
Frontiers in Genetics | www.frontiersin.org 1 February 2019 | Volume 10 | Article 10

REVIEW
published: 13 February 2019

doi: 10.3389/fgene.2019.00010

Edited by: 
Maria Grazia Giansanti,  

Consiglio Nazionale Delle  
Ricerche (CNR), Italy

Reviewed by: 
Ezio Rosato,  

University of Leicester,  
United Kingdom

Sergio Pimpinelli,  
Sapienza University of Rome, Italy

Fabian M. Feiguin,  
International Centre for Genetic 

Engineering and Biotechnology, Italy

*Correspondence: 
Maria Pia Bozzetti  

maria.bozzetti@unisalento.it

Specialty section: 
This article was submitted to  

Genetic Disorders,  
a section of the journal  

Frontiers in Genetics

Received: 01 October 2018
Accepted: 11 January 2019

Published: 13 February 2019

Citation:
Specchia V, Puricella A, D’Attis S, 

Massari S, Giangrande A and 
Bozzetti MP (2019) Drosophila 

melanogaster as a Model to Study 
the Multiple Phenotypes, Related  

to Genome Stability of the  
Fragile-X Syndrome.
Front. Genet. 10:10.

doi: 10.3389/fgene.2019.00010

Drosophila melanogaster as a Model 
to Study the Multiple Phenotypes, 
Related to Genome Stability of the 
Fragile-X Syndrome
Valeria Specchia1, Antonietta Puricella1, Simona D’Attis1, Serafina Massari1,  
Angela Giangrande2,3,4,5 and Maria Pia Bozzetti1*

1 Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy, 2 Institut de 
Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France, 3 Centre National de la Recherche Scientifique,  
UMR7104, Illkirch, France, 4 Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France,  
5 Université de Strasbourg, Illkirch, France

Fragile-X syndrome is one of the most common forms of inherited mental retardation and 
autistic behaviors. The reduction/absence of the functional FMRP protein, coded by the 
X-linked Fmr1 gene in humans, is responsible for the syndrome. Patients exhibit a variety 
of symptoms predominantly linked to the function of FMRP protein in the nervous system 
like autistic behavior and mild-to-severe intellectual disability. Fragile-X (FraX) individuals also 
display cellular and morphological traits including branched dendritic spines, large ears, 
and macroorchidism. The dFmr1 gene is the Drosophila ortholog of the human Fmr1 gene. 
dFmr1 mutant flies exhibit synaptic abnormalities, behavioral defects as well as an altered 
germline development, resembling the phenotypes observed in FraX patients. Therefore, 
Drosophila melanogaster is considered a good model to study the physiopathological 
mechanisms underlying the Fragile-X syndrome. In this review, we explore how the 
multifaceted roles of the FMRP protein have been addressed in the Drosophila model and 
how the gained knowledge may open novel perspectives for understanding the molecular 
defects causing the disease and for identifying novel therapeutical targets.

Keywords: FMRP/dFmr1, Fragile-X syndrome, piRNA pathway, DNA damage response, transposon elements, 
neurological diseases

INTRODUCTION

Fragile-X syndrome (FXS, MIM300624) is the most common form of mental retardation 
in the human population. This affects approximately 1/7,000 males and 1/11,000 females 
(Hunter et  al., 2014), and patients exhibit intellectual disability, autism, hyperactivity, long 
face, large ears, language delay, hyper arousal anxiety (Johannisson et  al., 1987; O’Donnell 
and Warren, 2002; Santoro et  al., 2012) macroorchidism, and malformed spermatids 
(Johannisson et  al., 1987; Slegtenhorst-Eegdeman et  al., 1998). The most frequent cause of 
the syndrome is a CGG trinucleotide repeat expansion (greater than 200 repeats) in the 
5′ of the Fragile-X locus in Xq27.3, which leads to the hypermethylation of the gene 
promoter. The final effect is the transcriptional silencing of the Fragile-X Mental Retardation 
(Fmr1) gene, with a consequent loss of the encoded FMRP protein (Godler et  al., 2010). 
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FMRP is a complex protein that displays distinct motifs: a 
nuclear localization signal (NLS) and a nuclear export signal 
(NES), two tandem Tudor domains that are likely involved 
in protein-protein interactions and/or in the DNA binding, 
as well as three RNA-binding domains including two KH 
domains and one Arg-Gly-Gly (RGG) box (Figure 1) 
(O’Donnell and Warren, 2002; Ramos et  al., 2006; Santoro 
et  al., 2012). In mammals, FMRP is nearly ubiquitous, but 
it is heavily expressed in neurons, particularly in the cortex, 
hippocampus, and Purkinje cells where it regulates specific 
messenger targets. FMRP is also expressed at high levels in 
testes. Accordingly, the main effects of the FMRP loss in 
humans are in the nervous system and in the gonads (Santoro 
et  al., 2012). In neurons, the absence of FMRP may alter 
the processing, the localization, and/or the translational 
regulation of mRNAs encoding pre- and postsynaptic proteins. 
These defects can account for the abnormal maturation of 
dendritic spines in FXS patients, which are longer, thinner, 
and denser than the normal ones (Swanger and Bassell, 2011; 
Bardoni et  al., 2012; Maurin et  al., 2014), representing the 
cellular defects underpinning the neuronal dysfunctions 
characterizing the Fragile-X disorder.

In addition to CGG triplet expansion, different mutations 
in the Fmr1 gene, leading to FXS, have been reported. They 
include deletions and missense and nonsense mutations, which 
are listed in the Human Gene Mutation Database for FXS1. 
Mutations occur all along the coding sequences and affect 
different domains, which may explain why the FraX patients 
display common as well as specific defects (Reeve et  al., 2008; 
Santoro et  al., 2012; Alpatov et  al., 2014; Okray et  al., 2015; 
Suhl and Warren, 2015; Quartier et  al., 2017).

