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ABSTRACT
Background: Most renal allograft recipients reach a stable immune state (neither
rejection nor infection) after transplantation. However, the detailed distribution of
overall T lymphocyte subsets in the peripheral blood of these immune-stable
renal transplant recipients remains unclear. We aim to identify differences between
this stable immune state and a healthy immune state.
Methods: In total, 103 recipients underwent renal transplantation from 2012 to 2016
and received regular follow-up in our clinic. A total of 88 of these 103 recipients
were enrolled in our study according to the inclusion and exclusion criteria. A total
of 47 patients were 1 year post-transplantation, and 41 were 5 years post-
transplantation. In addition, 41 healthy volunteers were recruited from our physical
examination clinic. Detailed T cell subpopulations from the peripheral blood
were assessed via flow cytometry. The parental frequency of each subset was
calculated and compared among the diverse groups.
Results: The demographics and baseline characteristics of every group were
analyzed. The frequency of total T cells (CD3+) was decreased in the renal allograft
recipients. No difference in the variation of the CD4+, CD8+, and activated
(HLA-DR+) T cell subsets was noted among the diverse groups. Regarding T cell
receptor (TCR) markers, significant reductions were found in the proportion of cd T
cells and their Vd2 subset in the renal allograft recipients. The proportions of
both CD4+ and CD8+ programmed cell death protein (PD) 1+ T cell subsets were
increased in the renal allograft recipients. The CD27+CD28+ T cell proportions
in both the CD4+ and CD8+ populations were significantly decreased in the allograft
recipients, but the opposite results were found for both CD4+ and CD8+
CD27-CD28- T cells. An increased percentage of CD4+ effector memory T cells and
a declined fraction of CD8+ central memory T cells were found in the renal
allograft recipients.
Conclusion: Limited differences in general T cell subsets (CD4+, CD8+,
and HLA-DR+) were noted. However, obvious differences between renal allograft
recipients and healthy volunteers were identified with TCR, PD1, costimulatory
molecules, and memory T cell markers.

Subjects Immunology, Urology
Keywords T cell subset, TCR, PD1, Flow cytometry, Immune monitoring

How to cite this article Zhuang Q, Peng B, Wei W, Gong H, Yu M, Yang M, Liu L, Ming Y. 2019. The detailed distribution of T cell
subpopulations in immune-stable renal allograft recipients: a single center study. PeerJ 7:e6417 DOI 10.7717/peerj.6417

Submitted 22 August 2018
Accepted 9 January 2019
Published 8 February 2019

Corresponding author
Yingzi Ming,
myz_china@aliyun.com

Academic editor
Jeffrey Bluestone

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peerj.6417

Copyright
2019 Zhuang et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.6417
mailto:myz_china@�aliyun.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.6417
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


INTRODUCTION
Renal transplantation is still the most applicable management strategy for end-stage renal
disease (ESRD) (Darres et al., 2018). Every patient needs to take immunosuppressants
(ISs) to prevent rejection after organ transplantation, but taking an overdose of ISs
will cause infection and drug toxicity (Mota et al., 2013). After a period of continuous
monitoring and adjustment of the ISs concentration and immunocompetency, renal
allograft recipients can achieve a stable immune state (neither infection nor rejection).
However, this stable immune state is complex and influenced by multiple factors, such as
ISs, allograft immune activity and psychological changes. Therefore, this immune-stable
state should be different from healthy immunity.

Renal allograft recipients mainly take calcineurin inhibitors (CNIs) to prevent
cellular rejection responses after transplantation (Yu et al., 2018). The most
commonly applied CNIs in our department is tacrolimus (also known as FK506).
The immunosuppressive activities of tacrolimus and other commonly used
ISs (e.g., mycophenolate mofetil (MMF) and steroids) mainly impact T lymphocytes
(Hartono, Muthukumar & Suthanthiran, 2013). Therefore, the constitution and
proportion of T cells and their subpopulations should receive considerable attention.
The chief subpopulations of T cells are indicated by the cell surface markers CD4 and CD8
together with CC chemokine receptor 7 (CCR7) and CD45RA (Busch et al., 2016).
The activated subpopulations of each of these cell types can be defined by the supplement
of activation markers, such as CD38 and HLA-DR (Ferreira, Kumar & Humar, 2018;
Tanko et al., 2018). The naive T cell, effector memory (EM), central memory (CM), and
effector T cell subsets were first defined based on CCR7 and CD45RA expression
(Sallusto et al., 1999). The specific mechanism for the above ISs is inhibition of the
production of interleukin-2, which allows naïve T cells to differentiate into effector T cells
in lymphatic tissues (Hartono, Muthukumar & Suthanthiran, 2013). Compared with
the activation process in naïve T cells, memory T cells are activated by antigen-presenting
cells (APC) in diverse tissues, including organ allografts and are less susceptible to
suppression by immunosuppressive agents and tolerogenic cells (Yang et al., 2007),
whereas allo-reactive CD8+ memory T cells are known to be more resistant than CD4+
T cells (Perez-Gutierrez et al., 2018). Both CM and EM T cells show potential for
generation following acute allograft rejection (Danger, Sawitzki & Brouard, 2016; Siu et al.,
2018). Additionally, T cells need two signals for activation: the T cell receptor (TCR)
and costimulatory molecules (Agarwal & Newell, 2008). There are two major categories of
costimulatory molecules: the immunoglobulin superfamily (i.e., CD28) and the tumor
necrosis factor receptor superfamily (i.e., CD27) (Croft, 2003). More recently, T cell
immunosenescence has been shown to related to telomere-dependent replication
senescence, and its characteristic phenotype and functional spectrum are associated with
CD57 expression (Cura Daball et al., 2018), which is also associated with altered
function (Larbi & Fulop, 2014). These CD57+ T cells were initially defined as being unable
to proliferate under antigen stimulation, but recent studies showed that they could
enter the active cell cycle and proliferate under certain stimulation conditions and

