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Background: Although substantial efforts have been made to link the gut microbiota
to type 2 diabetes, dynamic changes in the fecal microbiome under the pathological
conditions of diabetes have not been investigated.

Methods: Four male Zucker diabetic fatty (ZDF) rats received Purina 5008 chow
[protein = 23.6%, Nitrogen-Free Extract (by difference) = 50.3%, fiber (crude) = 3.3%,
ash = 6.1%, fat (ether extract) = 6.7%, and fat (acid hydrolysis) = 8.1%] for 8 weeks.
A total of 32 stool samples were collected from weeks 8 to 15 in four rats. To
decipher the microbial populations in these samples, we used a 16S rRNA gene
sequencing approach.

Results: Microbiome analysis showed that the changes in the fecal microbiome
were associated with age and disease progression. In all the stages from 8 to
15 weeks, phyla Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria primarily
dominated the fecal microbiome of the rats. Although Lactobacillus and Turicibacter
were the predominant genera in 8- to 10-week-old rats, Bifidobacterium, Lactobacillus,
Ruminococcus, and Allobaculum were the most abundant genera in 15-week-old rats.
Of interest, compared to the earlier weeks, relatively greater diversity (at the genus level)
was observed at 10 weeks of age. Although the microbiome of 12-week-old rats had
the highest diversity, the diversity in 13–15-week-old rats was reduced. Spearman’s
correlation analysis showed that F/B was negatively correlated with age. Random blood
glucose was negatively correlated with Lactobacillus and Turicibacter but positively
correlated with Ruminococcus and Allobaculum and Simpson’s diversity index.

Conclusion: We demonstrated the time-dependent alterations of the abundance and
diversity of the fecal microbiome during the progression of diabetes in ZDF rats. At the
genus level, dynamic changes were observed. We believe that this work will enhance
our understanding of fecal microbiome development in ZDF rats and help to further
analyze the role of the microbiome in metabolic diseases. Furthermore, our work
may also provide an effective strategy for the clinical treatment of diabetes through
microbial intervention.

Keywords: 16S gene sequencing, fecal microbiome, type 2 diabetes mellitus, gut microbiota, time series, rat
microbiome
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INTRODUCTION

Type 2 diabetes mellitus (T2DM) is currently the most prevalent
metabolic disease in the world and is characterized by insulin
resistance, with an initial increase in insulin secretion, but
subsequent beta cell death and insulin insufficiency over time.
According to the International Diabetes Federation, T2DM will
affect 693 million people worldwide by 2045 (Cho et al., 2018).
T2DM is a multifactorial disorder, with pathogenic contributions
from genetic, environmental, and lifestyle factors (Mengual et al.,
2010; Saxena et al., 2012). The gut microbiota has increasingly
been recognized as a key contributor to T2DM, and T2DM
can be linked to dysbiosis of the intestinal microbiota (Cox
et al., 2014; Forslund et al., 2015; Yano et al., 2015). Two
independent studies based on fecal samples from European
and Chinese populations showed increased abundances of
opportunistically pathogenic Clostridium species and decreased
abundances of butyrate-producing Roseburia, Faecalibacterium,
and Eubacterium species associated with T2DM patients (Qin
et al., 2012; Karlsson et al., 2013). Karlsson et al. (2013) also
found that increased abundances of Lactobacillus gasseri and
Streptococcus mutans can predict insulin resistance, while Qin
et al. (2012) found enrichment in Escherichia coli associated
with current T2DM patients. Some studies have also found
that pro-inflammatory bacteria such as Ruminococcus gnavus
and Bacteroides spp. are more common in the feces of T2DM
patients (Everard and Cani, 2013). Numerous studies have
shown significant changes in the composition and diversity
of the fecal microflora under conditions of diabetes. Studies
also speculate that changes in the composition and diversity
of feces can determine the prognosis and severity of T2DM.
Our understanding of the relevance of the microbiome in
metabolic diseases might be enhanced by systematically assessing
the role of the fecal microbiota in disease performance
and its control.

An understanding of the fecal microbiome in T2DM has
recently arisen by analyzing microbial populations found in fecal
samples at a certain point in time. Although such assessments
of the fecal microbiome composition and diversity in T2DM are
valuable, they are time-limited and do not reflect the dynamic
changes of microbial flora in the progression of T2DM. Several
studies have reported that the fecal microbiome differs at different
times during the progression of T2DM (Horie et al., 2017; Liu
et al., 2017). Therefore, more work needs to be done to determine
the role of the fecal microbiome diversity and composition
and their association with T2DM. Due to ethical issues and
the availability of a limited number of samples, analysis of the
fecal microbiome and its role in the disease pathogenesis of
diabetes in humans is limited. Thus, to establish the diabetic fecal
microbiome, small animal models can be used. In these models,
fecal samples can be conveniently collected, thereby allowing for
investigation of the microbiome contribution in T2DM. In fact,
to understand the role of the microbiome in T2DM, many animal

Abbreviations: F/B, Firmicutes/Bacteroidetes; IQR, interquartile range; OGTT,
oral glucose tolerance test; OTUs, operational taxonomic units; PCoA, principal
coordinates analysis; RBG, random blood glucose; SDI, Simpson’s diversity index;
T2DM, type 2 diabetes mellitus; ZDF, Zucker diabetic fatty.

models have been widely used (Bagarolli et al., 2017; Bindels
et al., 2017; Caparros-Martin et al., 2017). In addition, evidence
emerging from animal models shows that many of the symptoms
associated with diabetic syndrome and insulin sensitivity may
be improved through replenishing probiotics (Lactobacillus
rhamnosus, Lactobacillus acidophilus, and Bifidobacterium) and
butyric-acid producing bacteria Clostridium butyricum (Bagarolli
et al., 2017; Jia et al., 2017). Although some studies have used rat
models to elucidate the microbiome’s role in T2DM (Goldsmith
et al., 2017; Kim et al., 2017), in the field of T2DM, one of the
major unanswered questions is whether the microbiome can be
utilized to alleviate diabetic pathologies.

