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Based on accumulating evidence of a role of lipid signaling in many physiological

and pathophysiological processes including psychiatric diseases, the present data

driven analysis was designed to gather information needed to develop a prospective

biomarker, using a targeted lipidomics approach covering different lipid mediators. Using

unsupervised methods of data structure detection, implemented as hierarchal clustering,

emergent self-organizing maps of neuronal networks, and principal component analysis,

a cluster structure was found in the input data space comprising plasma concentrations

of d = 35 different lipid-markers of various classes acquired in n = 94 subjects with the

clinical diagnoses depression, bipolar disorder, ADHD, dementia, or in healthy controls.

The structure separated patients with dementia from the other clinical groups, indicating

that dementia is associated with a distinct lipid mediator plasma concentrations pattern

possibly providing a basis for a future biomarker. This hypothesis was subsequently

assessed using supervised machine-learning methods, implemented as random forests

or principal component analysis followed by computed ABC analysis used for feature

selection, and as random forests, k-nearest neighbors, support vector machines,

multilayer perceptron, and naïve Bayesian classifiers to estimate whether the selected

lipid mediators provide sufficient information that the diagnosis of dementia can be

established at a higher accuracy than by guessing. This succeeded using a set of

d = 7 markers comprising GluCerC16:0, Cer24:0, Cer20:0, Cer16:0, Cer24:1, C16

sphinganine, and LacCerC16:0, at an accuracy of 77%. By contrast, using random lipid

markers reduced the diagnostic accuracy to values of 65% or less, whereas training the

algorithms with randomly permuted data was followed by complete failure to diagnose

dementia, emphasizing that the selected lipid mediators were display a particular pattern

in this disease possibly qualifying as biomarkers.
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INTRODUCTION

Accumulating evidence supports a high relevance of lipid
molecules, including so-called lipid mediators (1), for the
regulation of many different biological processes (2–4).
Lipidomics has therefore become one of the latest omics-
technologies used in the search for biomarkers (1), i.e., defined
characteristics of biological systems measured as indicators of
normal biological processes, pathogenic processes, or responses
to an exposure or (therapeutic) intervention (5). A possible
advantage of lipidomics over some other omics-technologies,
such as genomics, is the close temporal linkage of lipid marker
concentrations with individual clinical phenotypes (4, 6).
Lipidomics includes several thousands of different molecules
(7) found in biological fluids at highly variable concentrations,
assayed using untargeted approaches (2, 6, 7) which aim to
quantity the whole lipidome in a single analytical run but lack
sensitivity for molecules in the low concentration range and
selectivity for differences among isomeric or isobaric molecules
(3, 7). On the other hand targeted approaches are used. They are
focused on a limited number of analytes at comparatively high
sensitivity and selectivity (3).

Consistent to the nearly ubiquitous involvement of lipid
mediators in physiological and pathophysiological processes,
lipid markers have been linked to neurological disorders, cancer,
the metabolic syndrome, pain (1, 2, 6–8), and other clinical
settings. Neuropsychiatric disorders have also been proposed
as novel applications for lipidomics based diagnostics (9).
This agrees with altered lipid profiles observed in dementia
or Alzheimer’s disease (10, 11), depression (12), and bipolar
disorder (12). The present investigation was designed to gather
information needed to develop a prospective biomarker, using a
targeted lipidomics approach covering different lipid mediators.
Therefore, a data-driven approach was preferred to an explicit
hypothesis about suitable psychiatric settings and lipidmediators.

METHODS

Subjects and Study Design
The study followed the Declaration of Helsinki and was
approved by the Ethics Committee of the Medical Faculty of
the Goethe—University Frankfurt am Main, Germany (protocol
number 425/14). Informed written consent was obtained from
all subjects. Patients with depression (n = 20), bipolar disorder
(n = 20), attention-deficit hyperactivity disorder (ADHD; n =

12), or dementia (n = 16) were consecutively recruited from
outpatients and inpatients of the Department of Psychiatry of the
University Hospital Frankfurt am Main, Germany. Controls (n
= 26) were enrolled from medical students and staff members
of the hospital who routinely reported to the institutional
occupational health service. Inclusion criteria were age ≥ 18
years, for patients, a clinically verified diagnosis according to
ICD-10 criteria and for controls, no current medical condition
queried by medical interview, and no drug intake for at least 1
week except contraceptives, vitamins, and L-thyroxin.

Demographic data including time since diagnosis and current
disease-specific medication are summarized in Table 1. Of

TABLE 1 | Demographic parameters of the subjects, temporal disease

characteristics, and medication.

Diagnosis Parameter Mean SD Count (n)

Depression Sex [count] m/f 9/11

Age [y] 43.1 14 20

BMI [kg/m2] 26.2 6.9 18

Duration* (months) 8.7 11.2

Medicated patients (n) ** 19

Bipolar disorder Sex [count] m/f 11/9

Age [y] 43.7 12.7 20

BMI [kg/m2] 26.4 5.4 19

Duration* (months) 1.9 2.7

Medicated patients (n) ** 19

ADHD Sex [count] m/f 6/6

Age [y] 38.6 15.6 12

BMI [kg/m2] 29.1 9.2 11

Duration* (months) 0.9 0.5

Medicated patients (n) ** 2

Dementia Sex [count] m/f 10/6

Age [y] 69.9 9.3 16

BMI [kg/m2] 26.2 3.7 16

Duration* (months) 5.1 15.4

Medicated patients (n) ** 2

Healthy Sex [count] m/f 15/11

Age [y] 39.6 13.1 26

BMI [kg/m2] 23.6 2.2 26

*Duration: for depression and bipolar disorder: average duration of current episode; for

ADHD and Dementia: average time since diagnosis.