Zhuang et al. (2019), PeerJ, DOI 10.7717/peerj.6417 2/20

http://dx.doi.org/10.7717/peerj.6417
https://peerj.com/


maintain cytokine production (Strioga, Pasukoniene & Characiejus, 2011). Several studies
clearly demonstrated that CD8+CD57+ T cells showed immunosuppressive activity and
were more active in ISs-treated and human immunodeficiency virus-infected patients
(Frassanito et al., 1998; Sadat-Sowti et al., 1994). The programmed cell death protein 1
(PD1) plays a role in chronic infection and organ transplant tolerance, and PD1
upregulation is associated with T cell exhaustion phenotypes in multiple animal models
(Wang, Han & Hancock, 2007).

Continuous monitoring of immune cells is important for disease treatment and
prognostic prediction (Goldschmidt et al., 2018). The peripheral blood is very important
for assessing the immune state, because it is convenient to be collected and contains
abundant significant information concerning the arrival of immune cells in the cognate
tissue through the circulation (Ruhle et al., 2016). Multicolor flow cytometry is
considered as the preferred scheme for analysis of blood samples, because it provides
highly specific single cell levels with various indexes and high output characteristics
(Streitz et al., 2013).

In our study, we obtained peripheral blood specimens from recipients 1 and 5 years
post-kidney transplantation and analyzed their detailed T cell subset immunophenotyping
using multicolor flow cytometry. We compared these profiles with those of healthy
volunteers to assess the constitution and frequency of T cell subpopulations in
immune-stable recipients.

METHODS AND MATERIALS
Study population and blood specimen collection
In total, 103 recipients aged 18–65 years old underwent kidney transplantation from
January 1, 2012 to December 31, 2016 and received regular follow-up in the clinic of the
3rd Xiangya Hospital, Central South University. A total of 88 of these 103 recipients
were eligible to be collected as cases for further investigation according to the key inclusion
and exclusion criteria (Table 1). The recipients were allocated into two groups dependent

Table 1 Inclusion and exclusion criteria in our study.

Inclusion criteria Exclusion criteria

CDC test negative on the day of transplant Existed DSA on the day of transplant

WBC count, total platelet count, and renal
function within normal limits

Experienced proved bacterial and fungi infection at
time of transplantation and (or) blood collection

Took FK506+MMF+Pred for their long-term
maintenance immunosuppressant

Undertook organ transplantation previously

Had a history of malignancy

Serum positive for HIV, HCV antibody, or HBsAg
(the latest result before transplantation)

Pregnancy at time of blood collection

Received a lymphocyte depleting therapy

Note:
CDC, complement-dependent cytotoxicity; WBC, white blood cell; Pred, prednisolone; DSA, donor specific antibody;
HIV, human immunodeficiency virus; HCV, hepatitis C virus; HBsAg, hepatitis B surface antigen.
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on their postoperative period. In total, 47 patients were 1 year post-transplantation
(1-year group), and 41 patients were 5 years post-transplantation (5-year group). All of the
patients had experience with dialysis prior to transplantation. Additionally, 41 healthy
volunteers were recruited as a control group (healthy group) from our physical
examination clinic. All participants provided written informed consent. The study
protocol was reviewed and approved by the institutional review board (Ethics Committee)
of the 3rd Xiangya Hospital, Central South University (No. 2018-S347).

One mL of peripheral blood was obtained in a vacuum tube (BD, Heidelberg, Germany)
containing ethylenediaminetetraacetic acid for anticoagulation. All samples were
tested immediately or stored at room temperature for no more than 1 hour after collection.