Two autosomal homologs of Fmr1 have been identified in 
the human genome: the Fragile-X mental retardation autosomal 
homolog 1 (FXR1) and 2 (FXR2), together with the Fmr1 
gene, form the Fragile-X gene family (Siomi et al., 1995; Zhang 
et al., 1995). Both homologs encode for RNA-binding proteins, 
FXR1P and FXR2P, with similar and/or complementary functions 
to those of FMRP, respectively (Penagarikano et  al., 2007; 
Ascano et  al., 2012).

A particular aspect linked to FXS is that individuals with 
a number of CGG repeats from 55 to 200 present a condition 
known as premutation and display an increased amount of 
Fmr1 mRNA. It was proposed that the symptoms, exhibited 
by these subjects, are related to the Fmr1 mRNA overproduction. 
Males with the premutation are at risk to developing Fragile-
X-associated tremor/ataxia syndrome (FXTAS, MIM300623), 
whereas females with the premutation have an increased 
probability to develop Fragile-X-associated primary ovary 
insufficiency (FXPOI) (Amiri et  al., 2008; Kronquist et  al., 
2008; Rossetti et  al., 2017).

The function of FMRP has been primarily studied in the 
nervous system of mammals and Drosophila, focusing on its 
role as a translational regulator acting: either by repressing 
translational initiation (Schenck et al., 2003; Napoli et al., 2008; 
Aitken and Lorsch, 2012) or by interacting with the translating 
ribosomes (Siomi et  al., 1996; Tamanini et  al., 1996; Feng 
et  al., 1997; Ishizuka et  al., 2002; Darnell et  al., 2005). It has 
also been proposed that FMRP may exert its translational 
control through the miRNA pathway (Siomi et al., 1996; Caudy 
et  al., 2002; Ishizuka et  al., 2002; Jin et  al., 2004; Xu et  al., 
2008). Many screenings, aiming at identifying FMRP targets 
(mRNAs and proteins), contributed to the understanding of 
the role of FMRP, mainly in the nervous system. Many of 
these targets are involved in synaptic activity, which may account 

FIGURE 1 | Conserved domains of FMRP/dFmr1 proteins. The drawings are not to scale; the exact positions of the amino acids are indicated; the domains are 
indicated with different colors.

1 http://www.hgmd.cf.ac.uk/ac/gene.php?gene=FMR1
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for the FXS phenotypes, such as defects in the development 
of neuronal architecture and in synaptic dysfunction (Darnell 
et  al., 2011; Ascano et  al., 2012).

FMRP regulates the local translation of a subset of mRNAs 
at synapses following the activation of the metabotropic glutamate 
receptors (mGluRs) (Huber et  al., 2002; Bear et  al., 2004; 
McBride et  al., 2005). Deregulation of local protein synthesis 
is considered a core mechanism in FXS, underlying altered 
synaptic plasticity and consequent cognitive impairment. The 
role of FMRP in the regulation of translation was better 
characterized in the Drosophila quiescent oocyte in which the 
translation of stored mRNAs is a crucial point for the correct 
development of embryos (Greenblatt and Spradling, 2018).

Animal models of FXS have been developed in zebrafish, 
mouse, and rat (Tucker et  al., 2004; McBride et  al., 2005, 
2012; Hamilton et  al., 2014). Over the last decades, Drosophila 
has also provided key contributions to further understand the 
molecular pathways defective in FXS, thanks to the many 
advantages in the use of this versatile organism (Tessier and 
Broadie, 2012; Sears and Broadie, 2017; Drozd et  al., 2018; 
Dockendorff and Labrador, 2019). The resulting imprecise 
excisions provided Fmr1 alleles that lack dFmr1 expression, a 
situation comparable to the loss of function mutations observed 
in FXS patients (Wan et  al., 2000). dFmr1 is equally similar 
to the three mammalian gene products (~35% identity, ~60% 
similarity) and shows particularly high sequence conservation 
(~70% identity) in critical domains such as the Tudor/Agenet 
domain that is involved in DNA binding, the RNA-binding 
domains, and the nuclear localization signals (Zalfa et al., 2007; 
Zhang et  al., 2007; Xu et  al., 2008).

The Drosophila melanogaster dFmr1 protein is expressed from 
embryonic stages to adult, and it is enriched in the nervous 
system (Morales et  al., 2002). In the brain, dFmr1 is highly 
expressed in the mushroom bodies, the main structure of the 
brain involved in cognitive functions. dFmr1 highly accumulates 
in the dendrites and in the axons of Kenyon cells, the intrinsic 
neurons of the mushroom bodies (Figure 2A). Its expression 
is ubiquitous in the neurons of the adult brain, whereas very 
low levels have been detected in glial cells (Wan et  al., 2000; 
Zhang et  al., 2001; Morales et  al., 2002; Coffee et  al., 2010). 
Outside the nervous system, dFmr1 is presented at a high level 
in larval and adult testes with a strong expression in spermatocytes 
(Zhang et  al., 2004; Bozzetti et  al., 2015). dFmr1 is also a 
component of the polar granules of the embryo where it interacts 
with other specific proteins present in these structures such as 
Vasa, Cup, and Hsp83 (Verrotti and Wharton, 2000; Cziko 
et  al., 2009; Pisa et  al., 2009; Lasko, 2013).