**Medicated patients: number of patients treated with disease-specific medication at

time of blood sampling (Depression: treatment with antidepressants, Bipolar disorder:

treatment with mood stabilizers; ADHD: treatment with methylphenidate or atomoxetine;

Dementia: treatment with cholinesterase-inhibitors or memantine).

the patients with bipolar disorder (F31, including manic,
hypomanic, mixed, or depressive episode), n= 19 received mood
stabilizing medication, including lithium, valproate, lamotrigine,
carbamazepine, and antipsychotics. Patients fulfilling diagnostic
criteria for moderate or severe depressive episode (F32, F33)
received antidepressant treatment with selective serotonin
reuptake inhibitors (SSRIs) (n = 8), dual serotonergic drugs
(trazodone) (n = 1), serotonin, and noradrenalin reuptake
inhibitors (n = 6), mirtazapine (n = 2), tricyclic antidepressants
(n = 1), or monoamineoxidase-inhibitors (n = 1). In addition,
n = 6 patients received mood stabilizers. Of the patients with
attention deficit disorder (F90.0 and F98.8), n = 2 were treated
with stimulants approved for this disease (methylphenidate,
atomoxetine) at the time of blood sampling. The dementia
group (n = 16) was comprised of patients with probable
Alzheimer’s dementia (n = 10; G30.1 and F00.1) and mild
cognitive impairment (MCI) (n = 6; F06.7). Of these patients,
n = 2 received antidementia drugs at time of blood sampling
(memantine or cholinesterase-inhibitors). In most dementia
and ADHD cases blood sampling was done shortly after
diagnosis, which explains why only few patients were already
on disease-specific medication. Moreover, no antidementia drugs
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are approved for the treatment of MCI, which additionally
explains why a large fraction of this group was untreated.

Lipid Mediator Plasma Concentration
Analysis
A venous blood sample (2.7ml) was collected into a K3EDTA
blood collection tube (Sarstedt, Nürmbrecht, Germany)
and centrifuged at 2,000 g for 15min at 4◦C within 30min
after sample collection. Plasma was separated and frozen
at −80◦C until assay. A total of n = 41 different lipid
mediators and other metabolites was analyzed from the
plasma samples. Plasma concentration analyses were performed
using liquid chromatography-electrospray ionization-tandem
mass spectrometry (LC-ESI-MS/MS) as described in detail
in the Supplementary Material. The selected methods
included sphingolipids (sphingosine, sphingosine-1-phosphate,
sphinganine-1-phosphate, C16 sphinganine, C18 sphinganine,
C24 sphinganine, C24:1 sphinganine, Cer14:0, Cer16:0,
Cer18:0, Cer20:0, Cer24:0, Cer24:1, GluCerC16:0, GluCerC18:0,
GluCerC18:1, GluCerC24:1, LacCerC16:0, LacCerC18:0,
LacCerC24:0, LacCerC24:1), lysophosphatidic acids (LPA16:0,
LPA18:0, LPA18:1, LPA18:2, LPA20:4), endocannabinoids
[arachidonoyl ethanolamide (AEA), oleoyl ethanolamide (OEA),
palmitoyl ethanolamide (PEA), 1-arachidonoyl glycerol (1-AG),
1-arachidonoyl glycerol (2-AG), docosahexaenoyl ethanolamide
(DHEA)], nucleosides (cytidine, deoxycytidine, guanosine,
thymidine, uridine), nucleotides [guanosine triphosphate
(GTP), adenosine triphosphate (ATP)] and cyclic nucleotides
[3′,5′-cyclic guanosine monophosphate (3′,5′-cGMP), 3′,5′-
cyclic adenosine monophosphate (3′,5′-cAMP)]. Because lipid
mediators represent the major part of investigated metabolites
hereafter the lipid mediators will be used as general term
comprising all investigated metabolites.

Data Analysis
Data analysis was performed using the R software package
[version 3.4.4 for Linux; http://CRAN.R-project.org/; (13)] on
an Intel Core i9 R© computer running on Ubuntu Linux 18.04.1
64-bit). The acquired parameters, subsequently called “features,”
initially included d = 41 lipid mediators assayed from the
participants’ venous blood plasma. The analysis was performed
in three main steps comprising (i) data preprocessing, (ii)
hypothesis generation using unsupervised lipid mediator pattern
analysis to assess whether the lipid mediator patterns contained
a cluster structure separating patients with particular diagnoses
from other patients, and (iii) hypothesis testing using supervised
lipid mediator pattern analysis aimed at identification of lipid
mediators important for diagnosis group assignment.

Data Preprocessing
The original data set comprised d = 41 lipid mediators. In
six mediators (sphingosine, Cer14:0, guanosine, 1-AG, 2-AG,
DHEA), more than 20% of themeasurements across all diagnoses
were below the lower limit of quantification (LLOQ) while
most of the other measurements of these mediators were only
narrowly above LLOQ. This was considered as an indication
of insufficient assay sensitivity for the present set of plasma

samples and therefore, these lipid mediators were excluded from
further analysis. Following published recommendations (14),
values below the validated LLOQwere verified by the responsible
analyst and values above the limit of detection were used in
the data set. Using this technique, seven values below LLOQ
for Cer16:0 and 12 values below LLOQ for 3′,5′ -cGMP were
included giving full data sets for both analytes. For deoxycytidine
only eight out of 17 values below LLOQ were replaceable leaving
the remaining nine as missing values.

Data preprocessing included (i) data transformation, (ii)
outlier detection and elimination, (iii) imputation of missing
data, and (iv) corrections for possible confounding influences
of the patients’ age, sex, or BMI. Data transformation was
performed following exploration of the data distribution of
the d = 35 features (i.e., the remaining lipid mediators) by
means of Kolmogorov-Smirnov tests (15), applied to the original
data and after application of log, square root, or reciprocal
data transformation. Kolmogorov-Smirnov tests obtained p <

0.05 in 12, 2, 5, and 3 parameters when not transformed or
when log, square root or reciprocal transformation was applied,
respectively. As log-transformation is most frequently advised
for transformations of blood-concentration data (16), this was
chosen for d= 33 parameters. For the two remaining parameters,
ATP and GTP, in which log transformed data significantly
differed from normal distribution (p = 0.044 and p = 0.00044,
respectively), reciprocal transformation was applied, which is
a common transformation for plasma concentrations applied,
for example, to creatinine (17). This resulted in non-significant
results of Kolmogorov-Smirnov tests also for ATP and GTP (p=
0.737 and p= 0.327, respectively).

Subsequent to data transformation, outlier in both directions
were detected by means of Grubbs tests (18). Specifically, each
outlier was replaced with a missing value. The procedure was
iteratively repeated as long as significant results of Grubbs
tests were obtained. A total of 9 outliers was detected and
replaced with missing values in the 35 lipid mediators. These
calculations were performed using the R library “outliers”
[https://cran.r-project.org/package=outliers; (19)]. Following
outlier elimination, the data set included 18 missing values.
Imputation was performed using the k-nearest neighbor
algorithm (20). These calculations were performed using the
R library “DMwR” [https://cran.r-project.org/package=DMwR;
(21)]. Subsequently, a 94 × 35 sized complete matrix of lipid
mediator concentrations was available for further analysis.

