
MUC-1-specific CAR T cells have been engineered with a switch
receptor containing an IL-4 ectodomain and an IL-7 endodomain
to counter the IL-4-rich tumor microenvironment (245). By
converting an IL-4 signal into an IL-7 signal, these T cells
expanded robustly and mediated potent antitumor immunity
in mice bearing breast tumors (245). Anti-CD20 CAR T cells
engineered to express CCL19 and IL-7 migrate and expand to
a greater extent than conventional CARs and led to complete
remission of mastocytoma and Lewis lung carcinoma in mice
(246). Additionally, IL-7 was critical to this response, as anti-IL-
7Rα administration diminished the therapeutic benefit of these
cells (246). Shum and colleagues engineered a GD-2-specific
CAR T cell with constitutive IL-7R signaling, CD34 ectodomain
and an IL-7Rα endodomain, leading to constitutive STAT5
activation (247). These CARs were able to undergo multiple
rounds of expansion and mediate a robust response against
glioblastoma and metastatic neuroblastoma tumors (247). These
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CAR constructs highlight the beneficial role of IL-7 and IL-
7R signaling in improving the antitumor functions of T cells
for ACT.

Interleukin-15: CD8+ Memory T Cell
Expansion With Some NK Cell Assistance
IL-15R signaling is promising for T cell-based cancer
immunotherapies. This pathway selectively induces the
expansion and function of CD8+ memory and NK cells (163–
168). For ACT, IL-15 has been used to enhance the activity
of TIL and CAR T cells ex vivo. Moreover, IL-15 has also
been complexed with IL-15Rα and this novel agent has been
used as an immunotherapy in cancer patients in vivo (248).
When cultured in vitro, T cells expanded with IL-15, rather
than IL-2, are predominately a Tcm phenotype with very few
Tem (249, 250). Conversely, IL-2-expanded cells are mostly
effectors (Figure 2) (249). In turn, IL-15 generates a cellular
product that mediates improved antitumor immunity, as IL-15-
propogated Tcm have an improved engraftment potential and
migratory capacity compared to IL-2-expanded cells (250, 251).
Administration of recombinant IL-15 can promote immunity
through the expansion of endogenous CD8+ T cells and NK
cells (252, 253). In combination with checkpoint inhibition,
IL-15 improved CD8+ T cell function marked by increased
IFNγ production and mice treated with the combination had
improved control of metastatic disease (253). Additionally,
IL-15 is able to reverse tumor-tolerant CD8+ T cells, when IL-2
and IL-7 were unable to, restoring antigen responsiveness and
leading to tumor clearance (254–256). In the first clinical trial
using recombinant human IL-15 (rhIL-15) to treat 18 patients
with metastatic cancer (11 metastatic melanoma and 7 renal
cell carcinoma), rhIL-15 was administered intravenously in a
dose escalating study for 12 consecutive days (257). From the 18
patients treated, there was only stable or progressive disease. The
dosing regimen led to elevated serum levels of IL-6 and IFNγ

along with grade 3 toxicities such as hypotension, lymphopenia
and elevated aspartate and alanine aminotransferases at higher
doses. However, minutes after administration of rhIL-15, NK,
γδ, and CD8+ T cells effluxed from the blood and proliferated
robustly for many days after administration (257). This study
implicates the promising role of IL-15 to selectively target the
homeostasis and expansion of NK and CD8+ T cells.

Complexing IL-15 with IL-15Rα drastically increases the half-
life of this cytokine, maximizing its activity while preferentially
presenting IL-15 to cells expressing IL-2Rβ and γc (258, 259).
For example, ALT-803, an IL-15/IL-15Rα sushi domain complex,
mediated improved therapeutic benefit over native IL-15 (260,
261). Administration of ALT-803 in mice led to selective
expansion of NK and CD8+ T cells with no expansion of
Tregs, increased production of IFNγ, TNFα, and IL-10, and
reduced metastasis of breast carcinoma, colon carcinomas, and
myeloma inmice (260, 261). Therapeutic benefit wasmediated by
CD8+ T cells as their depletion diminished antitumor immunity
(260–262). In a phase 1b clinical trial conducted by Wrangle
et al. ALT-803 was administered with nivolumab (anti-PD-1)
to 21 patients with metastatic non-small cell lung carcinoma

(263). ALT-803 could be safely administered to these patients
in combination nivolumab. In fact, there were no dose limiting
toxicities experienced by patients on this trial (263). Moreover,
this therapy dramatically increased the proliferation of NK and
CD8+ T cells in the blood (263). Although this study was
not designed to assess efficacy, the authors reported evidence
of the re-induction of antitumor responses in patients who
failed to respond to nivolumab therapy alone (263). This study
emphasizes the promise of using IL-15/IL-15Rα complex in
cancer therapy and also implies that ALT-803 may improve the
antitumor activity of TIL or CAR therapies in patients without
increased toxic side effects.