Currently, only a few studies have examined details about
the compositional dynamics of the diabetic microbiome (Horie
et al., 2017; Liu et al., 2017). Since most of these studies were
conducted at some point in the course of T2DM development,
they do not provide an insight into the development of the
diabetic fecal microbiome. Using animal models might establish a
better understanding of the fecal microbiome in the progression
of T2DM, and such knowledge can enhance our understanding
of the microbiome effects on T2DM. ZDF rats with a missense
mutation (fatty, fa) in the leptin receptor gene can develop
obesity, insulin resistance, and T2DM (Phillips et al., 1996;
Yamashita et al., 1997; Da Silva et al., 1998; Yokoi et al., 2013).
Male ZDF rats exhibit an age-dependent diabetic phenotype that
develops hyperglycemia at 8 weeks of age and the blood glucose
level remains high throughout its lifespan (De Lemos et al.,
2007). Due to these characteristics, ZDF rats are an attractive
experimental model for this study. In this study, we monitored
body weight, food intake, water intake, rectal temperature, RBG,
OGTT, and the fecal microbiome from 8 to 15 weeks of age in
ZDF rats. We analyzed the fecal microbiome at different time
points in diabetic rats and tracked changes in microbial diversity.
A deep sequencing of 16S rRNA genes amplified from genomic
DNA isolated from the rat feces was used. To this end, we
also performed non-parametric Spearman’s correlation analysis
to evaluate associations between physiological characteristics and
the microbiome in ZDF rats.

MATERIALS AND METHODS

Experimental Design
This study was done longitudinally and its primary purpose
was to understand the changes in fecal microbiome composition
during diabetes progression in four ZDF rats. We studied the
microbiome from week 8 onward to week 15 at 1-week intervals.
Studies were performed using ZDF rats as they have been shown
to exhibit hyperinsulinemia and hyperglycemia (De Lemos et al.,
2007) and are thus a good model of T2DM.

Ethics Statement
In the present study, the animal experiments used rats and
were approved by the Animal Ethics Committee of Nanjing
University of Chinese Medicine (Approval No. ACU170606).
All animal experiments were conducted in accordance with the
National Institutes of Health Guide for the Care and Use of
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Laboratory Animals at Nanjing University of Chinese Medicine
(Nanjing, China).

Animal
Four male 6-week-old ZDF rats were purchased from Vital River
Laboratories (Beijing, China) and housed in a specific pathogen-
free animal experimental center in Nanjing University of Chinese
Medicine. Animals were fed autoclaved Purina 5008 chow
[protein = 23.6%, Nitrogen-Free Extract (by difference) = 50.3%,
fiber (crude) = 3.3%, ash = 6.1%, fat (ether extract) = 6.7%, and
fat (acid hydrolysis) = 8.1%; Vital River Laboratories, Beijing,
China], had free access to autoclaved water, and housed at
24◦C ± 2◦C, humidity 65% ± 5%, with a 12 h light-dark cycle.
During the trial, body weight, food and water intake, and rectal
temperature were measured daily. All rats were in one group and
housed in one cage during the study.

Random Blood Glucose Test
Random blood glucose was measured weekly to examine the
progression of diabetes in ZDF rats. Glucose levels in tail blood
samples were measured from weeks 8 to 15 using a glucometer
(CareSens, I-SENS, Anyang, South Korea). The rats were not
fasted for RBG tests.

Oral Glucose Tolerance Test
Zucker diabetic fatty rats were fasted for 14 h (overnight) and
then the OGTT was performed with a glucose solution in saline
at 2 g/kg. Tail blood was sampled at 0, 30, 60, and 120 min
after glucose administration. Glucose levels were determined
immediately with a glucometer (CareSens, I-SENS).

Stool Sample Collection and DNA
Extraction
One fresh fecal sample was collected directly from the anus
into a sterile tube from each rat weekly, avoiding contact with
rat skin or urine (see Supplementary Table S1). A total of 32
stool samples were collected from weeks 8 to 15 in four ZDF
rats and stored at −80◦C prior to processing. Bacterial DNA
was extracted from feces using the Fast DNA SPIN extraction
kit (MP Biomedicals, Santa Ana, CA, United States) according
to the manufacturer’s instructions and stored at −20◦C before
further analysis. The quantity and quality of extracted DNA
were measured using a NanoDrop ND-1000 spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, United States) and
agarose gel electrophoresis, respectively.