Differences with respect to age, body mass index (BMI), or
sex among the diagnostic groups (four psychiatric diagnosis
and controls) were assessed by means of univariate analysis
of variance. This resulted in significant age differences (df =
4.85, F = 16.49, p = 3.84 × 10−10) did not differ significantly
(df = 4,85, F = 2.206, p = 0.0751). The sex distribution
was equal among diagnostic groups as indicated by a non-
significant χ

2 test (22) (χ2 = 1.3443, df = 4, p = 0.85). As
age between groups potential confounders of subsequent results,
the correlation of lipid mediator plasma concentrations with age
was explored by calculating Pearson correlation coefficients (23).
In the controls (age range 21–67 years), 17 lipid parameters
were found to be significantly correlated with age. Subsequently,
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robust linear regressions of lipid parameter concentrations vs.
age were calculated in the controls only. Slopes and intercepts
were used to correct, in the whole data set, the concentrations
of lipid mediators found to be age-correlated in the controls, for
age. During this procedure, the respective parameters were also
normalized to the median age of subjects. This eliminated the age
correlation as indicated by non-significant Pearson correlation
tests in the control subgroup.

Hypothesis Generation Using Unsupervised Lipid

Mediator Pattern Analysis
Hypothesis generation with respect to which of the candidate
psychiatric diseases was associated with altered lipid mediator
patterns was pursued via structure detection in the preprocessed
data. Specifically, structures hinting at subgroups of subjects
were sought in the data space D = {(xi)|xi ∈ X, i = 1, . . . , n}
comprising plasma concentrations of d = 35 lipid mediators
acquired in n = 94 subjects. Data structures were assessed
by means of unsupervised methods including (i) Ward
hierarchical clustering, (ii) emergent self-organizing maps
of artificial neurons (ESOM), and (iii) classical principal
component analysis.

Following the standardization of all features into a
numerical range of [0,. . . ,100], the data space was explored
for possible subgroups of subjects sharing similar lipid mediator
concentration patterns by means of hierarchical clustering
using the Ward algorithm (24) and the Euclidean distance. To
identify the optimum number of clusters in the data space,
cluster stability scores were computed addressing the consensus
in cluster assignments across multiple runs of the clustering
algorithm on data sets created by repeated random resampling
from the original data set (25). That is, the stability scores
capture the average proportion of observations not placed in the
same cluster during the repeated runs (26). Clustering, including
stability assessments was performed using the progeny algorithm
(27), which selects the optimum cluster number that renders
the most stable clustering by evaluation of clustering stability
starting with an initial clustering of the full dataset, followed by
bootstrapping (28) and repetitive clustering. The idea is that a
meaningful valid cluster shouldn’t disappear easily if the data
set is changed in a non-essential way (29) such as by drawing
a random subsample of the cases. Cases belonging together
to the same cluster should keep shared cluster membership
when the case composition of the data set is slightly modified.
During resampling, the algorithm randomly sampled feature
values with replacement to construct new samples, so-called
“progenies,” rather than directly sampling existing samples as
with common algorithms. A number of k = [2,. . . ,5] clusters
was tried using 10 progenies in 10 randomly created datasets
and 100 iterations, which corresponds to the defaults of the R
package “progenyClust” [https://cran.r-project.org/package=
progenyClust; (30)] used for these calculations. To obtain
standard deviations of the stability measures, the procedures
were repeated 10 times. The final number of clusters was chosen
on the basis of both criteria offered in the progeny clustering
algorithm, i.e., the stability score criterion and in addition, the
so-called “greatest gap” criterion that selects the cluster number

that renders the greatest difference in stability score compared to
its neighboring numbers (27).

Lipid mediator-based cluster structures were again explored
by means of unsupervised machine learning. Specifically, a
topology-preserving self-organizing map (SOM) of the Kohonen
type (31, 32) was trained with the lipid mediator concentration
information. SOM are based on a topology-preserving projection
of high-dimensional data points xi ǫ R

D onto a two-dimensional
self-organizing network consisting of a grid of neurons. The
neural network consisted of a two-dimensional toroid grid of so-
called neurons with 50 rows and 80 columns [n = 4,000 units,
for SOM size determination, see (33)]. Each neuron holds, in
addition to a position vector on the two-dimensional grid, a
further vector carrying “weights” of the same dimensions as the
input dimensions. The weights were initially drawn randomly
from the sets of data variables and subsequently, adapted to the
data during the learning phase with 30 epochs. Following training
of the neural network, a SOM was obtained that represented the
subjects on a two-dimensional toroid map as the localizations of
their respective “best matching units” (BMU) that are neurons
on the grid that which after SOM learning carried the vector that
was most similar to a subject’s data vector. To obtain clusters,
an extension of the Kohonen SOM aimed at enhancing a cluster
structure and consisting of the so-called U-matrix (34), was
added. The U-matrix displays the distances between the neurons
in the high dimensional space as a third dimension onto the
two-dimensional SOM projection grid. Large heights indicated a
large gap in the data space, whereas low U-heights indicated that
the points were close to each other in the data space, indicating
structure in the data set. Using a topographic map analogy of
coloring, on the U-matrix appeared valleys, ridges and basins
that enhanced the visibility of clusters. For example, a “mountain
range” separated two regions indicating clusters which appeared
as “valleys” surrounded by the “mountains.” These calculations
were performed using the R package “Umatrix” [https://cran.r-
project.org/package=Umatrix; (35)].

To explore associations between clusters and diagnosis
groups, the respective contingency tables were analyzed
with respect to overrepresentation or underrepresentation
of diagnosis groups in clusters. Specifically, the permutation
distributions of the two-way tables were obtained and the sums
of squares of the Pearson residuals were calculated as the test
statistic of independence (36). Test significance was assessed
using Pearson’s χ

2 test (22). This allowed to associate particular
diagnoses with Ward or U-matrix based clusters. Clusters
in which a particular clinical diagnosis was overrepresented
provided hypotheses for further assessments. These calculations
were done using the R library “vcd” [https://cran.r-project.org/
package=vcd; (37)].