The Drosophila animals that completely lack dFmr1 
recapitulate many of the phenotypes exhibited by patients with 
the Fragile-X syndrome. At the cellular level, mutants present 
defective neuronal architecture and synaptic function. The 
neurons of dFmr1 null mutant animals exhibit abnormally 
organized synapses in both the peripheral and central nervous 
systems. The neuromuscular junctions (NMJs) of the Drosophila 
larva are simple synapses that represent a good model to study 
synaptic plasticity. The lack of dFmr1 causes pronounced synaptic 
overgrowth at the NMJs (Zhang et  al., 2001; Schenck et  al., 

2003; Pan et  al., 2004). Mutant flies display altered behaviors, 
such as reduced courtship activity of males and irregular 
circadian rhythms, like the eclosion timing, even though the 
mRNAs for the two clock elements Per and Tim are not 
affected. In addition, dFmr1 mutants exhibit defects in locomotor 
activity and an acute impairment of long-term memory (Sehgal 
et  al., 1994; Dockendorff et  al., 2002; Morales et  al., 2002; 
Bolduc et  al., 2008, 2010).

In the ovary, dFmr1 plays a role in translational regulation 
(Costa et al., 2005), where it controls germ stem cell differentiation 
through the miRNA-mediated pathway (Yang et  al., 2007) and 
cell proliferation through the proto-oncogene cbl (Epstein et al., 
2009).

Interestingly, dFmr1 is also involved in the piRNA pathway 
in the Drosophila gonads as well as in the DNA damage 
response in Drosophila and mouse (Zhang et al., 2012; Alpatov 
et  al., 2014; Bozzetti et  al., 2015) These findings provide a 
direct link between dFmr1/FMRP (from here onward, we will 
name dFmr1 the Drosophila protein as FMRP the mammalian 
protein) and genome instability, which may represent the 
common denominator for the multiple phenotypes described 
in the Fragile-X syndrome and in animal models for the 
disease.

In this review, we  will predominantly treat the roles of 
dFmr1 related to the genome instability in the gonads and in 
the nervous system.

THE ROLE OF dFmr1  IN THE piRNA 
PATHWAY

dFmr1 Mutations Affect the Regulation of 
the Crystal-Stellate System and of the 
Transposable Elements in the Gonads
In 2015, our group demonstrated, for the first time, the role 
of dFmr1  in the piRNA-mediated silencing of transposable 
elements and repetitive sequences in the Drosophila gonads 
(Bozzetti et  al., 2015). Piwi-interacting RNAs or piRNAs are 
small RNA molecules protecting animal germ cells and their 
somatic precursors from the insertion of transposons and other 
repetitive elements hence preserving genome stability (Malone 
et  al., 2009; Patil and Kai, 2010; Zhang et  al., 2011; Anand 
and Kai, 2012; Specchia et  al., 2017). The genomic clusters 
that act as sources of piRNAs contain multiple and also defective 
transposon sequences. Most of the piRNA clusters produce 
piRNAs from both genomic strands, and the other clusters 
produce piRNAs only from one genomic strand.

The molecular mechanism underlying the silencing of 
transposable elements reached a deep level of knowledge 
following studies performed in the ovaries. Argonaute proteins, 
belonging to the Piwi subfamily groups (P-element-induced 
Wimpy Testes or Piwi, Aubergine or Aub, and Ago3), play 
a crucial role in these processes (Aravin et  al., 2007). Aub 
and Ago3 localize to the nuage (Figure 2B), a perinuclear 
structure found in animal germ cells. Piwi localizes 
predominantly in the nucleus of both germ and somatic cells 
of the ovary.
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Two pathways for piRNA biogenesis and function have been 
established the primary and the ping-pong pathways (Figure 3) 
(Aravin et  al., 2007; Malone et  al., 2009).

In the primary pathway, transcript precursors, arising 
from specific genomic clusters, are processed into primary 
piRNAs that are bound by specific Piwi proteins. Drosophila 
ovarian somatic cells use exclusively the primary pathway. 
In these cells, the process occurs in perinuclear Yb bodies, 
which are discrete cytoplasmic compartments that take 
their name from the principal player in the process, the 
protein Yb, in the somatic cells of the ovary and testis 
(Szakmary et  al., 2009). piRNA factors, such as Armitage, 
Shutdown, and Vreteno, accumulate in the Yb bodies. Upon 

the formation of the 3′ end of the precursors by Zucchini, 
the mature primary piRNAs are loaded onto Piwi, which 
then enters the nucleus and induces transcriptional transposon 
silencing (Saito et  al., 2010).

Germ cells use predominantly the ping-pong amplification 
process in which the primary piRNAs are subjected to an 
amplification loop that increases their amount. In this case, 
the Piwi subfamily proteins, Aub and Ago3, bind the piRNAs 
and use the sequence homology to recognize the corresponding 
transposon transcript. Aub and Ago3 cooperate in the ping-
pong pathway to amplify the piRNAs (Aravin et  al., 2007).

The primary and the ping-pong pathways are also present 
in Drosophila testes (Figure 2C). In this tissue, the most 

FIGURE 3 | Schematic of the piRNA’s biogenesis. Somatic and germline pathways are indicated. Zuc stands for Zucchini protein (see text). In the germline 
pathway, Qin is a partner of Vasa, which behaves like a molecular platform for the piRNA pathway (see text and Specchia et al., 2017).