Leukocyte staining
Flow cytometric fluorescent anti-human monoclonal cell surface antibody (dry powder)
tubes (DuraClone IM) were purchased from Beckman Coulter (Bangalore, India).
The details of every fluorochrome-conjugated antibody, the schemes of every
fluorochrome channel and the compensation controls (each of a single color) are presented
in Table 2. Briefly, 100 mL of anticoagulant blood was stained with fluorescent antibodies
for 15 minutes in the dark (room temperature). The erythrocytes were removed by
adding two mL of lyse-fix solution consisting of Versa LyseTM and IOTestVR Fixative
Solution (MBL Life Science, Nagoya, Japan) and incubated for 15 min in the dark
(room temperature). Then, the cells were rinsed twice and resuspended in staining
buffer (phosphate-buffered saline containing 2% fetal bovine serum) prior to acquisition.
All samples were analyzed with a 13-Color CytoFlex Flow Cytometer (Beckman Coulter,
Brea, CA, USA) after daily calibration with Flow-Set Pro Beads (Beckman Coulter,
Brea, CA, USA).

Data analysis
The collected flow cytometric information was investigated using the Kaluza Software
version 1.2 (Beckman Coulter, Brea, CA, USA) by a single operator according to the
ONE-Study protocol (Streitz et al., 2013). For setting up compensation using the
AutoSetup Scheduler, refer to the Application Note “Compensation Setup for
High Content DuraClone reagents,” which is downloadable from the Beckman Coulter

Table 2 Overview of the two staining panels each dedicated to a specific cell type which is indicated by individual colors.

Excitation (nm) Blue: 488 Red: 633 Violent: 405

Emission (nm) 523 575 613 692 760 650 720 767 455 528
Fluorochrome FITC PE ECD PE-Cy5.5 PE-Cy7 APC AF700 AA750 PB KRO

Panel 1 CD45RA CCR7 CD28 PD1 CD27 CD4 CD8 CD3 CD57 CD45

CC of panel 1 CD4 CD4 CD28 PD1 CD27 CD4 CD8 CD3 CD4 CD8

Panel 2 TCRcd TCRaβ HLA-DR – TCR Vd1 CD4 CD8 CD3 TCR Vd2 CD45

CC of panel 2 CD4 CD4 HLA-DR – TCR Vd1 CD4 CD8 CD3 CD4 CD8

Note:
FITC, Fluorescein isothiocyanate, PE, Phycoerythrin; ECD, Phycoerythrin-Texas Red-X; PE-Cy, Phycoerythrin-Cyanine; APC, Allophycocyanin; AF700, Alexa Flour 700;
AA750, Allophycocyanin Alexa Flour 750; PB, Pacific Blue; KRO, Krome Orange; CC, compensation control.
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website (https://media.beckman.com/-/media/pdf-assets/application-notes/flow-
cytometry-reagents-duraclone-appnote-compensation-setup.pdf). The adhesive doublets
were removed by two forward scatter parameters (width vs height). We used CD45
and side scatter to gate leukocytes. The parameters used to calculate the size and frequency
of the subsets were exported from the Kaluza software into Excel (Microsoft, Redmond,
WA, USA).

Statistical analysis
The mean ± standard deviation (SD) was used to describe the analyzed data. At baseline,
the proportion gender ratio was compared with the Chi-square test of independence,
and the mean age and serum creatinine levels were compared by one-way ANOVA.
The FK506 concentration was compared by the Mann–Whitney U-test. Differences in
T lymphocyte subset percentages among the groups were compared using the
Mann–Whitney U-test, because not all of the parameters were distributed normally.
GraphPad Prism 7.0 (GraphPad Software Inc., La Jolla, CA, USA) was used to perform the
statistical analyses. Values of p < 0.05 were considered statistically significant. � indicates
�p < 0.05, ��p < 0.01, ���p < 0.001, and ����p < 0.0001.

RESULTS
Demographic and baseline characteristics
The demographic and baseline characteristics of each group are presented in Table 3.
The patients in the 5-year group exhibited an increased mean age (44.53 ± 10.02)
compared with that of the 1-year group. More male patients were noted in the 1-year and
5-year groups. All participants in our study had peripheral white blood cell counts
(95% CI [7.035–7.625]) and lymphocytes counts (95% CI [1.724–1.950]) within
the normal ranges. All participants in our study exhibited normal serum creatinine ranges
(95% CI [93.20–103.1]). All patients post-kidney transplantation took FK506+MMF+
prednisolone (Pred). The cytomegalovirus (CMV) status was not assessed in this
study, because almost all of the enrolled allograft recipients were serologically CMV-
positive, and only four of the patients were negative.

T cell subset gating strategies
Based on the details of each T cell subpopulation shown in Fig. 1, we used the forward
scatter area and CD45 to gate peripheral lymphocytes. CD3+ cells were defined as total
T cells and divided into five populations using the CD4, CD8, HLA-DR, and TCR cell

Table 3 Baseline data in different groups (Mean ± SD).