As an independent approach for internal validation of the
suitability of the data transformations and of the detected
structure in the data, principal component analysis (PCA) (38)
was performed. PCA (38) uses a rotation of the data, to project
the data to a subspace of so-called principal components. The
first principal component has the largest possible variance in
the data. Each succeeding orthogonal component is chosen for
the highest possible remaining variance. PC-corr analysis (39)
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provides an algorithm that permits to find the best results of
a PCA. PC-corr uses various data transformations and analyses
group separations by quantitative evaluations expressed as p-
value, AUC and AUPR, using any types of normalization and
dimension. As it calculates various quality measures for every
combination of PC, normalization and centering, it allows the
optimal selection of PC for data projection and was therefore a
suitable method to verify both, the applied data transformation
and results indicating that the data support a group structure.
This analysis was performed using an R script provided with the
description of the PC-corr analysis [pccorrv2.R, https://github.
com/biomedical-cybernetics/PC-corr_net; (39)].

Hypothesis Testing Aimed at Identification of Most

Relevant Lipid Mediators
Following identification of a hypothesis about which of
psychiatric diseases was associated with altered lipid marker
concentrations, subsequent analysis aimed at identification of
the most relevant lipid mediators among the d = 35 candidate
features. Hence, dimension reduction or of feature selection
(40) procedures were implemented as usually conducted when
a large number of candidate variables are present in order to
narrow the focus to the most relevant lipid mediators. Of note,
this analytical step aimed at selecting a subset of the existing
features without a transformation further to the simple numerical
transformation based on the distribution of each individual lipid
marker. By contrast, feature extraction was not the final target,
i.e., transforming the existing features (lipid mediator plasma
concentrations taken at a single time point) into some derived
variable with lower dimensions. This is not contradicted by
the intermediate use of PCA, which can be used for feature
extraction; however, in the present implementation, the PCs were
used to obtain the most informative lipid mediators but they
were not further used in subsequent analyses (see below). Feature
selection was performed using (i) machine learning techniques
implemented as random forests and (ii) by assessing the PCA
results for features that provided most relevant contributions for
data variance explanation.

Random forests (41, 42) is a method of supervised machine
learning (43) aimed at finding a mapping from inputs x to output
y, given a labeled set of input-output pairs D = , composed of
class assignments ∈ Y = N comprising diagnoses or groups
of diagnoses, and of values ∈ X ⊂ comprising the d features,
respectively plasma concentrations of lipid mediators, acquired
from n > 0 cases (subjects). Random forests is a method of
ensemble learning and creates sets of different, uncorrelated,
and often very simple decision trees with conditions of features
shown as vertices and classes as leaves. The splits of the features
are random and the classifier relates to the majority vote for
class membership provided by a large number of decision trees.
Random forest learning was performed following the concept
of a nested cross-validation analysis (44). Specifically, using
Monte-Carlo (45) resampling, the original data set was split
into a training (2/3 of the data) and test (1/3 of the data) data
set, using the R library “sampling” [https://cran.r-project.org/
package=sampling; (46)]. Subsequently, random forest analysis
was performed using randomly drawn sub-samples from the

actual training sample and finally, the forest was applied to
the actual test sample. The calculations were done using the
R library “randomForest” [https://cran.r-project.org/package=
randomForest; (47)]. Precedent hyperparameter testing had
indicated that sqrt(d) parameters for each tree, which is the
standard procedure implemented in the R library, provided
a similar classification performance as alternative settings. In
addition, using this setting the out-of-bag error remained at its
lowest level of 27.77% starting from forests sizes of 210 trees;
however, forest sizes of 1,500 trees were used in further analyses.
As a measure against overfitting, this random forest analysis was
repeated on 1,000 different training and test data sets, randomly
drawn from the original training data set.

Identification of the most relevant lipid mediators was based
on the mean decrease in classification accuracy, when the
respective feature was excluded from random forest building.
The extent of this decrease indicated the importance of the
particular feature in a single random forest run. Hence, after
each random forest analysis, the values for the mean decrease
in tree classification accuracy, when the feature was excluded
from random forest analysis, were subsequently submitted to
computed ABC analysis (48). This is a categorization technique
for the selection of the most important subset among a larger set
of items. It was chosen since it fitted the basic requirements of
feature selection using filtering techniques (40). Thus, it easily
scales to very high-dimensional datasets, is computationally
simple and fast, and independent of the classification algorithm.
ABC analysis aims to divide a set of data into three disjointed
subsets called “A,” “B,” and “C” (49). Subset “A” contains the most
profitable features (50, 51) and was therefore, chosen for classifier
establishment. These calculations were done using our R package
“ABCanalysis” [http://cran.r-project.org/package=ABCanalysis;
(48)]. For each of the 1,000 runs using Monte-Carlo (45)
resampling to split the original data set into a training (2/3 of the
data) and test (1/3 of the data) data set, the size and members of
the ABC set “A” were retained. The final size of the feature set was
equal to themost frequent size of the set “A” in the 1,000 runs, and
the final members of the feature set were chosen in decreasing
order of their appearance in the ABC set “A” among the
1,000 runs.

Applying the most suitable PCA parameter settings as
identified bymeans of PC-corr analysis, PCAwas used for feature
selection. Specifically, features were analyzed with respect to how
much of the variance of a given PC was explained by the original
variable. This was obtained by calculating Pearson’s correlation
(52) and taking the square r2 of the correlation coefficient
between the variable and the PC. Subsequently, values of r2 were
submitted to ABC analysis as described above. Again, For each
of 1,000 runs using Monte-Carlo (45) resampling to split the
original data set into a training (2/3 of the data) and test (1/3
of the data) data set, the size and members of the ABC set “A”
were retained. The final size of the feature set was equal to the
most frequent size of the set “A” in the 1,000 runs, and the final
members of the feature set were chosen in decreasing order of
their appearance in the ABC set “A” among the 1,000 runs.

Following the identification of lipid markers relevant to the
group structure among lipid mediator plasma concentrations
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that had emerged from data structure detection analysis during
hypothesis generation, the sets obtained by either random forests
or PCA, followed by computed ABC analysis, were compared.
A final set was created from the set intersection as this was
considered to comprise lipid markers that by two independent
methods had emerged as most relevant in the present context.