16S rRNA Amplification and Sequencing
PCR amplification of the bacterial 16S rRNA genes (V3–
V4 region) was carried out using forward primer 338F (5′-
ACTCCTACGGGAGGCAGCA-3′) and reverse primer 806R
(5′-GGACTACHVGGGTWTCTAAT-3′). Sample-specific 7-bp
barcodes were incorporated into the primers for multiplex
sequencing. PCR components contained 5 µl Q5 reaction buffer
(5×), 5 µl Q5 High-Fidelity GC buffer (5×), 0.25 µl Q5 High-
Fidelity DNA polymerase (5 U/µl), 2 µl dNTPs (2.5 mM),
1 µl of each forward and reverse primers (10 µM), 2 µl DNA

template, and 8.75 µl ddH2O. Thermal cycling included initial
denaturation for 2 min at 98◦C, followed by 25 cycles including
denaturation for 15 s at 98◦C, annealing for 30 s at 55◦C, and
extension for 30 s at 72◦C, and a final extension of 5 min at
72◦C. PCR amplicons were purified using Agencourt AMPure
Beads (Beckman Coulter, Indianapolis, IN, United States) and
quantified with the PicoGreen dsDNA Assay Kit (Invitrogen,
Carlsbad, CA, United States). After the individual quantification
step, amplicons were combined in equal amounts and subjected
to 2 × 300 bp sequencing of the end using the Illumina
MiSeq platform and the MiSeq kit v3 from Shanghai Personal
Biotechnology Co., Ltd. (Shanghai, China). Sequencing data were
processed using a quantitative analysis of microbial ecology
(QIIME, v1.8.0). In brief, original sequencing reads that perfectly
matched the barcode were assigned to the corresponding samples
and identified as valid sequences. Low-quality sequences (Gill
et al., 2006; Chen and Jiang, 2014) were filtered by the following
criteria: sequences <150 bp in length, sequences with average
Phred scores <20, sequences containing indefinite bases, and
sequences containing single nucleotide repeats of >8 bp. Paired-
end reads were assembled using FLASH (Magoc and Salzberg,
2011). After chimera detection, the remaining high-quality
sequences were clustered into OTUs with 97% sequence identity
by UCLUST (Edgar, 2010). The default parameters were used
to select the representative sequence from each OTU. Using the
best hits (Altschul et al., 1997), OTU taxonomy classification
was performed by a BLAST search on the representative set
of sequences against the Greengenes database (Desantis et al.,
2006). The abundance of each OTU in each sample and the
taxonomy of these OTUs were recorded by generating an OTU
table. OTUs with a total content of less than 0.001% in all
samples were discarded. To minimize the difference in the
depth of sequencing across samples, the average analysis of 100
evenly resampled OTU subsets under the 90% of the minimum
sequencing depth was performed to generate an average, rounded
dilution OTU table.

Bioinformatics Analysis
Sequencing data were evaluated using the QIIME and R software
packages (v3.2.0). The OTU table in QIIME was used to calculate
the α diversity index of the OTU level, such as the Shannon
diversity index and the SDI. Principal weighted UniFrac distance
metrics (Lozupone and Knight, 2005) were used for principal
coordinate analysis (PCoA). Diversity was assessed using the
Simpson Diversity Index (SDI) by calculating “inverse” (1/λ) and
“complement” (1-λ) SDI. Higher SDI values indicated higher
microbial diversity. Based on the occurrence of OTUs across
samples, a petal diagram was created to visualize the shared and
unique OTUs among samples or groups by the R package “Venn
Diagram.” Metastats (White et al., 2009) was used to statistically
compare the abundance of taxa at the level of phylum and genus
among samples or groups.

Statistical Analysis
The physiological characteristics data of the ZDF rats are
presented as mean ± SD. Statistical analyses among different
ages were performed by repeated ANOVA, followed by Tukey’s
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FIGURE 1 | Physiological characteristics in ZDF rats ranging from 8 to 15 weeks old. (A) Body weight gain in ZDF rats. (B) Food intake changes in ZDF rats.
(C) Water intake changes in ZDF rats. (D) Rectal temperature changes in ZDF rats. (E) Random blood glucose levels in ZDF rats. (F) Oral glucose tolerance test
measured at week 14 in ZDF rats. Data are expressed as mean ± SEM. N = 4 in individual groups; data were analyzed by repeated ANOVA: compared with week 8,
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; compared with the previous week, 1p < 0.05, 11p < 0.01, 111p < 0.001.

honestly significant difference or Dunnett’s post hoc test with
SPSS 19.0 (IBM, Chicago, IL, United States), considering a
P-value ≤ 0.05 as statistically significant. Correlations between
physiological characteristics data and either F/B ratio or genus
were tested by Spearman’s correlation analysis using Prism 5
(GraphPad, La Jolla, CA, United States).

Sequence Accession Numbers
The datasets generated in this study are available through the
NCBI Sequence Read Archive (accession number SRP148630).

RESULTS

Physiological Characteristics of ZDF
Rats From 8 to 15 Weeks
Zucker diabetic fatty rats gained significantly more weight from
9 to 15 weeks of age compared to weights at 8 weeks of age
(P < 0.01 at weeks 9–15, Figure 1A). Compared with the previous
week, ZDF rats gained significantly more weight at 9, 10, and
11 weeks of age (P < 0.01 at week 9, P < 0.05 at weeks 10–
11, Figure 1A). ZDF rats generally experienced an upward trend
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in food and water intake from 8 to 15 weeks (Figures 1B,C),
but the rectal temperature remained stable (Figure 1D). Insulin
sensitivity was assessed by measuring RBG levels and by the
OGTT at week 14. RBG levels in 8-week-old ZDF rats reached
diabetes status (Figure 1E). The OGTT showed that the blood
glucose level reached the highest value at 30 min, and then
gradually decreased, but still could not recover to the initial
value at 120 min (Figure 1F). These findings are consistent
with previous reports (Jourdan et al., 2013; Wessels et al., 2015;
Van Bree et al., 2016; Szokol et al., 2017) and indicate that the
ZDF rats presented with pathological conditions of diabetes. The
disease was generally aggravated with age, glucose tolerance was
impaired, and insulin sensitivity was reduced.