1-year 5-year Healthy p-value

Age, years 35.81 ± 8.69 44.53 ± 10.02 38.11 ± 9.55 <0.0001

Gender (Male/Female) 43/9 33/18 22/22 0.003

WBC (�109/L) 7.81 ± 2.04 7.37 ± 1.20 6.71 ± 1.95 0.0111

Lymphocytes (�109/L) 2.02 ± 0.69 2.15 ± 0.57 1.26 ± 0.43 <0.0001

Serum creatinine (umol/L) 117.4 ± 26.76 101.88 ± 25.94 71.13 ± 17.53 0.0015

FK506 mean concentration (ng/mL) 7.16 ± 1.74 5.87 ± 1.54 – 0.0002
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markers as follows: (1) CD4+ T cells, (2) CD8+ T cells, (3) HLA-DR+ T cells, (4) aβ T cells,
and (5) cd T cells. The cd T cells were categorized into Vd1 and Vd2 subsets. Additionally,
the CD8+ and CD4+ T cells were divided into eight subgroups as follows: CD57+ subset,
PD1+ subset, costimulatory molecule (CD28+CD27+ and CD28-CD27-) subsets,
and CM (CD45RA-CCR7+), EM (CD45RA-CCR7-), naïve (CD45RA+CCR7+) and
effector (CD45RA+CCR7-) cell subsets.

Distribution of the general T cell subsets
Generally, CD3+ T cells and the two main T cell subsets (CD8+ and CD4+) are tested.
We also used HLA-DR to assess the T cell activation status. We observed a significant
reduction in the proportion of CD3+ T cells in the 1-year and 5-year kidney
transplant patients compared with that of the healthy volunteers. However, no significant
difference was noted between the 1-year and 5-year patients. No significant differences
in the CD4+, CD8+, and HLA-DR+ T cells were noted among the diverse groups
(Fig. 2). Altogether, because only limited differences in general T cell subsets were found
between the healthy volunteers and allograft recipients, we needed to identify more
detailed T cell subpopulations. All of the means ± SDs and p-values are displayed
in Table 4.

Distribution of the TCR T cell subsets
To obtain more details for more specific T cell subsets, we applied TCR markers to define
some subsets. We identified a significant decline in the proportion of cd T cells but
an increased proportion of aβ T cells in the renal allograft recipients compared with those
of the healthy volunteers. Similar results were observed for the Vd2 and Vd1 subsets of the

Figure 1 Schematic overview and flow cytometric gating strategies of T cell subsets in peripheral blood.
Full-size DOI: 10.7717/peerj.6417/fig-1
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cd T cells. No significant differences were found in any of the TCR subsets described
above between the 1-year and 5-year renal allograft recipients (Fig. 3). Taken together,
obvious differences were noted among the TCR T cell subsets between the healthy
individuals and kidney transplant recipients. All of the means ± SDs and p-values are
displayed in Table 4.

Distribution of the CD57+ and PD1+ T cell subsets
CD57 and PD1 are typical cell surface markers for T cell immune senescence and
regulation and thus are also considered good cell surface markers for immunosuppression

Figure 2 Parental proportions of total, CD4+, CD8+, HLA-DR+ T cells among different groups.Healthy individuals showed a higher percentage
of total (CD3+) T cells than both 1-year (p < 0.05) and 5-year (p < 0.001) renal allograft recipients (A) and (B). The differences of CD4+, CD8+,
HLA-DR+ T cells were not significant (p > 0.05) (C–F). Data are expressed as mean number of each group (mean ± SD). �p < 0.05, ���p < 0.001.

Full-size DOI: 10.7717/peerj.6417/fig-2
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and tolerance, respectively. In the CD4+ subsets, the percentage of CD57+ T cells was
highest in the 1-year renal allograft recipients compared with those of the healthy
individuals and 5-year recipients. No significant difference was found between the healthy
volunteers and 5-year renal allograft patients. Additionally, no significant differences
were noted in the CD8+ CD57+ T cells among the groups. The percentages of PD1+T cells
in both the CD4+ and CD8+ populations were significantly increased in the renal
allograft recipients compared with those of the healthy volunteers. Nevertheless,
no significant difference was found between the 1-year and 5-year renal allograft recipients
(Fig. 4). All of the means ± SDs and p-values are displayed in Table 4.

Distribution of the costimulatory molecule T cell subsets
In the costimulatory molecule (CD27 and CD28) subsets, only the CD27 and CD28
double-positive and double-negative subsets exhibited significant differences.
The percentages of CD27+CD28+ T cells in both the CD4+ and CD8+ populations were
obviously decreased in the renal allograft recipients compared with those of the healthy
volunteers. The CD4+ CD27+CD28+ T cells were reduced in the 1-year compared
with the 5-year recipients. In contrast, the percentages of CD27 and CD28 double-negative
T cells in both the CD4+ and CD8+ populations were significantly increased in the renal
allograft recipients compared with those of the healthy volunteers. CD27 and CD28

Table 4 The mean, SD and p-value of T subsets among healthy volunteers, 1-year and 5-year renal
allograft recipients.