In a clinical trial treating 22 patients with advanced stage
lymphoma, patients with positive tumor responses and complete
remissions had increased IL-15 serum levels (12). Investigators
have engineered IL-15-producing CARs to enhance T cell
memory development and incorporate NK cell responses for
tumor clearance in vivo. Anti-leukemia CAR T cells that
express IL-15 have increased expansion, viability, and improved
antitumor immunity compared to conventional CAR T cells
in lymphoma xenograph models (264). In glioma xenograph
models, IL-13Rα2-specific CAR T cells that secrete IL-15
showed increased proliferation, sustained cytokine production
and improved survival (265). In this model, tumor relapse was
observed due to the expansion of tumor cells that had lost
expression of the target antigen. However, in some instances
retroviral transduction of IL-15 can transform human primary
T cells leading to prolonged cell survival, increased telomerase
activity and resistance to apoptosis (266). Membrane-bound IL-
15 on CAR T cells mediated similar results, as demonstrated
by their increased persistence and immunity against leukemia
(238). Thus, IL-15 bolsters NK and CD8+ T cell expansion and
function, which leads to improved immunity, implicating IL-15
as a beneficial cytokine for ACT (237). In the future, it will be
paramount to understand the best way to deliver IL-15 therapy
in combination with ACT and CAR T cell therapy.

Interleukin-21: Preventing T Cell
Differentiation to Increase Antitumor
Immunity
In a phase 1 clinical trial using recombinant human IL-21 (rhIL-
21) in a dose-escalation study with 43 patients (24 melanoma
and 19 renal cell carcinoma patients), rhIL-21 was administered
consecutively for 5 days for two full cycles. rhIL-21 was safe for
patients and mediated antitumor immunity in some individuals,
as demonstrated by 1 complete response and 4 partial responses
(267). To follow this trial, Davis et al. conducted a phase IIa
clinical trial treating 24 patients with metastatic melanoma
with 30 µg/kg doses of IL-21 (268). Treatment with IL-21 led
to 1 complete response and 1 partial response in this study.
Additionally, IL-21 lead to the selective activation of NK and
CD8+ T cells marked by increased expression of CD25, IFNγ,
perforin and granzyme B (268). In a phase II trial with 40
metastatic melanoma patients, most of which had metastasis to
the lungs, liver or lymph nodes, were treated with either 30µg/kg
or 50 µg/kg of IL-21 (269). Nine patients experienced partial
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responses where 16 patients had stable disease. There were 6
patients who experienced some dose-limiting toxicities amongst
the treatment groups (267). Collectively, these trials indicate the
benefit of IL-21 as a monotherapy and warrant the investigation
combining IL-21 with other agents for cancer therapy.

IL-21 augments ACT therapy by preserving T cells in a less
differentiated state ex vivo (88, 237, 250, 270, 271) (see Figure 2).
While IL-2 drives robust proliferation and differentiation of
CD8+ T cells, IL-21 enriches CD8+ T cells with a “younger”
phenotype that express less IL-2Rα, CD44, and Eomes but
have reduced expansion compared to those expanded with IL-
2 (88). However, when IL-21-stimulated CD8+ T cells were
transferred into mice, they mediated superior anti-melanoma
immunity compared to T cells treated in vitro with IL-2 or IL-15
(88). Additional investigation revealed that IL-21 supported the
propagation of lymphocytes that expressed CD62L and secreted
IL-2, consistent with Tscm phenotype. Moreover, these cells
expressed Tcf1 and Lef7, which are transcription factors critical
for the self-renewal of stem cells (88, 272, 273). The benefits of
IL-21 have been demonstrated on TILs isolated from ovarian
or non-small cell lung carcinoma patients. While IL-2 greatly
bolsters TIL expansion, IL-21 is unable to expand TIL alone
(274). Importantly, IL-21 does not support the expansion of Treg
cells in contrast to IL-2 (274). For human CD8+ T cells isolated
from the peripheral blood of healthy donors, IL-21 promotes
Tscm development in vitro leading to improved immunity upon
adoptive transfer into mice with melanoma compared to IL-2-
stimulated CD8+ T cells (275). In addition to using IL-21 for
treatment of CD8+ T cells ex vivo, IL-21 is a potent agent for the
expansion of NK cells. Usingmembrane-bound IL-21 on artificial
antigen-presenting cells, NK cells can be expanded to large
numbers to elicit graft vs. leukemia responses without inducing
GVHD (276, 277). These expanded NK cells had increased
cytotoxicity and cytokine production without exhaustion. When
combining membrane-bound IL-21 expansion with IL-18, IL-15,
and IL-12, NK cells had increased expression of IFNγ and TNFα.
These results indicate IL-21 as a potent agent for improving
efficacy of T and NK cells for ACT (278).

