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ABSTRACT

Many data processing systems are naturally modeled as pipelines, where data flows
though a network of computational procedures. This representation is particularly
suitable for computer vision algorithms, which in most cases possess complex
logic and a big number of parameters to tune. In addition, online vision systems, such
as those in the industrial automation context, have to communicate with other
distributed nodes. When developing a vision system, one normally proceeds from ad
hoc experimentation and prototyping to highly structured system integration.

The early stages of this continuum are characterized with the challenges of
developing a feasible algorithm, while the latter deal with composing the

vision function with other components in a networked environment. In between, one
strives to manage the complexity of the developed system, as well as to preserve
existing knowledge. To tackle these challenges, this paper presents EPypes, an
architecture and Python-based software framework for developing vision algorithms
in a form of computational graphs and their integration with distributed systems
based on publish-subscribe communication. EPypes facilitates flexibility of
algorithm prototyping, as well as provides a structured approach to managing
algorithm logic and exposing the developed pipelines as a part of online systems.

Subjects Computer Vision, Data Science, Robotics, Software Engineering
Keywords Computer vision, Computational graph, Publish-subscribe, Robotics, Python, Pipeline,
Distributed systems, Algorithm development, Event-driven systems, Concurrency

INTRODUCTION

In recent years, the increased availability of computational resources, coupled with the
advances in machine learning methods and ability to gather large amounts of data, opened
new possibilities of developing more advanced data-driven systems. Visual data,
acquired by various types of imaging equipment, constitutes one of the main inputs to
advanced data analysis algorithms.

In manufacturing automation, vision systems has a long history of use in
combination with dedicated automated equipment and industrial robots, serving a role
of contact-less sensing for, amongst others, quality inspection and robot guidance.
What differentiates industrial vision solutions from general-purpose computer vision
systems, is their coupling with the associated mechatronic components possessing an
actuation function. This entails that most industrial vision systems operate in online mode,
with their operation being synchronized with external systems by various forms of
remote communication.
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! The EPypes implementation is available
under the 3-clause BSD license at
https://github.com/semeniuta/EPypes.
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Figure 1 Common steps of a vision pipeline. Full-size K&l DOT: 10.7717/peerj-cs.176/fig-1

When a new robotic system with vision sensing is developed, the early-stage system
prototyping favors flexible tools and techniques that allow for iterating toward a
functional solution quickly. When it comes to computer vision prototyping, the tools
of the trade include OpenCV, as well as libraries from the Python data science
ecosystem, most notably NumPy, SciPy, Pandas, Scikit-learn, Scikit-image, and others.
Vision algorithm development is a challenging task in itself, as it requires a great deal of
experimentation and tuning of numerous parameters and thresholds. Another challenge
with early-stage prototyping of vision algorithms to be used with robotics and
automation solutions is their coupling to other networked components. Establishing
communication interfaces can be time consuming, and is often done as a patchwork,
which is difficult to maintain.

Many data processing systems can be logically modeled as direct graphs in which data is
being gradually processed by the computational nodes. This is particularly characteristic of
vision systems: after image capture and acquisition, an input image is obtained in
memory and fed to a series of transformations leading to the application-specific output.
Such pipeline can be comprised of the steps of image enhancement, image segmentation,
and feature detection (Fig. 1).

This idea has been formalized with the abstract concept of data flow, and has found its
application in many areas, including distributed data processing, machine learning,
embedded software development, and digital signal processing. MATLAB Simulink and
LabVIEW are the traditional engineering tools whose programming model is based on
data flow. In data engineering and data science areas, tools like Apache Storm,

Apache Airflow, Luigi, and Dask employ explicit data flow construction and execution.
Needless to mention that the deep learning libraries, such as TensorFlow, Caffe, and
Theano, construct and train models as directed acyclic graphs (DAGs).