A B C

FIGURE 2 | Schematic of different body parts of a Drosophila melanogaster adult. (A) Head, the mushroom bodies are indicated. (B) Upper part: ovariole; lower 
part: immunolabeling of a stage 2 oocyte; the white arrow indicates the perinuclear nuage. (C) Upper part: adult testis; lower part: immunolabeling of the apical part 
of the testis is indicated; the white arrow indicates the perinuclear nuage.
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abundant piRNAs associated with Aub and Ago3 correspond 
to the “crystal” piRNAs (Aravin et  al., 2001, 2003; Vagin 
et  al., 2006; Nishida et  al., 2007; Bozzetti et  al., 2012). The 
crystal-Stellate system represents the first reported natural case 
of piRNA-mediated regulation, where the repetitive euchromatic 
Stellate sequences are silenced by the piRNAs produced by 
the heterochromatic crystal locus. Stellate and crystal are 
composed of tens to hundreds of copies of repetitive sequences 
organized in tandem (Livak, 1984; Palumbo et  al., 1994; 
Belloni et  al., 2002; Tritto et  al., 2003; Egorova et  al., 2009; 
Bozzetti et  al., 2012). At the molecular level, the loss of the 
crystal region or the “loss of function” mutations of genes 
involved in the crystal-Stellate regulation, called crystal-Stellate 
modifiers, results in the production of a testes-specific Stellate 
mRNA of 750 bases, coding for the Stellate protein. This 
results in the formation of needle or star-shaped crystalline 
aggregates that can be  revealed by using a specific antibody 
(Bozzetti et  al., 1995). The phenotype induced by crystal-
Stellate misregulation has provided an efficient tool to identify 
several genes involved in the piRNA pathway. The majority 
of the crystal-Stellate modifiers has a role in the silencing of 
germinal and somatic transposons and participates in the 
primary as well as in the ping-pong pathway. Interestingly, 
mutants for these genes affect fertility, at various degrees, 
both in females and males (Pane et  al., 2007; Specchia et  al., 
2008, 2017; Specchia and Bozzetti, 2009; Bozzetti et  al., 2012; 
Sahin et  al., 2016).

Null dFmr1 mutations affect the piRNA pathway in the 
gonads and the fertility of males and females (Zhang et  al., 
2004; Bozzetti et  al., 2015). In the mutant testes, the levels of 
the “crystal” specific piRNAs are reduced, leading to the formation 
of the crystalline aggregates. In addition, dFmr1 was demonstrated 
to have a role in the piRNA-mediated silencing of both germline 
and somatic transposable elements (TEs) (Bozzetti et  al., 2015). 
For all these reasons, dFmr1 should be  considered as a bona 
fide component of the piRNA pathway, at least in the gonads. 
More recently, the role in the silencing of TEs was confirmed 
by the work of Jiang et al. who demonstrated that the expression 
of selfish genetic elements increases in the ovaries of dFmr1 
mutant females (Jiang et  al., 2016).

dFmr1 Genetic and Biochemical 
Interaction With Argonaute Proteins in the 
Gonads and in the Nervous System
The Argonaute proteins are key players of the small 
RNA-mediated silencing pathway, being the components of 
the RNA-induced silencing complex (RISC). By using 
small RNA molecules, they mediate the post-transcriptional 
control of repetitive sequences, transposons, and genes in 
different tissues (Kalmykova et  al., 2005; Brennecke et  al., 
2007; Klattenhoff and Theurkauf, 2008; Zhou et  al., 2008; Li 
et  al., 2009; Malone et  al., 2009). The Drosophila melanogaster 
genome contains five genes coding for proteins of Argonaute 
family: Ago1 and Ago2 belong to the Ago subfamily and 
work in the miRNA (micro RNA) and siRNA (small interfering 
RNA) pathways. As mentioned above, Ago3, Piwi, and Aub 

act predominantly in the gonad-specific piRNA pathway (Li 
et  al., 2009; Thomson and Lin, 2009).

Ago1 is commonly associated to the miRNA pathway, but 
data from our lab assign to this protein an additional role in 
the piRNA pathway as well. Indeed, Ago1 affects the silencing 
of the transposons in the gonads of both sexes, is involved in 
crystal-Stellate regulation in the Drosophila testis (Bozzetti et  al., 
2015; Specchia et  al., 2017), and localizes at the “nuage” in the 
subcellular compartment in which other piRNA components 
localize, at least in testes (Kibanov et  al., 2011; Nagao et  al., 
2011). Accordingly, an Ago1-mediated function was demonstrated 
to be required for the formation of piRNAs in follicle cells, linking 
together the two pathways (Mugat et al., 2015). The Ago1 protein, 
hence, has a promiscuous role in small RNA regulation.

A strong argument supporting the role of dFmr1  in the 
small RNA-mediated pathways is the finding that dFmr1 interacts 
with the Argonaute proteins. One of the first evidence was 
provided by the biochemical interaction of dFmr1 with Ago2 
and with the components of the RISC in S2 Drosophila cells 
(Caudy et  al., 2002; Ishizuka et  al., 2002).

Since this discovery, many efforts were made to clarify the 
molecular role of FMRP in the RNA-mediated silencing pathways 
based on the genetic and biochemical interactions with the 
Argonaute proteins. Almost all the Argonaute proteins of both 
subfamilies have been connected to dFmr1  in the gonads as 
well as in the nervous system. We  here present the main 
findings related to the specific role of FMRP in the small 
RNA pathways in the two tissues, disclosing multifaceted 
connections.

dFmr1 interacts with Ago1 and with the bantam microRNA 
in the Drosophila ovary to regulate the fate of germline stem 
cells (Yang et  al., 2007, 2009). Ago1 was also implicated in 
terminal dendrites elongation (Lee et al., 2015) and is required 
for a correct function of dFmr1 at the NMJ (Jin et  al., 2004; 
Bozzetti et  al., 2015).

dFmr1 also interacts genetically with Aub, whose 
overexpression in the germline, as well as in the somatic tissues 
of the dFmr1 mutant animals, rescues the phenotypes related 
to the regulation of transposable elements and to the crystal-
Stellate interaction mediated by piRNAs (Bozzetti et  al., 2015). 
dFmr1 is widely distributed in the gonads, and it overlaps 
with Aub at the nuage and at the “piRNA nuage giant bodies” 
(piNG bodies) (Figure 4), a giant structure in the nuage of 
testes where the piRNA components are located and function 
(Bozzetti et  al., 2015). The biochemical interaction between 
dFmr1 and Aub, in S2 cells, also supports the data obtained 
with the genetic experiment (Bozzetti et  al., 2015). Aub and 
dFmr1 were demonstrated also to genetically interact in the 
larval neuromuscular junctions, as the neuronal overexpression 
of aub rescues the dFmr1 defective NMJs (Bozzetti et al., 2015). 
Since the presence of Aub in the nervous system is still debated 
(see the following paragraphs), it has been proposed that the 
overexpressed Aub may work by taking on the function of 
Ago1, a protein that is definitely present and has a well-studied 
role in the nervous system (Lee et  al., 2015).