The selected lipid mediators were assessed with respect to
their utility for class assignment, i.e., to correctly predict different
groups of patients as established in the hypothesis generation
step of the analysis. Therefore, a mapping of the input space,
given by the selected features prepared during the precedent

analytical steps, to the output space, given by the classes obtained
during hypothesis generation, was performed. The mapping was
addressed by random forests classifier building applied on the
original data set and on a negative control data set obtained
by random permutation of the lipid mediator concentration
pattern in the respective training data subsets. The expectation
was to observe a prediction of the subjects’ class membership that
was better when using the original lipid mediator concentration
pattern than when using the permuted patterns, which should
provide a classification performance not superior to guessing.
In addition, the procedure was repeated with randomly chosen

FIGURE 1 | Plasma concentrations of d = 35 lipid mediators (raw data). The data are shown in alphabetical order of lipid mediator names and for each mediator,

separately for group membership to the five diagnoses (coded as A to E for depression, bipolar disorder, ADHD, dementia, or controls, respectively). The widths of the

boxes are proportional to the respective numbers of subjects per group. The quartiles and medians (solid horizontal line within the box) are used to construct a “box

and whisker” plot. Single data are shown as dots. The whiskers add 1.5 times the interquartile range (IQR) to the 75th percentile or subtract 1.5 times the IQR from

the 25th percentile and are expected to include 99.3% of the data if normally distributed. The figure has been created using the R software package [version 3.4.4 for

Linux; http://CRAN.R-project.org/; (13)].
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FIGURE 2 | Data structure found obtained by means of Ward clustering (24) of the data space of d = 35 plasma lipid mediator concentrations acquired in n = 94

subjects. (A) Cluster dendrogram showing three clusters, and matrix plot of the transformed and age corrected data rescaled to a range of [0,…,100] shown in the

adjacent matrix plot displaying the transformed concentrations of d = 35 lipid mediators (columns) acquired from n = 94 subjects (rows) with color coding for the

scaled data. (B) Silhouette plots (60) for 2 or 3 clusters, which indicate how near each sample is to its own relative to the neighboring clusters. Positive values indicate

that the sample is away from the neighboring clusters while negative values indicate that those samples might have been assigned to the wrong cluster because they

(Continued)
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FIGURE 2 | are closer to neighboring than to their own cluster. The low silhouette coefficients of 0.11 or 0.13, however, indicate a weak cluster structure. (C) The

optimal cluster number was identified based on cluster stability criteria assessed using the progeny algorithm (27, 30). The optimal cluster number was chosen based

on the two criteria: “greatest score” and “greatest gap” (C) top and bottom, respectively, which both indicated three clusters. The error bars indicate standard

deviations calculated from 10 runs of the progeny algorithm. (D) Mosaic of the contingency table between diagnosis groups (ordinate) and clusters (abscissa). The

size of the cells is proportional to the number of subjects included. (E) Association plot visualizing the residuals of an independence model for the diagnosis vs.

clusters contingency table (61). Each cell of the contingency table is represented by a rectangle that has (signed) height proportional to the signed contribution to

Pearson’s χ for the cell and width proportional to the square root of expected counts corresponding to the cell. Hence, the area of each box is proportional to the

difference in observed and expected frequencies. The rectangles in each row are positioned relative to a baseline indicating independence, i.e., if the observed

frequency of a cell is greater than the expected one, the box rises above the baseline, and falls below otherwise. Each diagnosis (lines) is plotted vs. the Ward derived

clusters (columns) as a result of a contingency table analysis, indicating the relative representations of each cluster in across the tree nodes. The Pearson residuals are

colored according to a perceptually uniform Hue-Chroma-Luminance (HCL) given at the right margin of the association plot (62). The figure has been created using the

R software package [version 3.4.4 for Linux; http://CRAN.R-project.org/; (13)]. Specifically, for drawing the silhouette plots, the R library “cluster” was used [https://

cran.r-project.org/package=cluster; (63)] and, tree and association plots were drawn using the R package “vcd” [https://cran.r-project.org/package=vcd; (37)]

including the “strucplot” framework (37) and residual-based shadings (36), and the results of progeny cluster number detection are the graphical output of the R library

“progenyClust” [https://cran.r-project.org/package=progenyClust; (30)].

sets of lipid mediators that were not selected as best suited
for classification in the preceding analytical steps, with the
expectation that this selection provided a poorer classification
performance than when using the selected features. Furthermore,
the procedure was run again with the full set of d = 35 lipid
mediators to further establish that the best suited features had
been selected for the reduced set.

As random forests had been used for feature selection,
which could have provided sets of lipid mediators only suited
for class assignment when this particular method was used,
analyses of the classification performance were repeated using
further methods of supervised machine-learning comprising k-
nearest neighbors (kNN) (20), support vector machines (SVM)
(53), multilayer perceptrons (54), and naïve Bayesian classifiers.
This provided different types of classifiers. Specifically, while
random forests confers a decision tree based ensemble learning
classifier, kNN provide a prototype based classifier, support
vector machines and multilayer perceptrons use supervised-
artificial neuronal-network based classifiers, however, differently
constructed, and naïve Bayesian classifiers represent probabilistic
classifiers based on the Bays theorem (55) and including
independency assumptions.

During kNN classification the entire labeled training dataset
is stored while a test case is placed in the feature space in the
vicinity of the test cases at the smallest high dimensional distance.
The test case receives the class label according to the majority
vote of the class labels of the k training cases in its vicinity.
In the present implementation, the size of k was established in
resampling experiments, and considering the small group size in
the cohort, with k set at 3. These calculations were performed
using the R package “KernelKnn” [Mouselimis L, https://cran.
r-project.org/package=KernelKnn]. Support vector machines are
supervised learning methods that classify data mainly based on
geometrical and statistical approaches employed for finding an
optimal decision surface (hyper-plane) that can separate the data
points of one class from those belonging to another class in the
high-dimensional feature space (53). These analyses were done
using the R library “kernlab” [https://cran.r-project.org/package=
kernlab; (56)].