Developing T2DM Harbors Temporally
Dynamic Microbial Diversity
The progression of diabetes may be associated with microbiome
dynamic changes; thus, we tracked the fecal microbiome changes
in rats from 8 weeks of age until 15 weeks of age. Of note, we
did not include rats older than 15 weeks of age in this work
because published literature suggests that male ZDF rats exhibit
significant diabetic complications at 15 weeks of age (Gu et al.,
2017). A total of 1,944,426 16S rRNA (V3–V4 region) reads
were obtained, averaging 60,763 reads per sample. Reads were
undertaken to generate a total of 44,613 OTUs, which could
be further grouped into ∼315 unique OTUs. Collectively, these
sequences represented 247 unique genera. The average Shannon
Diversity Index for all time points ranged from 4.87 to 6.28,
with an average of 5.52 (confidence intervals for all SDI values
are provided in Supplementary Table S2). Between Shannon
and Simpson’s diversity indices, there was a consistent trend.
Using the SDI could clearly visualize the trends (Figure 2). SDI
described an increase in diversity from 9 to 12 weeks in ZDF
rats, with the highest diversity observed at 12 weeks of age,
followed by a slight decrease at 13–15 weeks of age. This trend was
repeatable using the inverse SDI (Supplementary Figure S1A).
The median and inter-quartile range (IQR) are provided in
Supplementary Figure S1B.

The cluster heatmap for each genus per week is shown in
Figure 3. The abundance levels of each genus in the cluster
heatmap revealed the weekly dominant genera. Overall, the fecal
microbiome consisted of unique genera that can reflect the
diversity and dynamic changes of a microbial population.

Identification of Core Microbial
Communities in the Diabetic Stage of
ZDF Rats
The number of rats per week was 4 (see Supplementary Table S3
for the number of each sample). We plotted the weighted UniFrac
distances for all weeks (Figure 4) to compare abundance across
weeks. Inter-week weighted UniFrac distances were longer than
intra-week weighted UniFrac distances.

At the phyla level, compared to the relative percent
abundance, more than 90% of the microbial population in ZDF
rats from weeks 8 to 15 consisted of the phyla Firmicutes,

FIGURE 2 | Simpson’s diversity index for all 32 samples representing the
weeks of development T2DM. Early weeks (8–9) have lower diversity, and the
increase in diversity at 10 weeks of age can be clearly visualized from the box
plots. Median (line within the box) and minimum and maximum values
(whiskers) are illustrated by box and whisker plots. Compared within the
weeks, ∗p < 0.05.

Bacteroidetes, Actinobacteria, and Proteobacteria. During 8–
15 weeks of age, the most abundant phylum was Firmicutes
(Figure 5). At 8–9 weeks of age, the predominant phyla were
Firmicutes and Bacteroidetes. Actinobacteria gradually increased
from the 10th week of age until the 15th week of age.
Proteobacteria increased significantly in ZDF rats at 15 weeks of
age compared to other ages. We have plotted the mean abundance
measure along with the standard error for individual phyla
(Supplementary Figure S2). It is worth noting that the percent
abundance of different phyla varied at every week, thereby
suggesting a dynamic microbial ecosystem in ZDF rats.

Grouping of Microbial Abundance in the
Feces of ZDF Rats Shows Temporal
Signatures
To identify differences and similarities between the microbial
populations in different samples, cluster analyses based on
weighted UniFrac distances (Lozupone and Knight, 2005) were
carried out. These analyses revealed that weeks 8–10 and 11–13
showed mixed effects and formed two distinct clusters (Figure 6).
Some samples clustered with other samples from the same week,
thus exhibiting high specificity (samples from week 12). Samples
from other weeks either clustered non-specifically with other
samples or clustered with the nearest neighboring time point
(weeks 11–12 and 13–14).

To visualize whether the samples could form distinct
clusters, weighted UniFrac distances were used for the principal
coordinate analysis (PCoA). Whereas samples from week 8 (red
circle), week 9 (blue circle), and week 10 (brown circle) grouped
together in a cluster (along the PC3 axis), the remaining samples
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FIGURE 3 | Hierarchical clustering using Euclidean distances was used to construct an inter-week genus-level heatmap. In the figure, red represents high
abundance and blue represents low abundance.

(weeks 11–15) grouped into a large cluster (Figure 7). To display
the number of common and unique OTUs presented in each
group during the progression of diabetes, a petal diagram was
constructed (Figure 8A). It revealed that among all the weeks,
∼306 OTUs were shared. It enabled us to more clearly visualize
those OTUs that were distinct for each time scale [ranges from
2 (week 12) to 95 (week 15)] (Figure 8B). The dominant
phyla of these unique OTUs were Firmicutes, Bacteroidetes,
Actinobacteria, and Proteobacteria.