Another crucial Argonaute interactor of dFmr1 is Piwi. 
A recent study from Jiang et al. in 2016 reported that dFmr1 
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and Piwi are present in the same complex in ovarian extracts 
and act together in the piRNA-mediated transcriptional 
silencing on the transposable elements in both somatic and 
germline tissues of the Drosophila ovary (Jiang et  al., 2016). 
dFmr1 mutations also influence the amount of a specific 
piRNA regulating the roo transposable elements. The 
N-terminal region of dFmr1, where the Tudor/Agenet domain 
is present (Ramos et  al., 2006; Adams-Cioaba et  al., 2010; 
Bozzetti et  al., 2015; Iwasaki et  al., 2015), is required for 
the interaction with Piwi.

Finally, no interaction has been reported between dFmr1 
and mammalian FMRP with Ago3, another Argonaute protein 
that operates in the biogenesis of piRNAs in combination with 
Aubergine (Li et  al., 2009).

piRNA-Related dFmr1 Interactors Other 
Than Argonaute Proteins
The role of dFmr1  in the piRNA pathway is supported by its 
interaction with other components of the piRNA pathway, 
including Vasa, which is considered a molecular platform for 
the key components of the piRNA machinery, the so-called 
Amplifier complex (Xiol et  al., 2014; Specchia et  al., 2017). 
Figure 4 shows the colocalization of dFmr1 and Vasa at the 
nuage in testes, in particular at the piNG bodies. Emblematic 
examples have been described above where the direct interaction 
with four Argonaute proteins has been reported.

The zinc finger protein RP-8 (Zfrp8) also stands out as a 
very interesting interactor of dFmr1, even though its role in 
the piRNA pathway or in the human syndrome is still poorly 
understood.

Zfrp8 was initially identified for its fundamental role in the 
lymph glands, the site of larval hematopoiesis in Drosophila 
(Minakhina et  al., 2007). In this tissue, Zfrp8 controls cell 
proliferation. Zfrp8 has also an essential role in follicle cells 
and in germline (Minakhina and Steward, 2010; Minakhina 
et  al., 2014). This function is conserved during evolution, and 
the vertebrate Zfrp8 homolog, Pdcd2, is required for stem cell 
maintenance (Mu et  al., 2010; Granier et  al., 2014). Zfrp8 

genetically interacts with several components of the piRNA 
pathway in the ovary including vasa, ago3, spindle-E, and squash 
(Stapleton et  al., 2001; Pane et  al., 2007; Li et  al., 2009; Lasko, 
2013; Tan et al., 2016). In addition, the distribution of Maelstrom, 
one of the known components of the piRNA pathway, is strongly 
affected in Zfrp8 KD (Knock Down) ovaries and in germ stem 
cell (GSC) clones, in which the Zfrp8 protein had been silenced. 
The argument that strongly supports the role of Zfrp8  in the 
piRNA pathway is that its reduction affects the expression of 
the transposable elements in the ovaries (Minakhina et  al., 
2014), as also seen in animals, that are mutant for the member 
of the piRNA pathway. Notably, dFmr1 was found as a component 
of the Zfrp8 protein complex together with Nufip (nuclear 
FMRP interacting protein) and Trailer hitch (Tral) (Minakhina 
et  al., 2014). Both these proteins were already identified as 
dFmr1 interactors: Nufip is one of the known interactors of 
FMRP in mammals (Bardoni et  al., 2003), whereas Tral is a 
component of the RNP granules in Drosophila neurons (Barbee 
et  al., 2006). Zfrp8 may have a role in the early assembly of 
ribosomes with translational repressors and, as a consequence, 
influences different processes during oogenesis, including 
transposons silencing (Tan et al., 2016). Very intriguingly, Hsp83, 
a known component of piRNA-mediated silencing pathway in 
the Drosophila gonads (Specchia et  al., 2010; Gangaraju et  al., 
2011; Tan et  al., 2016), was found in the Zfrp8 complex as 
well (Tan et  al., 2016).

Finally, the TDP-43 protein involved in amyotrophic lateral 
sclerosis (ALS) also interacts with dFmr1. The physical 
association of these two proteins in ribonucleoproteic 
complexes was observed in vivo, in an ALS Drosophila model, 
and in vitro, in neuronal derived cells. FMRP deficit causes 
developmental defects and autistic behavior, whereas lack 
of TDP-43 leads to age-dependent neurodegeneration (Fallini 
et  al., 2012; Yu et  al., 2012; Coyne et  al., 2015, 2017; 
Majumder et al., 2016). The unexpected link between TDP-43 
and FMRP opens novel perspectives to understand the 
physiopathological mechanisms underlying these seemingly 
different pathologies.