Furthermore, a perceptron (54) was built from artificial
neurons that are provided with several input channels, a
processing level, and an output level that connects a neuron to

one or multiple other artificial neurons. In the present analyses,
a multilayer perceptron was used with a number of input
neurons equaling the number of lipid mediators selected during
the feature selection step, three hidden layers composed of 35
neurons, and the output layer comprising as many neurons
as classes the output space of the analyses. The number of
neurons in the hidden layers was determined during exhaustive
assessments of perceptrons with one to three hidden layers
sized between two neurons each and the maximum number
of lipid mediators included. Standard back propagation was
used for the learning function. The analyses were done using
the R library RNNS [https://cran.r-project.org/package=RSNNS;
(57)]. Finally, naïve Bayesian classifiers were used that provide
the probability that a data point being assigned to a specific
class calculated by application of the Bayes’ theorem (55). The
calculations were done using the R package “klaR” [https://
cran.r-project.org/package=klaR; (58)]. The performances of all
classifiers were assessed using the test data set drawn up at
the start of the data analysis and comprised the calculation
of standard measures of test performance (e.g., sensitivity,
specificity, precision, positive and negative predictive values, F1
measure, balanced accuracy) as implemented in the R library
“caret” [https://cran.r-project.org/package=caret]. In addition,
for the area under the ROC curve (AUC-ROC) and the area
under the precision-recall curve (AUPRC) were calculated for
the results obtained with the selected lipid mediators and the
original data, using the R libraries “pROC” [Robin X, https://
cran.r-project.org/package=pROC; (59)].

RESULTS

Plasma concentrations of d = 35 lipid mediators (Figure 1)
were available from n = 94 subjects with the clinical diagnoses
depression (n =20), bipolar disorder (n = 20), ADHD (n = 12),
dementia (n= 16), or healthy (n= 26).

Hypothesis Generation Using
Unsupervised Analysis of Lipid Mediator
Patterns
Applying the progeny algorithm (27), three clusters were
identified as the most stable solution of hierarchical clustering
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of the lipid mediator plasma concentration pattern observed
in the 94 subjects (Figure 2). This result was based on both,
the “greatest score” criterion (i.e., the most stable clustering
solution as detailed out in the methods section) and the
“greatest gap” criterion (i.e., the criterion that selects the cluster
number that renders the greatest difference in stability score

compared to its neighboring numbers) (27). The diagnostic
groups were unequally distributed among clusters (Pearson χ

2

= 22.843, df = 8, p = 0.00357). Nevertheless, the distribution
of diagnoses often agreed with the expectation from a random
distribution (Figure 2). The only significant deviation from this
expectation was observed with the diagnosis of dementia that was

FIGURE 3 | Data structure found obtained by means of SOM based clustering of the data space of d = 35 plasma lipid mediator concentrations acquired in n = 94

subjects. (A) 3-dimensional display of the U-matrix visualization of distance based structures of the lipid mediator plasma concentration pattern (transformed and age

corrected data rescaled to a range of [0,…,100]) observed in n = 94 subjects. The figure has been obtained using a projection of the data points onto a toroid grid of

4,000 neurons where opposite edges are connected. The dots indicate the so-called “best matching units” (BMUs) of the self-organizing map (SOM), which are those

neurons whose weight vector is most like the input. A single neuron can be the BMU for more than one data point or subject, hence, the number of BMUs may not be

equal to the number of acquired measurements. The U-Matrix was colored as a geographical map with brown (up to snow-covered) heights and green valleys with

blue lakes. Valleys indicate clusters and watersheds indicate borderlines between different clusters. The BMUs are colored according to the two clusters identified on

the basis. (B) Top view of the same U matrix, (C) Top view of the same matrix with BMUs color coded for the diagnosis groups. This indicates that the small cluster

separated from the other data by a circular “mountain ridge” contained in particular patients with dementia. (D) Silhouette plot (60) for the 2 cluster solution. Positive

values indicate that the sample is away from the neighboring clusters while negative values indicate that those samples might have been assigned to the wrong cluster

because they are closer to neighboring than to their own cluster. The silhouette coefficient of 0.22 indicates better cluster sedation than observed with the Ward based

clusters (Figure 2). (E) Mosaic of the contingency table between diagnosis groups (ordinate) and clusters (abscissa). The size of the cells as proportional to the

number of subjects included. (F) Association plot visualizing the residuals of an independence model for the diagnosis vs. clusters contingency table (61). Each cell of

the contingency table is represented by a rectangle that has (signed) height proportional to the signed contribution to Pearson’s χ
2 for the cell and width proportional

to the square root of expected counts corresponding to the cell. Hence, the area of each box is proportional to the difference in observed and expected frequencies.

The rectangles in each row are positioned relative to a baseline indicating independence, i.e., if the observed frequency of a cell is greater than the expected one, the

box rises above the baseline, and falls below otherwise. Each diagnosis (lines) is plotted vs. the Ward derived clusters (columns) as a result of a contingency table

analysis, indicating the relative representations of each cluster in across the tree nodes. The Pearson residuals are colored according to a perceptually uniform

Hue-Chroma-Luminance (HCL) given at the right margin of the association plot (62). The figure has been created using the R software package [version 3.4.4 for

Linux; http://CRAN.R-project.org/; (13)]. Specifically, the U matrix was drawn using our R package “Umatrix” [https://cran.r-project.org/package=Umatrix; (35)], for

drawing the silhouette plots, the R library “cluster” was used [https://cran.r-project.org/package=cluster; (63)] and tree and association plots were drawn using the R

package “vcd” [https://cran.r-project.org/package=vcd; (37)] including the “strucplot” framework (37) and residual-based shadings (36).
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FIGURE 4 | Data structure found in the input space of d = 35 lipid mediator

plasma concentration acquired from patients with dementia (yellow dots) or

from patients with either bipolar disorder, depression, ADHD, or enrolled as

healthy controls (blue dots). The data structure has been obtained by means of

principal component analysis on the log-transformed data as suggested by

the results of the PC-corr analysis (39). The PCA plot associated to this

analysis shows the sample separation in the first and second component (PC1

vs. PC2) as explaining most of the variance in the data. In addition, the

group-wise marginal distributions of the data are shown. The figure has been

created using the R software package [version 3.4.4 for Linux; http://CRAN.R-

project.org/; (13)] and the library “ggplot2” [https://cran.r-project.org/

package=ggplot2; (65)].

significantly overrepresented in cluster #3. Thus, results of Ward
clustering suggested that patients with the diagnosis of dementia
display a lipid plasma mediator pattern that differs from that of
all other included patients and controls.