Microbial Diversity Initially Increases and
Then Decreases With Age and Disease
Progression in ZDF Rats
Employing the test for equal proportions (using Pearson’s chi-
square test statistic), a total of 16 dominant genera (p < 0.05)
were found in the feces of ZDF rats among the developmental
weeks (Figure 9). From this relative abundance OTU plot, it is
clear that Lactobacillus was the predominant genus at 8 weeks
of age, along with the presence of Turicibacter, Adlercreutzia,
Ruminococcus, Bacteroides, Coprococcus, Prevotella, Blautia,

Allobaculum, Oscillospira, Dorea, Clostridium, Bifidobacterium,
Rothia, Akkermansia, and Trichococcus. At 9 weeks of age,
Lactobacillus was also the dominant genus, and abundance
of Turicibacter was slightly reduced. At 10 weeks of age,
Lactobacillus continued to increase, Turicibacter decreased, but
Bifidobacterium was significantly present. At 11 weeks of age,
Lactobacillus and Bifidobacterium became the most abundant
genera, Ruminococcus, Dorea, and Allobaculum were significantly
present, and Turicibacter was greatly reduced. The abundance
of Allobaculum increased from weeks 11 to 15. At week 12,
Lactobacillus, Bifidobacterium, and Allobaculum remained the
dominant genera until week 13. At week 14, Lactobacillus,
Bifidobacterium, and Ruminococcus were the most abundant
genera, and Bacteroides abundance was significantly elevated. At
week 15, Bifidobacterium abundance was significantly elevated
and it remained the dominant genus along with Lactobacillus,
Ruminococcus, and Allobaculum. In brief, Lactobacillus was the
most abundant genus in feces during the progression of diabetes
in ZDF rats. The abundance of Turicibacter decreased from
weeks 8 to 15. The abundance of Allobaculum increased from
weeks 11 to 15. We provide the bar plot for the average
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FIGURE 4 | Weighted UniFrac distance box plots. The inter-week weighted UniFrac distances are longer than the intra-week distances.

FIGURE 5 | Four phyla: Firmicutes, Bacteroidetes, Actinobacteria, and
Proteobacteria dominated the majority of ∼315 OTUs. 16S rRNA gene
sequences were used to establish the identities. Different proportions of phyla
can be seen at different stages of diabetes development in ZDF rats. More
than 90% of the reads belonged to these four phyla.

abundance of weekly OTUs to clearly visualize the remaining
OTUs in Supplementary Figure S3. It can be seen that 16 genera
accounted for 50–60% of the total genera present per group. The
remaining percentage is occupied by low abundance taxa (n = 62).

To analyze the genera with the greatest temporal variation,
the relative abundances of species at the genus level were
employed. This resulted in the selection of 15 genera based
on significant differences (P < 0.05) (Figure 10). These data

depicting changes in the abundance levels over time indicate that
microbial populations changed significantly over time. Although
we could analyze the genera that showed large fluctuations
in their abundance levels across the developmental weeks,
it must be noted that the genera Bilophila, Proteus, Rothia,
and Streptococcus had significantly low/negligible abundance
levels. These fluctuations with low abundance levels might
be attributed to sequencing and/or normalization adjustments.
The temporal fluctuations of different microbial communities
generally indicate that microbial populations are dynamic during
the progression of diabetes over time. We speculate that diet,
geography, and other environmental factors play an important
role in the development of diabetic microbial communities.
Finally, the maximum richness in microbial diversity was
obtained in rats at 12 weeks of age.

Physiological Characteristics in ZDF
Rats Are Associated With Dysregulated
Microbial Taxa
The Firmicutes/Bacteroidetes (F/B) ratio is widely used to indicate
microbial dysbiosis. Spearman’s correlation analysis showed a
significant, negative correlation between F/B and age [R =−0.35,
P = 0.04] (Figure 11A); however, no significant correlations
between F/B and body weight, RBG, food intake, water intake,
and rectal temperature were found (Figures 11B–F). RBG was
strongly and negatively associated with the relative abundance
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FIGURE 6 | Heatmap generated of the 32 samples. Clustering similarity based on Weighted UniFrac distance matrix data was performed to construct the heatmap;
blue in the graph represents high similarity and red represents low similarity. ZDF15–18 represents fecal samples from 8-week-old ZDF rats, ZDF25–28 represents
fecal samples from 9-week-old ZDF rats, ZDF35–38 represents fecal samples from 10-week-old ZDF rats, ZDF45–48 represents fecal samples from 11-week-old
ZDF rats, ZDF55–58 represents fecal samples from 12-week-old ZDF rats, ZDF65–68 represents fecal samples from 13-week-old ZDF rats, ZDF75–78 represents
fecal samples from 14-week-old ZDF rats, and ZDF85–88 represents fecal samples from 15-week old ZDF rats.

values of Lactobacillus [R = −0.42, P = 0.02] and Turicibacter
[R = −0.48, P = 0.004] (Figures 12A,B) but positively associated
with the relative abundance values of Ruminococcus [R = 0.45,
P = 0.009] and Allobaculum [R = 0.37, P = 0.03] (Figures 12C,D)
and SDI [R = 0.44, P = 0.01] (Figure 12E). We found
that there was no significant correlation between RBG and
relative abundance values of Bacteroides [R = 0.31, P = 0.08],
Akkermansia [R = −0.20, P = 0.27], and Bifidobacterium
[R = 0.21, P = 0.24] (Figures 12F–H). The implications
of these associations are unclear and would require further
experimentation to demonstrate causality.