IL-2 and IL-21 regulate opposite immune programs (88,
279). However, IL-21 is able to synergize with IL-7 and IL-
15. For example, IL-15 and IL-21 synergistically promote the
expansion CD8+ T cells with a Tscm phenotype and have
increased persistence when infused into the host (196). Also, cells
stimulated with IL-15 and IL-21 mediated enhanced immunity
in mice with melanoma compared to T cells expanded in the
presence of either IL-15 or IL-21 alone (196). Together these
cytokines increase the effector molecules and cytokines produced
by T cells in vitro (280, 281). Likewise, combining IL-7 and IL-21
promotes the expansion of cells with a Tscm phenotype with high
CD28 and CD27 expression (241). The synergy between these
two cytokines may be due to IL-21 augmenting IL-7-induced
expansion of T cells and by preventing the down regulation
of IL-7Rα, all of which lead to increased immunity in vivo
(282). IL-21/IL-7-treated cells have increased proliferation and
production of inflammatory cytokines, directing improved lysis
of tumor cells (282). These data support the use of cytokines in
combination in next generation clinical trials for patients.

As IL-21 prevents T cell differentiation and preserves their
naïve-like phenotype, investigators have used this cytokine
to generate “younger” CAR T cells. Interestingly, culturing
CD19 CD28-CD3ζ CARs with IL-21 led to CAR+ T cell
expansion and increased expression of IFNγ and granzyme B
(283). Compared to IL-2-treated CARs, IL-21-treated CARs had
increased expression of CD45RA, CD62L, CCR7, and CD28.
When transferred into mice with leukemia, IL-21-treated CARs
had improved tumor control compared to those treated with
IL-2 ex vivo (283). Moreover, membrane-bound IL-21 on CAR
T cells recapitulated the effects of soluble IL-21 in culture
(283). To improve the activity of CAR T cells, Sabatino et al.
isolated naïve CD8+ T cells (CD62L+ CD45RA+ CCR7+) from
healthy donors and transduced them with CD19 CD28-CD3ζ
CAR constructs. During expansion, cells were cultured in IL-
7, IL-21 and TWS119 (glycogen synthase kinase 3β inhibitor),
which enriched for Tscm (284). CD19-CAR Tscm had no
changes in their transcriptome compared to non-transfected
Tscm and were polyfunctional (284). When transferred into
mice with leukemia, CD19-CAR Tscm cells were maintained
with intraperitoneal injections of IL-15 and displayed improved
survival over conventional CD19-CAR T cells (284). This
study demonstrates that in vitro cooperation of IL-7, IL-21,
and TWS119 and the in vivo functions of IL-15, lead to
improved T cell functionally improving therapeutic outcome
in vivo.

TRUCKs: Putting Cytokines to Work in the
Tumor Microenvironment
Engineering CAR T cells with inducible or constitutive cytokine
secretion reinforces transferred T cell function in the host and
manipulates the endogenous immune response within the tumor.
T cells redirected for universal cytokine-mediated killing, termed
TRUCKs, are such CAR T cells equipped with the expression
of IL-2, IL-7, IL-15, or IL-21 (285, 286). In a study conducted
by Markley and Sadelain, human CD19-CAR T cells were
engineered to constitutively express either IL-2, IL-7, IL-15, or
IL-21 (285). Using lymphoma model, constitutive expression
of the γc cytokines improved antitumor immunity and animal
survival. Even though IL-2- and IL-15-expressing TRUCKs led
to the upregulation of effector molecules such as granzyme A,
TNFα and IFNγ, TRUCKs that produced IL-7 or IL-21 were
most efficacious (285). IL-21-expressing TRUCKs mediated the
best overall tumor immunity in mice, demonstrated by their
capacity to increase survival. These TRUCKs were found to co-
express CD27 and CD28 and were able to persist long-term in
the animals (285). IL-7-expressing TRUCKs mediated improved
antitumor immunity, while upregulating Bcl-2 expression and
promoting improved cell expansion in vitro compared to IL-2-
expressing TRUCKs. This preclinical study suggests that IL-7 or
IL-21 TRUCKs could be efficacious in patients.