A trained self-organizing map of the Kohonen type was
obtained with the U-matrix providing a visible separation of a
small cluster from most of the neurons (Figure 3). Specifically,
using the topographical map analogy a circular mountain range
was visible that surrounded a “valley,” which indicates the
emergence of two clusters in the data (64). Superimposing onto
the cluster structure the class labeling into diagnostic groups
indicated the separate small cluster was mainly populated by
patients with dementia, whereas the data structure did not further
coincide with the structure of the diagnoses groups. Indeed,
although the diagnostic groups were unequally distributed
among the two clusters (Pearson χ

2 = 32.99, df = 8, p = 1.2 ×

10−6), the distribution of diagnoses agreed with the expectations
from a random distribution except for the diagnosis of dementia
that was significantly overrepresented in cluster #2 (Figure 3).
Thus, results of SOM-based clustering suggested that patients

with the diagnosis of dementia display a lipid plasma mediator
pattern that differs from that of all other included patients
or controls.

Results of unsupervised data analysis aimed at hypothesis
generation, thus consistently indicated that of the five diagnostic
groups, lipid mediator plasma concentration patterns in patients
with dementia differed from those found in any other enrolled
group of subjects. Applying the PC-corr algorithm to the
back-transformed data, i.e., to the antilog or reciprocals of
the transformed, outlier curated and age corrected data,
suggested a non-centered PCA and log transformation of
the data (Supplementary Table 1). This produced a significant
segregation of the patients with dementia from other subjects
along the first dimension (PC1). Indeed, the sample segregation
along PC1 had p-value < 0.001, AUC-ROC of 0.84, AUC-PR of
0.77, and explained 99% of the variance (Figure 4). Hence, log
transformation of most of the data, as it had resulted from data
exploration during the preprocessing step, was supported by the
results of the PC-corr analysis.

Based on these results the hypothesis was generated that lipid
mediator concentration patterns differ between patients with
dementia and all other subjects enrolled in this study (Figure 5).
Subsequent data analyses were designed accordingly.

Identification of Most Relevant Lipid
Mediators
For the 1,000 runs of random forest building followed by ABC
analysis of the feature importance measure, i.e., of the mean
decrease in classification accuracy when the lipid mediator was
omitted from forest building, the ABC set “A” had sizes of
4–12 items. The most frequent size |{ABC set A}| = 8 lipid
mediators, i.e., the most profitable items from the set of candidate
features (Figure 6), was chosen for further analysis. The eight
lipid mediators that during the 1,000 runs have been most
frequently members of ABC set “A” comprised GluCerC16:0,
Cer24:0, Cer20:0, sphingosine-1-phosphate, Cer16:0, Cer24:1,
C16 sphinganine, and LacCerC16:0. Applying the parameters
identified by the PC-corr analysis to the PCA, a significant
segregation of sample emerged along the first dimension (PC1)
that explained 99% of the variance. Hence, the main criterion
of feature importance was chosen to be the squared Pearson
correlation coefficient of the lipid maker concentration data with
the loadings on the first principal component. For the 1,000 runs
of PCA followed by ABC analysis of this feature importance
measure, the ABC set “A” had sizes of 9–15 items. The most
frequent size |{ABC set A}| = 13 lipid mediators, i.e., the most
profitable items from the set of candidate features (Figure 6),
was chosen for further analysis. The 13 lipid mediators that
during the 1,000 runs have been most frequently members
of ABC set “A” comprised Cer16:0, GluCerC18:0, Cer20:0,
Cer24:1, GluCerC24:1, Cer24:0, Cer18:0, GluCerC16:0, C16
sphinganine, LacCerC18:0, C24 sphinganine, GluCerC18:1, and
LacCerC16:0. From these results, a final set of lipid mediators
relevant for the generated hypothesis was created from the set
intersection of the random forests and PCA derived features
assigned by ABC analyses to set “A” that contains the most
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FIGURE 5 | Plasma concentrations of d = 35 lipid mediators (transformed and age corrected data) acquired from patients with dementia (yellow) or from patients with

either bipolar disorder, depression ADHD or enrolled as healthy controls (gray). The data are shown in alphabetical order of lipid mediator names and for each mediator,

separately for group membership to either or not the diagnosis of dementia (dementia = 1, others = 0). The widths of the boxes are proportional to the respective

numbers of subjects per group. The quartiles and medians (solid horizontal line within the box) are used to construct a “box and whisker” plot. Single data are shown

as dots. The whiskers add 1.5 times the interquartile range (IQR) to the 75th percentile or subtract 1.5 times the IQR from the 25th percentile and are expected to

include 99.3% of the data if normally distributed. The figure has been created using the R software package [version 3.4.4 for Linux; http://CRAN.R-project.org/; (13)].

relevant items of a set. This intersection comprised d = 7
markers, i.e., GluCerC16:0, Cer24:0, Cer20:0, Cer16:0, Cer24:1,
C16 sphinganine, and LacCerC16:0.

Validation of the suitability of the selected lipid mediators was
performed using five different methods comprising (i) random
forests, (ii) k nearest neighbors (kNN), (iii) support vector
machines, (iv) multilayer perceptrons, and (v) naïve Bayesian
classifiers. They were applied on (i) the set of most relevant lipid
mediators applied to the original data, (ii) equally sized sets of
lipid mediators randomly chosen from those not included in the
set of most relevant mediators, and (iii) the full set of d= 35 lipid

mediators. All sets of mediators were trained (i) with the original
data and (ii) with data in which the lipid mediator concentrations
had been randomly permuted along the subjects, i.e., disrupting
the association between lipid mediator and class label.

Across these 3× 5× 2 validation scenario (three data sets, five
algorithms, original/permuted data), it was consistently found
that when using the selected feature set of lipidmediators relevant
to the present classification problem into subjects with dementia
vs. other subjects enrolled in this study, the performance
in correct class assignment was similar or sometimes better
to that obtained with the full feature set. The performance
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FIGURE 6 | Feature selection based on random forests analysis followed by computed ABC analysis, for the diagnosis of dementia that was consistently identified to

display a lipid mediator plasma concentration pattern that differed from that of the other subjects. (A) Display of the mean decrease in classification accuracy when the

respective feature (lipid mediator concentration) is excluded from the random forest analysis. The plot displays one typical example out of the analyses of 1,000

bootstrap resampled data subsets. (B) Subsequent to random forest-based feature ranking, the mean decrease in accuracy associated with each item was submitted

to computed ABC analysis, which is an item selection procedure aiming at identification of most profitable items from a larger list of items. The ABC plot (blue line)

shows the cumulative distribution function of the mean decreases in accuracy, along with the identity distribution, xi = constant (magenta line), i.e., each feature

contributes similarly to the classification accuracy [for further details about computed ABC analysis, see (48)]. The red lines indicate the borders between ABC sets