DISCUSSION

Microbes play a crucial role in many metabolic-related diseases
such as T2DM (Qin et al., 2012). However, systematic studies on
the dynamic correlation between microbes and the progression
of T2DM are lacking. Therefore, we generated a temporal

map of microbial diversity during the progression of T2DM
by analyzing the composition of microbes residing in rat
feces at different ages. To this end, high-throughput 16S
rRNA pyrosequencing was used to study the progressing
T2DM fecal microbiome. We used rats of different ages,
ranging from 8 to 15 weeks (diabetic stage). We observed
that physiological characteristics in ZDF rats, including
body weight, food intake, water intake, and RBG increased
over time; however, glucose tolerance was impaired and
diabetic pathological conditions were aggregated. The phyla
Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria
dominated the fecal microbiome during the progression
of T2DM. We also demonstrated that Lactobacillus and
Turicibacter are the dominant genera at 8–10 weeks of age,
while significant richness and diversity were achieved at 11–
12 weeks of age. The maximum diversity was achieved at
12 weeks of age. We believe that these findings significantly
improve our understanding of the fecal microbiome during the
progression of T2DM.
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FIGURE 7 | Diversity and distribution of OTUs at different stages of diabetes
development. As a measure of beta diversity, PCoA of weighted UniFrac
distances (between samples diversity): samples from week 8 (red dots), week
9 (blue dots), and week 10 (brown dots) grouped together into a cluster (when
viewed in 3D along the PC3 axis).

Advances in high-throughput sequencing have made it
possible to analyze temporal variations in microbial communities
based on time series and longitudinal studies. Unique ecological
observations relating to the dynamics, stability, and diversity of
microbial populations are revealed in these studies. At present,
research on temporal data is still rare, and published studies
have often focused on only a few time points in many subjects
(Horie et al., 2017; Liu et al., 2017). Complex interactions among
microbiota may either occur between microorganisms and their
niche environment or between microbes. These factors may
contribute to the temporal dynamics of microbial populations.
In this study, we used bioinformatic strategies to characterize the
specific aspects in fecal samples from T2DM. We traced dynamic
changes in the rat fecal microbiome during the progression
of T2DM by using well-established statistical methods, such as
hierarchical clustering and PCoA.

One of the most important findings from this research is
that microbial diversity in the rats increased gradually from 8 to
12 weeks of age and slightly decreased from 13 to 15 weeks of age
with the progression of T2DM. The diversity at various periods
of T2DM was measured by sophisticated indices. Thus, in future
studies, we will address whether microbial diversity affects the
severity or incidence of diabetes. Another important finding of
this study was that, based on weighted UniFrac distance, the fecal
microbiome from rats of similar ages were grouped together in
the cluster analyses. At all ages, four phyla, namely Firmicutes,
Bacteroidetes, Actinobacteria, and Proteobacteria dominated the
fecal microbiome. Importantly, Firmicutes and Bacteroidetes were
the predominant phyla at all ages. This is of note as about
95% of the human intestinal microbial metabolic profile belongs
to Firmicutes and Bacteroidetes, followed by Actinobacteria and
Proteobacteria (Dicksved et al., 2007; Jernberg et al., 2007; Naseer
et al., 2014), suggesting that the human and rat microbiomes

are identical in composition at the phylum level. In addition,
at the genus level, we observed that Lactobacillus was the
dominant genus at 8 weeks of age and remained predominant
throughout T2DM development. Several reports have indicated
that an increase in the abundance of Lactobacillus is essential
for the prevalence of obesity (Ley et al., 2006; Turnbaugh
et al., 2006; Million et al., 2012a,b). Similarly, reports also
illustrate the presence of a greater number of Lactobacillus
in patients with T2DM and ZDF rats, which contributes to
the development of chronic inflammation of diabetes (Zeuthen
et al., 2006; Sato et al., 2014; Gu et al., 2016). Moreover,
Lactobacillus is involved in insulin resistance (Le et al., 2012) and
is coincident with bile salt hydrolase enzymatic activity, thereby
disturbing lipid and glucose metabolism and contributing to
T2DM (Tremaroli and Backhed, 2012). We observed a slight
decrease in the abundance of Turicibacter, a Gram-positive,
strictly anaerobic bacterium (Bosshard et al., 2002), in rats at
9 weeks of age. It has also been reported that Turicibacter
was associated with intestinal butyric acid (Zhong et al., 2015).
Butyric acid is a short-chain fatty acid that stimulates insulin
secretion in the pancreas, increases insulin sensitivity, and alters
insulin signaling (Gao et al., 2009; De Vadder et al., 2014). It
has significant functions such as providing anti-obesity effects,
reducing metabolic stress, and inhibiting inflammatory reactions
(Li et al., 2013; Valvassori et al., 2014). However, the metabolism
of Turicibacter and its interaction with the host in the intestine
are still unclear. Bifidobacterium was significantly present in
rats at 10 weeks of age. Bifidobacterium, a dominant member
of the intestinal microbiota and probiotic strain of the phylum
Actinobacteria, was increased in non-diabetics than in T2DM
patients. It has been reported that endotoxemia negatively
correlates with Bifidobacterium and positively correlates with
improved glucose tolerance, glucose-induced insulin secretion,
decreased endotoxemia, and adipose tissue proinflammatory
cytokines (Cani et al., 2007b). This is because Bifidobacterium
improves mucosal barrier function, thereby decreasing endotoxin
levels (Griffiths et al., 2004; Wang et al., 2006). At 11 weeks of age,
Lactobacillus and Bifidobacterium became the dominant genera,
and Ruminococcus and Allobaculum were significantly present.
Ruminococcus has been shown to assist gut epithelial cells to
absorb sugars, which could contribute to weight gain in the host.
Nobel et al. (2015) reported that Allobaculum was an important
functional phenotype of metabolic dysbiosis. Additionally, it has
been reported that Allobaculum is the abundant genus in mice
that are particularly fed on low-fat and high-fat diets (Ravussin
et al., 2012). At 12 weeks of age, Lactobacillus, Bifidobacterium,
and Allobaculum remained the dominant genera until week 13.
Likewise, Lactobacillus was also the dominant genus in 12-week-
old TSOD mice (12-week-old TSOD mice exhibit typical clinical
status of diabetes) (Horie et al., 2017). At 14 weeks of age,
Bacteroides was significantly elevated. Bacteroides is a Gram-
negative bacterium that contains lipopolysaccharide in its cell
wall (Finegold et al., 2010). It is known that a large number
of Gram-negative bacteria in the intestine may damage the
gut barrier, releasing lipopolysaccharide into the bloodstream
and triggering a low degree of chronic inflammation (Cani
et al., 2007a). Although Lactobacillus and Turicibacter were the
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FIGURE 8 | The petal diagram reveals common and unique genera associated with different stages of diabetes development. Different colors represent different
modules. (A) The petal diagram (nodes) at the center of the petal diagram (∼306) is shared by all weeks. (B) The total number of OTUs and the number of unique
OTUs are shown in the table.