Other research has revealed that cytokines not in the γc
cytokine family, such as IL-12 and IL-18, could be efficacious
in TRUCK constructs. For example, in ovarian carcinoma
xenograft models, MUC-16ecto-specific second-generation CAR
T cells were engineered to secrete IL-12 which led to
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improved expansion of TRUCKs and a 27-fold increase in IFNγ

production compared to non-IL-12-secreting constructs (287).
MUC-16ecto-specific IL-12-secreting TRUCKs had enhanced
immunity compared to non-IL-12-secreting CARs in mice with
ovarian cancer, leading to near complete survival (287). IL-
18-secreting TRUCKs have similar benefits to IL-12-secreting
TRUCKs with enhanced immunity and increased proliferation
in both mice and humans (288). However, IL-18 secretion
had preferential effects on CD4+ TRUCKs and was able to
promote significant T cell expansion without costimulatory
signaling. IL-18-secretion expanded both CAR+ and CAR−

T cells in an antigen-independent manner which could be
beneficial in cases of epitope spreading but detrimental for
autoimmune manifestations (288). As both IL-12 and IL-18
promote immunity and expansion of TRUCKs, these cytokines
could be potential candidates to improve therapy for solid
tumors. However, as IL-12 and IL-18 upregulate the expression
of several inflammatory cytokines, such as IFNγ, and have a
historic reputation of toxic side effects, administration could
further exacerbate CRS already associated with CAR T cell
therapy (289–292). Because of these toxic side effects both
preclinically and in patients, the γc cytokines, IL-7, Il-15 and
IL-21 might prove to be better options for TRUCK therapies.
These cytokines have well documented roles in improving cell
products for ACT and as shown by Markley and Sadelain,
can improve antitumor immunity of TRUCKs. Additionally,
IL-7, IL-15, and IL-21 reinforce the essential T cell functions
of proliferation, effector function and memory warranting

further investigation. Overall, it is clear that further work
must be done to investigate whether the γc cytokine-secreting
TRUCKs would be beneficial to overcome the suppressive
tumor microenvironment. Findings from future work will be
instrumental to apply this therapy to patients with solid tumors,
as these constructs have been preclinically shown to be efficacious
for blood cancers.

Conclusion: Ideal Use for γc Cytokines in
TIL and CAR T Cell Therapy
In summary, we have discussed how the various γc cytokines
play fundamental roles in shaping T lymphocyte biology. We
have also highlighted important preclinical work that reveals
their potential for immunotherapy via several modalities: (1)
infusion as monotherapies or in combination with adoptive T
cell transfer therapy, (2) ex vivo expansion of TILs and CAR
T cells to generate “younger” more agile cell products, and
(3) in vivo constitutive or inducible production by genetically
engineered T cells (TRUCKs) to bolster not only the transferred
cells but to enhance immune cells in the oppressive tumor
microenvironment. While exploration of TRUCKs has been
largely preclinical to date, promising results indicate high
potential for successful future clinical translation. Though IL-2
is the only currently FDA-approved γc cytokine, it is possible
that this cytokine alone may not be ideal for future trials.
As depicted in Figure 3, we envision the ideal application of
the γc cytokines for T cell therapy to involve a combinatorial
approach. Based on preclinical work, perhaps the ideal way to

FIGURE 3 | Superior antitumor immunity of IL-2/IL-21-primed CAR T cells producing IL-7 and IL-15 at the tumor site. Generating TRUCKs ex vivo in the presence of

IL-2 and IL-21 would prevent terminal differentiation, promote enhanced antitumor immunity with robust T cell proliferation. While at the tumor site, secretion of IL-7

and IL-15 would maintain TRUCK proliferation and memory function allowing for robust and persistent antitumor immunity against solid tumors.
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expand T cells ex vivo may require the presence of both IL-
21 and IL-2. As published by Hinrichs and team in murine T
cells, we propose that IL-21 will effectively prevent the terminal
differentiation of T cells while preserving a “younger” phenotype
whereas IL-2 will support their expansion to large enough
numbers to effectively treat patients (88). Upon administration,
we suspect that these IL-21/IL-2-expanded TILs or TRUCKs
would be best maintained by engineering them to secrete IL-
7 and IL-15, which we hypothesize will further promote their
persistence and memory recall responses to prevent tumor
relapse in patients. The concept portrayed in Figure 3 is just
one of many possible ways to combine γc cytokines to bolster
T cell-based therapies. We certainly realize that it is also possible
that other cytokine combinations will be important in generating
T cells with long-lived responses to aggressive tumors. Future
studies are also necessary to turn off inhibitory signals (such
as TGFβ and IL-10) that dampen T cell responsiveness (293,
294). Regardless, it has become increasingly clear that the γc
cytokine family represents a group of cytokines that support the
fundamental attributes T cells and understanding how to exploit
these cytokines for therapeutic use is critical for next generation
cancer clinical trials involving vaccines, checkpoint inhibitors
and ACT therapy.
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