FIGURE 4 | dFmr1 and Vasa immunolocalization in wt (wild type) adult testes. (A) Single confocal section of a wt testis labeled with anti-dFmr1, (B) anti-Vasa, and 
(C) merge; magnification 40×. (D) Photographic zoom of the cells indicated by arrow in (C); the white arrowhead shows the colocalization of dFmr1 and Vasa in  
the piNG body.
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piRNA and TEs in the Nervous System
Although piRNAs were first identified in the gonads of mouse 
and Drosophila as regulators of transposable elements and 
repetitive sequences (Girard et  al., 2006; Grivna et  al., 2006; 
Vagin et  al., 2006; Watanabe et  al., 2006; Gunawardane et  al., 
2007; Nishida et  al., 2007; Li et  al., 2009; Malone et  al., 2009), 
a specific set of piRNAs was found in the mouse hippocampus 
and in neuronal cultures (Lee et al., 2011). In addition, Ghildiyal 
et  al. (2008) identified small RNA molecules in Drosophila 
heads displaying features resembling piRNAs (piRNA-like RNA 
molecules, pil-RNAs) (Ghildiyal et  al., 2008). More recently, 
piRNAs with a role in the regulation of learning-related synaptic 
plasticity were also identified in the nervous system of Aplysia 
(Rajasethupathy et  al., 2012). These discoveries represented the 
starting point for studies demonstrating the presence of piRNAs 
in somatic tissues and in particular in the brain of several 
organisms including Drosophila and humans (Baillie et al., 2011; 
Thomas et  al., 2012; Perrat et  al., 2013; Reilly et  al., 2013; 
Ross et al., 2014; Weick and Miska, 2014). Furthermore, RNA-seq 
analyses revealed the presence of thousands of retrotransposon-
derived piRNA-like molecules as well as the presence of factors, 
involved in the piRNA biogenesis, such as Mili and Maelstrom 
in hippocampal mammalian neurons. Mice lacking one or the 
other protein exhibit defects in  locomotor activity and behavior 
(Matsumoto et  al., 2015; Nandi et  al., 2016). The presence of 
piRNAs in the nervous system suggests a role in the transposon 
silencing and hence in genome stability, which may impact on 
brain heterogeneity, aging, and also neurological diseases. Using 
different organisms, it was demonstrated that the deregulated 
expression of the transposable elements can induce their 
mobilization, which causes de novo insertions in the genome 
and hence triggers genomic variability in neuronal cells (Muotri 
et  al., 2005; Coufal et  al., 2009; Baillie et  al., 2011; Evrony 
et  al., 2012; Rajasethupathy et  al., 2012; Perrat et  al., 2013; 
Ross et  al., 2014; Weick and Miska, 2014; Upton et  al., 2015; 
Jachowicz et  al., 2017).

Long-interspersed line-1 element (L1) is the only active 
element in the human genome (Beck et  al., 2011) and can 
transpose in the neuronal precursor stem cells of the rat 
hippocampus. The new insertions were found in neuronal 
protein coding genes (Muotri et  al., 2005). Engineered human 
L1 in vitro mobilization was also reported in neuronal precursor 
cells isolated from human fetal brains and embryonic stem 
cells. These discoveries strongly suggest that L1-mediated 
transposition has the potential to contribute to genotypic 
variation in neurons.

Whole genome sequencing and the analysis of the new 
insertions of a gypsy-construct support the idea that piRNA-
mediated transposition also triggers cellular heterogeneity in 
the neurons of the Drosophila mushroom bodies, which are 
considered as the functional homolog of the mammalian 
hippocampus (Li et al., 2013; Perrat et al., 2013). The mobilization 
of the TEs occurs in a specific neuronal population, the αβ 
neurons, which contain a lower amount of Aub and Ago3 
compared to the γδ neurons (Perrat et  al., 2013), raising the 
concrete hypothesis that transposition may have a functional 

role in brain physiology. More recent data, however, do not 
seem to confirm the correlation between the increment in the 
expression of TEs and new integration sites in aging (Treiber 
and Waddell, 2017).

Clearly, the field is still very young and more studies will 
be  required to firmly reach a consensus. However, even though 
the number of new genomic insertions does not exactly correlate 
with that expected from the remarkable increment of TE expression, 
a role of transposition in the nervous system must be considered, 
due to the growing amount of data on the topic.

Recent reports from many laboratories, conducted in Drosophila, 
in postmortem human tissues and in mammalian cells, support 
the relation between retrotransposition and neurological disorders 
(Muotri et  al., 2010; Douville et  al., 2011; Li et  al., 2012; Tan 
et  al., 2012; Rajan and Ramasamy, 2014; Krug et  al., 2017; 
Morandi et al., 2017; Prudencio et al., 2017; Faulkner and Billon, 
2018; Guo et  al., 2018; Short et  al., 2018). Significant examples 
are reported below. Parkinson’s disease (PD) is a neurodegenerative 
disorder that strongly affects movements. Aging represents a 
risk factor for the occurrence of sporadic PD (Martin, 2011). 
piRNAs and piRNA-like molecules are differentially expressed 
in “induced Pluripotent Stem Cells” (iPSCs) from patients during 
differentiation (Schulze et  al., 2018).

Alzheimer disease (AD) is the neurodegenerative disorder 
that represents the most common cause of dementia. As a 
remarkable feature, the analysis of postmortem brains from 
Alzheimer patients reveals the presence of misfolded proteins, 
namely the β-amyloid peptide and the Tau protein. In addition, 
transposable elements are also deregulated in these tissues 
compared with normal brains and in adult brains of Drosophila 
expressing human Tau protein associated with AD (Qiu et  al., 
2017; Roy et  al., 2017; Guo et  al., 2018). Intriguingly, the 
Tau-induced neurological phenotypes can be  partially rescued 
by manipulating DNA damage response key factors, providing 
a further link between transposition, genomic instability, and 
DNA (Guo et  al., 2018).