predominant genera in 8- to 10-week-old rats, Bifidobacterium,
Lactobacillus, Ruminococcus, and Allobaculum were the most
abundant genera in 15-week-old rats. One possible reason is
that, at the genus level, Lactobacillus predominates throughout
the progression of T2DM. Turicibacter only predominated in
the early stage of diabetes in ZDF rats, while the abundance
of Bifidobacterium, Ruminococcus, and Allobaculum increased
with the aggravation of the pathological state of diabetes and
elevated blood glucose levels in rats (Gu et al., 2016; Kim et al.,
2017). Blood glucose levels may also affect the abundance of
the bacteria, however, the causal relationship between them is
still unclear. Future research needs to prove the relationship
between them. In addition, as the rats continued eating high-
fat diets, Allobaculum may also gradually increase in abundance.
These all indicated that, at the genus level, the fecal microbes

in the diabetic stage of ZDF rats changed dynamically. Of
interest, when compared with previous weeks, a relatively
higher diversity was observed at the genus levels at 12 weeks
of age, whereas during 13–15 weeks of age, lower diversity
was achieved.

Intriguingly, we have observed a gradual decrease in the
abundance of Akkermansia muciniphila with the progression
of diabetes. A. muciniphila is an adherent mucin-degrading
bacterium that has been proposed to modulate intestinal health,
energy balance, and glucose balance (Everard and Cani, 2013).
Recent studies uncovered that A. muciniphila decreases in
prediabetic patients (Yassour et al., 2016; Allinet al., 2018) and
has a negative association with T2DM, implying a protective
effect on diabetes (Everard et al., 2013; Chen M. et al., 2018;
Mithieux, 2018). A. muciniphila is found in the feces of rats, and
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FIGURE 9 | Microbial communities at different stages of diabetes development are dynamic over time. The stacked bar plot reveals that the fecal microbiota was
dominated by 16 genera. The average abundance of OTUs per week is represented in bars. Lactobacillus was most prominent among the rats at all ages.

a decrease in its abundance is associated with the progression of
diabetes. The mechanisms and factors that play an important role
in promoting the growth of the bacteria remain unknown and
will play an important role in modulation of metabolic diseases.

The presence of Ruminococcus in the stool was a surprising
finding. Of interest, Ruminococcus was earlier detected in the
feces and gut flora from adults with T2DM (Everard and Cani,
2013). Since a number of Ruminococcus species are known
to be associated with metabolic diseases, the identification of
Ruminococcus to the species level might be critical for further
understanding the relationship between Ruminococcus and
diabetes and its effect on the development of metabolic diseases.

Notably, we found that the F/B ratio is negatively correlated
with age. The F/B ratio, the ratio of the two largest microbial
phyla, has previously been considered to be a sign of obesity
and T2DM (Turnbaugh et al., 2009). However, the causality
of this transformation of the phyla as an integral part in
the health of the organism, and even as a useful biomarker,
has recently been questioned (Brown et al., 2012). RBG is
negatively associated with Lactobacillus and Turicibacter, while
it is positively correlated with Ruminococcus, Allobaculum and
SDI, suggesting that under conditions of diabetes, Lactobacillus
and Turicibacter may help recover blood glucose levels. There
may be mutual influence between the blood glucose levels and
microbial diversity; however, precisely how they are affected and
whether there is a link in function and causality requires further
proof of experimentation. The lack of statistical significance
between the F/B ratio and body weight, food intake, water intake,
and RBG, and the lack of statistical significance between RBG

levels and Akkermansia, Bacteroides, and Bifidobacterium, may
be due to variability among individuals and a small sample size.
Although a few studies have shown a correlation between specific
physiological characteristics and specific gut microbes, to the best
of our knowledge, this is the first study to attempt to correlate the
dynamic physiological characteristics of 8–15-week-old ZDF rats
with microbes. Further investigations are required with a greater
number of animals or a human cohort to verify the results of this
study and to determine the possible underlying mechanisms.