Mean ± SD p-value

Healthy (H) 1-year (1y) 5-year (5y) H vs 1y H vs 5y 1y vs 5y

CD3+ 72.08 ± 7.07 67.65 ± 11.07 62.88 ± 14.62 0.0302 0.0005 0.0796

CD4+ 38.77 ± 7.89 35.73 ± 11.15 35.03 ± 10.91 0.1484 0.0791 0.7687

CD8+ 32.63 ± 6.97 34.64 ± 8.72 33.15 ± 9.88 0.2410 0.7829 0.4559

CD3+HLA-DR+ 55.38 ± 19.77 51.37 ± 11.91 49.28 ± 16.09 0.2457 0.1291 0.4858

aβ 85.22 ± 11.41 90.46 ± 6.09 91.25 ± 6.16 0.0076 0.0038 0.5474

cd 14.20 ± 11.39 8.99 ± 5.82 8.04 ± 6.04 0.0072 0.003 0.4577

Vd1 cd 17.28 ± 17.87 35.47 ± 16.22 35.81 ± 23.13 <0.0001 0.0001 0.9354

Vd2 cd 73.96 ± 22.10 43.96 ± 22.13 46.52 ± 28.61 <0.0001 <0.0001 0.6374

CD4+ CD57+ 3.77 ± 2.76 8.34 ± 8.44 4.31 ± 3.63 0.0014 0.4540 0.0057

CD4+ PD1+ 32.36 ± 9.09 38.47 ± 12.87 38.60 ± 15.89 0.0105 0.0271 0.9652

CD8+ CD57+ 36.71 ± 13.36 41.20 ± 13.44 42.59 ± 14.90 0.1212 0.0636 0.6453

CD8+ PD1+ 25.60 ± 8.81 34.17 ± 13.50 32.34 ± 13.25 0.0008 0.0082 0.9240

CD4+ CD28+CD27+ 86.59 ± 4.63 74.31 ± 11.74 82.92 ± 7.44 <0.0001 0.0088 0.0001

CD4+ CD28-CD27- 5.22 ± 2.73 15.01 ± 9.85 7.15 ± 7.11 <0.0001 0.1073 <0.0001

CD8+ CD28+CD27+ 50.02 ± 13.34 36.21 ± 12.61 34.53 ± 14.48 <0.0001 <0.0001 0.5620

CD8+ CD28-CD27- 34.74 ± 12.13 47.64 ± 12.60 52.32 ± 15.63 <0.0001 <0.0001 0.1238

CD4+ CM T 45.53 ± 8.38 40.13 ± 12.96 56.23 ± 10.87 0.0250 <0.0001 <0.0001

CD4+ EM T 15.02 ± 4.82 25.74 ± 15.14 22.76 ± 10.40 <0.0001 <0.0001 0.2933

CD8+ CM T 7.56 ± 3.66 4.93 ± 4.59 5.71 ± 4.29 0.0043 0.0394 0.4157

CD8+ EM T 31.37 ± 9.86 28.17 ± 12.71 26.07 ± 13.08 0.1945 0.0415 0.4489
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double-negative CD4+ T cells were increased in the 1-year over the 5-year recipients.
No obvious differences in both the CD27 and CD28 double-negative and -positive T cells
in the CD8+ subsets were noted between the 1-year and 5-year renal allograft recipients
(Fig. 5). All of the means ± SDs and p-values are displayed in Table 4.

Distribution of the memory T cell subsets
We observed a significantly increased percentage of CD4+ EM T cells but a decreased
percentage of CD8+ CM T cells in the renal allograft recipients compared with those of the
healthy volunteers. However, the differences in the above memory T cell subsets were
not significant between the renal allograft recipients and healthy volunteers (Fig. 6).
All of the means ± SDs and p-values are displayed in Table 4.