Amyotrophic lateral sclerosis and frontotemporal dementia 
(FTD) are neurological disorders exhibiting a specific phenotypic 
spectrum causing dementia and cognitive impairment. They 
have been associated to a defect in TAR-DNA-binding protein 
43 (TDP-43) (Douville et  al., 2011; Li et  al., 2015; Prudencio 
et  al., 2017). Retrotransposition of one of the peculiar TEs 
with a functional similarity to viruses possessing also a “capsid,” 
whose name is gypsy, has been associated to ALS and FTD 
in a model expressing human TDP-43 (Krug et  al., 2017). 
Even in the model of ALS, the modulation of DNA damage 
response (DDR) factors partially rescues the neurological 
phenotypes as occurs in Alzheimer’s disease model.

Finally, Fragile-X-associated tremor/ataxia syndrome (FXTAS) 
is a progressive neurological disorder associated to the premutation 
in the Fmr1 gene reported before (expansion up to 90 RGG 
repeats in the regulatory region) (Amiri et  al., 2008; Kronquist 
et  al., 2008). Transgenic Drosophila lines that carry the FXTAS-
associated expansion exhibit an increased expression of gypsy, 
hence providing the first link between the activation of transposons 
and neurodevelopmental disorders (Tan et  al., 2012).
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DNA DAMAGE RESPONSE  
AND FRAGILE-X IN DROSOPHILA  
AND MAMMALS

Damage to DNA can arise for different reasons and can generate 
multiple lesions including single- and double-strand breaks 
(SSBs and DSBs). These lesions set in motion the DNA repair 
machine that repairs the damage and prevents massive genome 
instability. This involves changes in the chromatin structure 
and cell cycle arrest.

Different factors are sequentially involved in the repairing 
process like the MRN complex, which is a eukaryotic protein 
complex consisting of Mre11, Rad 50 and Nbs1 proteins, 
followed by the ATM kinase, in turn phosphorylating several 
targets including p53 Chk2, BRCA1, and the key histone 
variant H2AX in mammals (Lou et  al., 2006; Matsuoka et  al., 
2007; Lavin, 2008; Ciccia and Elledge, 2010). Proteins and 
processes participating in “DNA Damage Response” (DDR) 
cascade are conserved during evolution. In Drosophila, the 
majority of the information comes from studies on the meiotic 
checkpoint in ovaries, whose defects affect the fate of the 
embryonic dorsal cells (Ghabrial and Schupbach, 1999; Abdu 
et  al., 2002; Staeva-Vieira et  al., 2003; Cotta-Ramusino et  al., 
2011). Females displaying defects in this checkpoint process 
produce embryos with fused dorsal appendages and the 
mutations affect the so-called spindle class genes (Gonzalez-
Reyes et  al., 1997).

Interestingly, piRNA mutants also display defects in embryonic 
axis specification, which are thought to be  a consequence of 
DNA damage mediated by the activation of transposable elements 
(Chen et  al., 2007; Klattenhoff et  al., 2007; Pane et  al., 2007 
Klattenhoff and Theurkauf, 2008). Mutations in aub and in 
other genes of the piRNA pathway such as armitage (Cook 
et  al., 2004), spindle-E (Stapleton et  al., 2001), zucchini, and 
squash (Pane et  al., 2007), which belong to the spindle class 
genes, lead to the accumulation of the H2Av histone variant 
(Klattenhoff et  al., 2007).

DDR, Transposons, and Neurological 
Diseases
DNA lesions have been linked to neuronal decline in aging, 
oxidative stress conditions, and in neurological diseases (Ferrante 
et  al., 1997; Adamec et  al., 1999; Lu et  al., 2004; Rass et  al., 
2007; Dobbin et al., 2013), even though the underlying molecular 
mechanisms remain poorly understood. Recently, the hyperactivation 
of the PARP-mediated DNA repair of single-strand breaks has 
been reported to be associated with neurodegeneration and ataxia 
in humans and mice (Nouspikel and Hanawalt, 2003; Katyal et al., 
2014; Hoch et  al., 2017).

As described above, transposable elements represent a 
considerable fraction of the eukaryotic genome and are 
regulated by the small RNA pathways, in particular the piRNA 
pathway. Defects in the small RNA-mediated regulation trigger 
their activation in the germline and in the somatic tissues 
of the Drosophila gonads, hence generating genome instability 
(Sarot et  al., 2004; Kalmykova et  al., 2005; Vagin et  al., 2006; 

Chen et  al., 2007; Pane et  al., 2007; Specchia et  al., 2010; 
Piacentini et al., 2014). A strong correlation between transposon 
mobilization and the DNA damage response also exists in 
human cells where the insertion of the Line-1 non-LTR 
retrotransposon depends on the DNA repair machine 
(Belgnaoui et  al., 2006; Gasior et  al., 2006). In addition, 
enhanced L1 mobilization has been reported in ataxia 
telangiectasia, a neurological disorder due to mutations in 
the ATM gene implicated in DNA repair (Coufal et al., 2011). 
These observations, linking the transposable elements and 
the DNA damage response, have led to the hypothesis that 
DNA breaks accumulate in piRNA mutants, where the transposons 
are massively activated (Klattenhoff and Theurkauf, 2008). 
This opens novel perspectives in understanding the causes 
of devastating neurological diseases, which, in the long term, 
will result in better therapeutical targets.