T2DM is a complex metabolic disorder. Beyond the widely-
accepted concept that genetic factors play an important role in
diabetes susceptibility, growing evidence has demonstrated that
environmental factors (such as commensal bacteria, chemicals,
diet, and viruses) may also modify diabetes development. Of
these factors, the gut microbiota has been shown to play an
important role in influencing the progression of T2DM. This
has been supported by results from both human research and
animal studies, especially the discordant incidence of diabetes in
monozygotic twins who are genetically identical (Tai et al., 2015).
Lactobacillus might be used as one of the genera in experiments,
showing a role for the microbiome during the progression in
T2DM. We also observed that among groups of rats of different
ages, Firmicutes and Bacteroides are the dominant phyla. These
observations confirm findings from patients with diabetes, where
these phyla were found in the feces of diabetics (Dicksved et al.,
2007; Jernberg et al., 2007; Naseer et al., 2014). In this study,
we observed that the microbiome of rats was predominated
by the genera Lactobacillus, Turicibacter, Bifidobacterium,
Ruminococcus, Allobaculum, and Bacteroides. Studies in humans
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FIGURE 10 | Fifteen genera experienced maximum temporal fluctuations in abundance levels at different stages of diabetes development. These 15 genera (A–O)
depict highly dynamic variations. P-values (P < 0.5) are shown on plot corners. Box plots display the following values: the Y-axis represents relative abundance of
the genus, the X-axis represents time grouping; middle box line, represents the median; the upper and lower whiskers represent 1.5 times IQR beyond the upper
and lower quartiles, respectively; and dots represent outlier values. Genera Bilophila, Proteus, Rothia, and Streptococcus have low abundance levels. For better
inspection, these plots have been divided into three parts (red, green, and blue) that reflect their relative abundances.

suggest that the human fecal microbiome is primarily dominated
by Bifidobacterium, Bacteroides, Escherichia, Intestinibacter,
Prevotella, A. muciniphila, Blautia, and Ruminococcus (Moreno-
Indias et al., 2014; Wu et al., 2017). These data seem to indicate
that the rat fecal microbiome has some similarities with the
human fecal microbiome while harboring some other genera.

This observation indicates that the ZDF rat can be used as
a model for studying the T2DM microbiome. Analyzing the
changes in the rat fecal microbiome and comparing them
with the available data from human clinical studies will be
interesting. In addition, increasing evidence indicates miRNAs
have close associations with diabetes, so miRNA biomarkers
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FIGURE 11 | Correlation between the F/B ratio and physiological characteristics in ZDF rats. (A) Age. (B) Body weight. (C) Random blood glucose. (D) Food intake.
(E) Water intake. (F) Rectal temperature.

will be particularly useful in early diagnostics of diabetes
(Chen et al., 2017; Chen X. et al., 2018; Hu et al., 2018; Zhao et al.,
2018a,b). It would be meaningful to correlate miRNA biomarkers
with gut microbes in T2DM, but this is still beyond the scope of
this study.

Although our research has monitored the changes in
microbiome composition and the diversity of feces in ZDF rats
with age and disease progression, important questions remain
unanswered. These include whether the fecal microbiome is
influenced by sex or diet. A number of earlier studies have
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FIGURE 12 | Correlations between random blood glucose levels and variation in microbial communities and Simpson’s diversity index. (A) Lactobacillus.
(B) Turicibacter. (C) Ruminococcus. (D) Allobaculum. (E) Simpson’s diversity index. (F) Bacteroides. (G) Akkermansia. (H) Bifidobacterium.
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shown that sex may influence the fecal microbiome (Shastri
et al., 2015; Fields et al., 2018). Diet can also affect the
intestinal flora, especially high-fat diets (Daniel et al., 2014;
Chi et al., 2018; He et al., 2018) Thus, one of the weaknesses
of the present study is that we did not take into account the
effects of sex or diet on the rat fecal microbiome. Another
limitation of this study is that our results are based on a
small sample size. Further validation in a larger number of
animals or a human cohort is needed. Moreover, we have
not demonstrated a causal relationship between microbiota
and diabetes. Future work to establish causality would involve
the isolation of specific taxa and transfer of anaerobically
cultured clones into germ-free animals to demonstrate the
development of diabetes in recipient animals. Unfortunately,
there was no negative control group included to dissect the
specific correlation between microbial changes and disease
progression. Future studies should include negative control
studies to better understand the correlation between microbial
changes and disease progression. The main strength of this
research is that fecal microbiome composition was associated
with age and the progression of diabetes. Toward this, fecal
samples in the rats of different ages were collected and fecal
microbiome analysis was performed. To conclude the association
between the diabetic microbiome and age and disease progression
in rats, we performed rigorous analyses.

This research differs from other research projects which
address the effect of the gut microbes on diabetes. In this
study, we monitored the changes in the fecal microbiome with
the growth and disease progression of T2DM. However, many
other confounding factors may affect fecal microbes, including
stress and feed type, as in the gut microbiome (Hufeldt et al.,
2010). In summary, we have monitored the changes in the fecal
microbiome in ZDF rats from 8 to 15 weeks of age by using deep
sequencing. This analysis suggests that the microbial composition
is associated with the age and progression of diabetes in rats.

CONCLUSION

Other research has implicated the microbiome in playing
an important role in metabolic diseases such as diabetes.
However, there is a lack of time-resolved microbial changes
during the progression of diabetes. This understanding is
crucial for creating new interventions for curing metabolic

diseases such as diabetes. In this study, we monitored
changes in the fecal microbiome during the progression of
diabetes from 8 to 15 weeks of age. The fecal microbiome
in rats was highly dynamic and underwent major changes
during the progression of diabetes. The determined time-
dependent alteration of the fecal microbiome supports further
investigation to determine whether Lactobacillus, Turicibacter,
Bifidobacterium, Allobaculum, Ruminococcus, and Akkermansia
may play functional roles in the progression of diabetes before
any intervention can be considered.
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