DISCUSSION
In our study, we used multicolor flow cytometry to analyze the detailed T cell
subpopulation immunophenotyping of peripheral blood specimens from 88 renal
transplant patients 1 year and 5 years after transplantation and compared these results

Figure 3 Parental proportions of αβ, γδ, and Vδ1 and Vδ2 γδ T cells among different groups.Healthy individuals showed a lower percentage of aβ
T cells, but a higher percentage of cd T cells than both 1-year (p < 0.01) and 5-year (p < 0.01) renal allograft recipients (A) and (B). Healthy individuals
also showed a lower percentage of Vd1 but a higher percentage of Vd2 cd T cells than both 1-year (p < 0.0001) and 5-year (p < 0.0001) renal allograft
recipients (C) and (D). The differences between 1-year and 5-year recipients from each TCR subsets above were not significant (p > 0.05) (A–D). Data
are expressed as mean number of each group (mean ± SD). ��p < 0.01, ����p < 0.0001. Full-size DOI: 10.7717/peerj.6417/fig-3
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Figure 4 Parental proportions of CD57+ and PD1+ T cells among different groups. In CD4+ T cells, the percentage of CD57+T cells was the
highest in 1-year renal allograft recipients compared with healthy individuals (p < 0.01) and 5-year recipients (p < 0.01). No significant difference was
addressed between healthy individuals and 5-year renal allograft patients (p > 0.05). The percentage of PD1+T cells was significantly increased in
renal allograft recipients than healthy individuals (p < 0.05). No significant difference was addressed between 1-year and 5-year renal allograft
patients (p > 0.05) (A) and (B). In CD8+ T cells, no significant difference in CD57+ T cells was noted among all the three groups (p > 0.05). The
percentage of PD1+T cells populations was significantly increased in renal allograft recipients than healthy individuals (p < 0.05). No significant
difference was addressed between 1-year and 5-year renal allograft patients (p > 0.05) (C) and (D). Data are expressed as mean number of each group
(mean ± SD). �p < 0.05, ��p < 0.01. Full-size DOI: 10.7717/peerj.6417/fig-4
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with those of healthy volunteers. The distribution of T cell subpopulations in immune-
stable allograft recipients was identified.

The fraction of total T (CD3+) cells declined in the renal allograft recipients.
The percentage of CD8+ T cells exhibited an increasing trend in the renal allograft
recipients compared with that of the healthy volunteers; however, the difference was not
statistically significant. HLA-DR expression, which might be activation-dependent,
was also assessed (Arneth, 2018). However, in our study, no significant differences in
HLA-DR+ T cell subsets were noted. This finding may be attributed to triggering of a few
T cells in the immune-stable patients and healthy volunteers.

cd T cells are a small subsection (3–5%) of T cells in human peripheral blood.
According to their TCR variable (V) gene fragment, there are two main subgroups
(Vd1 and Vd2). Vd2 T cells are the major cd T cell population in circulation,
accounting for 50–95% of the cd T cells in peripheral blood mononuclear cells
(Peters, Kabelitz & Wesch, 2018). Although some evidence indicates that cd T cells can
apply immunosuppressive features, the majority of cd T cell activities are pro-
inflammatory immune responses (Tyler et al., 2015; Xu et al., 2018). Furthermore, Vd2 T
cells can give rise to Th1-, Th2- (Wesch, Glatzel & Kabelitz, 2001), Th9- (Peters et al.,

Figure 5 Parental proportions of costimulatory molecular (CD27 and CD28) T cells among different groups. In CD4+ subsets, healthy
individuals showed a higher percentage of CD27+CD28+ T cells than both 1-year (p < 0.0001) and 5-year (p < 0.01) renal allograft recipients; 1-year
recipients had a lower percentage than 5-year group (p < 0.001). Healthy individuals showed a lower percentage of CD27-CD28- T cells than both
1-year (p < 0.0001) and 5-year (p < 0.05) renal allograft recipients; 1-year recipients had a higher percentage than 5-year group (p < 0.001) (A) and
(B). In CD8+ subsets, healthy individuals showed a higher percentage of CD27+CD28+ T cells than both 1-year (p < 0.0001) and 5-year (p < 0.0001)
renal allograft recipients. Healthy individuals showed a lower percentage of CD27-CD28- T cells than both 1-year (p < 0.0001) and 5-year
(p < 0.0001) renal allograft recipients (C) and (D). The differences of both CD4+ and CD8+ CD27-CD28- T cells were not significant (p > 0.05)
(A–D). Data are expressed as mean number of each group (mean ± SD). �p < 0.05, ��p < 0.01, ���p < 0.001, and ����p < 0.0001.

Full-size DOI: 10.7717/peerj.6417/fig-5
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2016), Th17- (Caccamo et al., 2011), Tfh- (Bansal et al., 2012), and APC-like phenotypes
(Brandes, Willimann & Moser, 2005). These findings potentially explain why
significantly decreased proportions of cd and Vd2 T cells were noted in the immune-stable
renal allograft recipients. Additionally, we presented the percentages of Vd2- and
Vd1-positive cells as a percentage of the CD3+ cells and not simply as a percentage of
the cd T cells. We found that the percentage of CD3+ Vd2 cells in the controls was
significantly higher than that in the allograft recipients. However, no significant difference
in CD3+ Vd1 cells was noted among the three groups (Fig. S1).