“A,” “B,” and “C.” Only set “A” containing the most profitable items was selected as the diagnosis-relevant subsets. (C) Bar plot of the number of lipid mediators found

in ABC set A during the 1,000 runs. (D) Bar plot of the features’ importance in descending order of their appearance in ABC set “A” during the 1,000 runs. As set “A”

had most frequently a size d = 8, the eighth features (blue bars) found most frequently in set “A” were selected as the most relevant lipid mediators for the diagnosis of

dementia in this model. The figure has been created using the R software package [version 3.4.4 for Linux; http://CRAN.R-project.org/; (13)] and our R package

“ABCanalysis” [http://cran.r-project.org/package=ABCanalysis; (48)].

measures are shown in Table 2; the mean areas under the ROC
curves were 0.78, 0.77, 0.8, 0.8, and 0.8 obtained with random
forests, k-nearest neighbors, support vector machines, multilayer
perceptrons, and naïve Bayesian classifiers, respectively, during
the 1,000 iterations with randomly resampled disjoint training
and test data subsets. An example is shown in Figure 7. The
performance measures were substantially better than those
obtained when used similarly sized sets of lipid mediators chosen
among those that had not passed the feature selection step. By

contrast, when training the algorithms with randomly permuted
data, the class association was not better than by flipping a coin,
i.e., was obtained at a mean balanced accuracy of around 50%.

DISCUSSION

A role of lipids and lipid mediators, i.e., bioactive lipid molecules
involved in different biological signaling events (1), has already
been shown for several diseases; however, a possible exploitation
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FIGURE 7 | Receiver operating characteristic (ROC) curves for the classifiers.

For this example, the full data set was used for the prediction of trained

algorithms implemented as random forests, k-nearest neighbors (kNN)

support vector machines (SVM) multilayer perceptron [MLP or naïve Bayesian

classifiers (Bayes)]. The figure has been created using the R software package

[version 3.4.4 for Linux; http://CRAN.R-project.org/; (13)] and the R package

“pROC” [https://cran.r-project.org/package=pROC; (59)].

as biomarkers in the detection of diseases or to monitor the
efficacy of medical treatment can be challenging. As lipidomics
includes several thousands of molecules found in biological
materials at very different concentration ranges (7), published
concentration data are limited and comparisons among different
studies may be difficult due to missing quality assurance
measures, differences in the lower limit of quantification,
inadequate method validation, or non-standardized sample
collection procedures. Often, changes in concentrations of single
lipid mediators are small and therefore, it can be assumed that no
single molecule but a complex pattern of concentration changes
of different molecules will be identified as biomarker (66). This
poses challenges on the data analysis triggering the preference
for bioinformatics methods such as machine learning that have
already been applied successfully to the association of diseases
with lipidomic pattern changes (2, 66–68).

In the present analyses, machine-learning was mainly used
for knowledge discovery and hypothesis generation. The data
analytical process mimicked the creation of a biomarker having
this in mind as a subsequent project based on present results. The
focus was on hypothesis generation through data exploration in
a typical data science project that includes the import and tidying
of the data, data transformations, visualizations and modeling,
and ends with the communication of the results (69). The
algorithms at the end of the analysis served for the verification of
the generated hypothesis. Given small study sample, a classifier
for immediate use as a biomarker was not expected to arise. Its
creation will require independent data in an adequately powered
study, which is now possible since a clear hypothesis has been
generated during the present analysis.
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Indeed, data exploration was used with its goal of generating
promising leads that can be pursued in the present data set
comprising lipid mediator plasma concentrations acquired from
a small sample of patients with different psychiatric diagnoses
or controls. Following data transformation and application of
unsupervised and supervised methods of data exploration and
modeling, a hypothesis could be obtained that pointed at patients
with dementia as a group of psychiatric patients that displays
the most distinct lipid mediator plasma concentration pattern
among a mixed cohort of healthy subjects and patients with
depression, bipolar disorder or ADHD. Although the present
data set was small and with diagnostic accuracies of only
close to 80% a useful biomarker was not obtained, results
nevertheless encourage further research on a plasma lipid
mediator concentration-based complex biomarker for dementia.
Whether others of the included psychiatric diseases also display
distinct lipid mediator patterns is discouraged by the present
results, however, considering the small sample size this cannot
be excluded. For dementia, among 35 candidate lipid mediators,
a subset of seven lipid mediators provided a better diagnostic
performance than similarly sized sets of randomly chosen
lipid mediators.

In the present study, a targeted approach to quantify lipid
mediators was chosen because it was expected to provide a more
robust numerical basis for testing of the possibility to develop a
lipid mediator based biomarker in psychiatric diseases than an
untargeted approach (2, 6, 7). In addition, it was non-redundant
to previous untargeted approaches conducted for investigating
lipid profiles in dementia/Alzheimer’s disease (10, 11),
depression (12), and bipolar disorder (12). In these studies
lipids of several different classes were investigated including
lysophosphatidylcholine, lysophosphatidylethanolamine,
phosphatidylcholine, phosphatidylethanolamine, phosphatid
ylinositols, sphingomyelins, diacylglycerol, and triacylglycerol
but not covering the group of lipid mediators present in
lower concentrations. Alterations in the lipid metabolism were
found in dementia/Alzheimer’s disease, depression and bipolar
disorder, supporting lipidomics as a reasonable, and promising
approach to biomarker creation for neurological disorders.
However, a final biomarker composition was not provided while
several lipids were suggested to merit further studies. Among the
rarer targeted approaches to the detection of lipid mediators in
neuropsychiatric patients is a report of an altered sphingolipid
metabolism in Alzheimer’s disease (70), which is consistent
to the present results that suggest identifying patients with

dementia using seven lipid mediators, all belonging to the group
of sphingolipids.

CONCLUSIONS

Aim of this study was the creation of a (complex) biomarker
for the differentiation of a psychiatric disease within a group of
patients with different psychiatric diseases namely depression,
bipolar disorder, attention-deficit hyperactivity disorder, or
dementia and a control group. No concrete hypothesis like a
single metabolic pathway was taken as basis for the selection
of analytes but a broad range of 41 lipid mediators and other

metabolites was analyzed. Using a data-science based approach
the identification of patients diagnosed with dementia in the
examined group by a complex biomarker including seven lipid
mediators was possible. Because of the limited number of patients
further investigations including higher numbers of participants
as well as an age-matched control group are necessary.
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