DDR Has a Physiological Role in Neuronal 
Development
Emerging evidence support the hypothesis that activation of 
the DDR mediated by the double-strand breaks plays a 
physiological role in neuronal activity, by promoting the 
expression of the so-called early response genes in mice 
(Madabhushi et  al., 2015). In neurons, the “early-response 
genes” code for transcription factors that are activated soon 
after the stimulation and regulate the cellular response by 
activating the expression of the “late response genes” (West 
and Greenberg, 2011). The “early” genes play a key role in 
synapse development and maturation and are hence required 
for learning and memory (Perez-Cadahia et  al., 2011). 
Madabhushi et  al. (2015) demonstrated that DSBs occur after 
neuronal activity at the transcriptional start sites of the early 
genes (and are related to the TopoII β activity). This facilitates 
the rapid response of these genes, whose promoters are bound 
to the “paused” RNA pol II in basal condition, that is, in 
the absence of stimuli (Kim et  al., 2010). It is interesting to 
note that RNA pol II pausing is also observed at the promoters 
of genes that are expressed in response to environmental 
stimuli, and these genes are targeted by the Drosophila “HSP90 
chaperone” (Sawarkar et  al., 2010). This finding represents an 
intriguing link among “early” gene activation, HSP90, and 
DNA breaks.

The activation/movement of the transposable elements in 
the nervous system may induce genome instability, which in 
turn could connect DDR machinery and synaptic activity.

dFmr1/FMRP Has a Role in the DNA 
Damage Response
FMRP may have a crucial role in this scenario because it 
has been related to the DNA damage response. Liu and 
collaborators demonstrated that dfmr1 mutant flies display 
disproportioned cell death, related to DNA breaks and to 
marked genome instability, upon inducing DNA lesions (Liu 
et  al., 2012). dFmr1 and FMRP had been previously shown 
to regulate cell cycle progression and differentiation in the 
germline as well as in the brain (Epstein et  al., 2009; Yang 
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et al., 2009; Callan et al., 2010; Papoulas et  al., 2010), exerting 
their function in the early DDR through its Agenet and KH 
domains (Zhang et  al., 2014). Soon after this observation, a 
result in mouse also supported a role of FMRP in the DNA 
damage response, regulating H2Ax phosphorylation, BRCA 
complex formation, and accumulation in embryonic fibroblasts 
and in mouse spermatocyte (Alpatov et  al., 2014). This role 
is thought to be  independent of the canonical function in 
the translational control of mRNAs involved in the synaptic 
plasticity (Brown et  al., 2001; O’Donnell and Warren, 2002; 
Bassell and Warren, 2008) and requires FMRP N-terminal 
Tudor/Agenet domain for its binding to the H3 histone (Alpatov 
et  al., 2014). All these discoveries assign a role to FMRP/
dFmr1 in the DDR cascade, identifying this multifaceted protein 
as a hub for multiple cellular processes. Clearly, one of the 
most exciting and difficult features of FMRP is the presence 
of multiple domains involved in a variety of molecular processes, 
from the nuclear localization domain, the RNA-binding domains, 
and the Tudor/Agenet domain. This implies that a single 
protein has distinct roles depending on its localization in the 
different subcellular compartments. Future efforts will aim at 

disentangling the diverse functions of this molecular “Swiss 
knife” in development and physiology.

CONCLUSIONS AND FUTURE 
PERSPECTIVES

A growing number of studies report the identification of piRNAs, 
piRNA-related proteins, and piRNA-mediated transposition as 
key factors ensuring heterogeneity in mammalian neurons. 
Transposable elements are indeed emerging as novel players 
in neuronal development, and they may function through the 
DNA damage response pathway. In parallel, it has been shown 
that the Drosophila ortholog of the Fragile-X gene in humans, 
dFmr1, interacts with 4 of 5 Argonaute proteins in the gonads 
and in somatic tissues (Caudy et al., 2002; Ishizuka et al., 2002; 
Bozzetti et  al., 2015; Jiang et  al., 2016) and plays a role in the 
piRNA-mediated silencing of the repetitive sequences and 
transposon in the gonads (Bozzetti et  al., 2015; Specchia et  al., 
2017). Figure 5 illustrates the potential role of dFmr1  in the 
protein network involved in genome stability. These  discoveries 

FIGURE 5 | Scheme displaying the network of genetic and biochemical interactors of dFmr1 related to its role in genome stability. The tissues in which the genetic 
and/or biochemical interaction occurs are indicated (see text). Cup and Nufip are indicated by a dotted line, because they have not been yet tested for their role in 
the piRNA-mediated silencing of TEs. Hsp83 is connected to dFmr1 by a dotted line, because its interaction has not yet been demonstrated. Asterisks indicate the 
proteins that are part of the polar granules.
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open new perspectives for understanding the role and the mode 
of action of the dFmr1 protein in genome stability and pave 
the way to address its role in the piRNA pathway operating 
in the nervous system.

Key questions need now to be  addressed: Does dFmr1 has 
a piRNA-mediated role in the brain and, if so, does its role 
in genome stability account for the multiple neurological 
phenotypes exhibited by dFmr1 mutants and by the FraX patients? 
Typically, is the dFmr1 pathway linked to piRNAs involved in 
synaptic plasticity, learning and memory, and circadian behaviors? 
Should this role of dFmr1 be  exerted in a specific temporal 
window during development as suggested by recent studies? 
(Weisz et  al., 2015; Doll and Broadie, 2016; Doll et  al., 2017).

Drosophila represents an attractive model for studying the 
Fragile-X syndrome and will help to address these questions 
because of the short generation time; the different types of 
genetic, cellular and molecular tools available; and the easy 
phenotype evaluation and rescue. Drosophila melanogaster offers 
a suitable in vivo model to prescreen numerous potential 
therapeutic molecules (McBride et  al., 2005; Choi et  al., 2010; 
Kanellopoulos et  al., 2012; Hagerman et  al., 2014), and clinical 
trials have been performed in human FraX patients, even 
though the results are not convincing. If the role of dFmr1  in 

the piRNA-mediated regulation of transposons is confirmed 
in the nervous system as well, new therapeutic possibility will 
open up. We are confident that dFmr1/FMRP will still surprise 
us and will help us in searching and finding potential therapeutical 
targets for the treatment of this devastating disease.
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