CD57 was first reported as a marker of natural killer cells (Kared et al., 2016). CD57 is
present in CD8+ and CD4+ T cells at the late stages of differentiation and usually is
applied for identification of terminally differentiated “senescent” cells with a lower
proliferative ability and altered characteristics (Brenchley et al., 2003). In this paper, the
proportion of CD4+CD57+ T cells was increased in the renal allograft recipients,
indicating that more “senescent and exhausted” T cells were present in the immune-stable
allograft recipients. Moreover, patients in the 1-year group exhibited an increased
proportion of CD4+CD57+ T cells compared with that of the 5-year group, demonstrating

Figure 6 Parental proportions of memory T cells among different groups. In CD4+ T cells, 5-year recipients showed a higher percentage of CM T
cells than both 1-year (p < 0.001) and healthy individuals (p < 0.0001); 1-year recipients had a lower percentage than healthy individuals (p < 0.05).
Healthy individuals showed a higher percentage of EM T cells than both 1-year (p < 0.0001) and 5-year (p < 0.0001) renal allograft recipients, and no
significant difference was addressed between 1-year and 5-year renal allograft patients (p > 0.05) (A) and (B). In CD8+ T cells, healthy individuals
showed a higher percentage of CM T cells than both 1-year (p < 0.01) and 5-year (p < 0.05) renal allograft recipients, and no significant difference was
addressed between 1-year and 5-year renal allograft patients (p > 0.05). Healthy individuals showed a higher percentage of EM T cells than 5-year
renal allograft recipients (p < 0.05).The differences of CD8+ EM T cells were not significant both between healthy individuals and 1-year group and
between 1-year and 5-year groups (p > 0.05) (C) and (D). Data are expressed as mean number of each group (mean ± SD). �p < 0.05, ��p < 0.01,
���p < 0.001, and ����p < 0.0001. Full-size DOI: 10.7717/peerj.6417/fig-6
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more “senescent” T cells in the short-term patients post-kidney transplantation.
CD279 (PD1) makes a significant contribution to the balance of T cell immunity and
immune tolerance and binds its ligand (PDL1) to induce T cell apoptosis (Mahoney,
Freeman & McDermott, 2015; Zhang et al., 2016). In this study, the proportions of both
CD8+ and CD4+ PD1+ T cells were increased in the renal allograft recipients,
suggesting that more reactive T cells were potentially undergoing apoptosis and reversible
exhaustion in the immune-stable allograft recipients. Additionally, the terminal
effector stages of T cell differentiation are indicated by upregulation of CD57
(effector phenotype) and PD1 (coinhibitory molecule, exhausted phenotype) expression
(Booiman et al., 2017), which basically is consistent with the above results.

As secondary signals, the T cell costimulatory molecules CD27 and CD28 play very
pivotal roles in T cell full activation (Tanaskovic et al., 2017). Many immune anergy and
suppression therapeutic strategies have focused on these molecules. In our study,
CD27+CD28+ (costimulatory molecule double-positive) T cells in the CD4+ and CD8+
groups were reduced in the renal allograft recipients, whereas CD27-CD28-
(double-negative) T cells were increased. Moreover, CD4+CD27+CD28+ T cells were
decreased but CD4+CD27-CD28- T cells were increased in the 1-year group
patients compared with those of the 5-year group patients, indicating that T cell
costimulatory signals were reduced in the immune-stable allograft patients in the short
term. This result might be consistent with a recent study showing that immunological
aging-related expansion of highly differentiated CD28- T cells was associated with
higher immunosuppression (Dedeoglu et al., 2016).

The traditional T cell subpopulations of naive, CM (CCR7+CD45RA-), EM
(CCR7- CD45RA-) and effector T cells were first defined based on CCR7 and CD45RA
expression (Maecker, McCoy & Nussenblatt, 2012). Compared with those of naive T cells,
memory T cells require lower activation conditions and can rapidly induce
alloimmune responses through synthesis of a variety of inflammatory cytokines and
cytolytic effectors (Adams et al., 2003). CD4+ EM T cells are linked to the occurrence of
acute cellular and antibody-mediated rejection (Danger, Sawitzki & Brouard, 2016).
Despite taking immunosuppressive drugs, renal allograft recipients still show a danger of
acute cellular and antibody-mediated rejection. Therefore, in our study, an increased
fraction of CD4+ EM T cells was noted in the renal allograft recipients compared with that
of the healthy volunteers. Additionally, CD8+ CM T cells were decreased in the renal
allograft recipients in our study. Given that investigations into the role of CCR7 in
transplant processes have yielded conflicting results (Ziegler et al., 2006), explaining the
exact mechanism of this phenomenon is difficult. Dedeoglu and his colleagues also
investigated these memory T subsets in both the peripheral blood and lymph nodes. They
found that the median frequencies of CD4+ EM and CD4+CD28null T cells were
significantly higher within patients with allograft rejection, but no other significant
differences were observed for the other CD4+ and CD8+ T cell subsets (Dedeoglu et al.,
2017). More functional studies should focus on this subset in transplant patients.
Additionally, highly differentiated memory T cells are characterized by loss of the
costimulatory molecule CD28, making them less dependent on costimulation to become
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activated (Weng, Akbar & Goronzy, 2009). Therefore, we also examined terminally
differentiated T cells. We analyzed the percentages of CM and EM cells in the CD28-positive
and -negative cell populations. We found that the frequency of CD4+CD28+EM cells in the
renal recipients was significantly higher and the frequency of CD8+CD28-CM cells was
significantly lower than those in the healthy volunteers (Fig. S2). These differences were
consistent with the CD4+ EM and CD8+ CM cell results described above.

Interestingly, we found that the CD8+ T cells were expressed at low levels in our study,
which might have been the result of recent TCR stimulation, as indicated by the
downregulation of CD8. Therefore, we analyzed the CD8low subsets to observe whether
they varied between the healthy volunteer and patient groups. We found that the
frequencies of CD57+ and CD27-CD28- subsets from the CD8low T cells were
significantly higher in the patient groups than in the healthy volunteers. However, the
frequencies of the PD1+, CD27+CD28+, CM, and EM subsets from the CD8low T cells
were significantly lower in the patient groups than in the healthy volunteers (Fig. S3).
The results were not completely consistent with those obtained for the total
CD8+ T subsets.

Renal failure and dialysis are known to change a patient’s immune profile, which leads
to T cell dysfunction (Betjes, 2013). Although renal function in the enrolled subjects was
corrected with transplantation, whether the transplant also reverted the immune
dysregulation was unclear. Therefore, elucidating the impact of previous ESRD on the
differences is important and necessary. We enrolled uremia patients aged from 18
to 65 years who had undergone dialysis in our department. None of these patients had
received immunosuppressive treatment. Some useful information and results were found
compared with those of the healthy volunteers and renal allograft recipients. (1) The
frequency of CD8+ T cells was significantly lower than those in the other groups, which
was consistent with the description of Costa’s and Cheng’s studies (Cheng, Chen &
Li, 1991; Costa et al., 2008). (2) The frequency of the CD3+ HLA-DR+ T cell population
(activated T cells) in the uremia patients was significantly lower than that in the healthy
volunteers, and the frequencies of both the 1-year and 5-year recipients were also
significantly lower than that of the uremia patients. (3) In the TCR aβ and cd subgroups,
the frequency of aβ T cells in the uremia patients was significantly higher and the
frequency of cd T cells was significantly lower than those in the other groups. In a recent
study, significant inhibition of the cd T cell population was demonstrated in patients
with ESRD (Juno et al., 2017). (4) The frequencies of both CD4+ and CD8+ CM cells were
significantly higher but the frequencies of both CD4+ and CD8+ EM cells were
significantly lower than those of the other groups (Fig. S4). A previous study showed that
the percentages of CM and EM T cells were significantly higher in the ESRD group
than in the healthy group (Chung et al., 2012). However, in our study, both CD4+ and
CD8+ EM T cells showed a lower frequency in the ESRD group. Although this finding was
not consistent with Chung’s observation, the ratio of EM/CM T cells was decreased
in the ESRD group, which was identical to the conclusion of Segundo’s study
(Segundo et al., 2010). Taken together, an impact of previous renal disease and dialysis
indeed existed in some T cell subsets. However, we could also speculate, albeit not
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strongly, that kidney transplantation might revert not only renal function but also T cell
immune dysregulation.

As stated in the beginning, most renal allograft recipients reach a stable immune state
(neither rejection nor infection) after transplantation. The importance of this study is that
we provide an overview of the stable immune state of renal allograft recipients.
We evaluated the immune state of renal allograft recipients based on normal immunity in
the past, but renal allograft recipients also have their own stable immune state. We wanted
to identify differences between this stable immune state and a normal immune state.
In the future, we may perform a large sample-size study to provide the basic background
and criteria for renal allograft recipient immunity and conduct further studies to evaluate
immune cell changes in response to infection, rejection and other states according
to stable immunity instead of normal immunity. For this purpose, we should elucidate the
differences, and thus a large sample size study may be warranted to define the criteria.

CONCLUSION
We comprehensively evaluated the immune state of stable renal allograft recipients in
detail and found that the distribution of most T cell subpopulations in immune-stable
renal allograft recipients significantly differed from those of healthy volunteers, including
cd, Vd2, PD1, CD27+CD28+, CD27-CD28-, CD4+ EM, and CD8+ CM cells.
The proportion of some of these T cell subsets in the renal allograft recipients also differed
in the short-term compared with those in the long-term. However, more detailed
information should be included in subsequent studies, such as the absolute numbers of
each T cell subset and the proportion of regulatory T cells.
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