This paper tackles the problems of both (1) vision algorithms development and (2) their
integration into distributed environments. This is done by introducing EPypes, a Python
library' for construction and execution of computational graphs, with the built-in
capability of exposing the graphs as reactive pipelines. The latter are intended to be a part
of publish-subscribe systems. In addition to the software tools, this paper presents a system
development method that facilitates transition from ad hoc prototyping phase to
well-structured system integration phase without compromising the developers’ flexibility.
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The practical applicability of the proposed framework is validated in a distributed
experimental setup comprised of a robot, an image acquisition service, and an
image processing component, communicating in a publish-subscribe manner using
ZeroMQ middleware. It is shown that the EPypes architecture facilitates
seamless transition between various deployment configurations in a distributed
computing environment.

This paper is structured as follows. First, the background areas are introduced, including
overview of computational systems based on DAGs, the Python data science/computer
vision ecosystem, and event-based middleware. Further, the EPypes abstractions are
presented with code examples and architectural relationships. Finally, a distributed system
experiment based on EPypes provides a more detailed view into the runtime properties
of the framework.

BACKGROUND

Graph-based representation of computational systems

A wide range of computational systems, particularly those with streaming behavior, can be
represented as directed graphs, in which data is routed through processing nodes.

Not only is this representation accessible to human understanding (particularly for
engineers), but it also has been used in various settings to realize improvement of the
function of the systems.

Control engineering and signal processings has a long tradition of graphically modeling
systems in a form of block diagrams. MATLAB Simulink and LabVIEW are widely used in
this context as engineering tools with formally defined abstractions. The field of cyber-
physical systems (CPS) makes great use of graph-based system models together with the
associated models of computations (Lee ¢ Seshia, 2011). A notable CPS modeling
environment is Ptolemy II.

In computer science, graph-based representation of systems has been used for a range of
different purposes: data flow models, task graphs (for parallel processing scheduling),
symbolic representation of computational expressions (for machine learning and
automatic computation of gradients), representation of concurrent process networks
(e.g., Communicating Sequential Processes), workflow languages, etc. In the software
engineering community, the pipes and filters architecture applies the same ideas to
data processing systems design and development. The well-known pipes mechanism of
Unix-like operating systems has proved to be particularly powerful when it comes to
composition of multiple tools to solve a complex task.

Data science has seen a surge of tools based on explicit handling of data processing
systems in a form of DAG. Many of them are intended to be run on a computing cluster,
and the DAG architecture in this case facilitates scheduling of parallel execution of data
processing tasks. Apache Storm is a cluster-based stream processing engine.

Apache Airflow is workflow management platform for batch processing on a cluster.
Dask is a Python parallelization library that utilizes DAG modeling for scaling algorithms
written with NumPy and Pandas primitives to be used with massive datasets.
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Python data science/computer vision ecosystem

The open source movement has gained a big popularity within the fields of data science,
computer vision, and robotics in recent years. Even though the established proprietary
engineering tools are pervasive in the industrial context, they often lack flexibility and
hinder a deeper understanding of how a system functions. Conversely, open source tools
provide community-contributed implementation of common functionality, which is
flexible to use and allows for building more scalable and reproducible solutions.

In computer vision, the OpenCV library has become a de-facto standard providing a
pool of community-contributed image processing and computer vision algorithms.
Similarly, the point cloud library (PCL) provides open-source routines for point clouds
processing. A multitude of tools from the Python ecosystem are widely used for
data science and scientific computing. They are built upon the NumPy array library,
and include Pandas, Scikit-learn, Scikit-image, and many others. The abovementioned
OpenCV and PCL, as well as many other low-level tools, expose Python bindings, which
makes it possible to perform rapid system developed with preserved high performance of
the applied algorithms.

Events and publish-subscribe middleware

An event-driven system is characterized by a discrete state space, where state transition
happen on occurrence of events at sporadic time instants (Cassandras ¢ Lafortune, 2008).
In distributed systems, events are often embodied as messages sent over a network

in a publish-subscribe communication system. Such messages can signalize a change of a
system state (change event) or a notification from an observation (status event), expressed
as a tuple with a timestamp and an application-specific descriptive parameters

(Hinze, Sachs ¢ Buchmann, 2009). Message-based middleware provides a unified set

of communication and input/output capabilities in such sense-respond systems.

Middleware allows to decouple the communicating components by introducing
message queuing, built-in address resolution (e.g., via handling logical addresses such as
topic names), and usage of a common data serialization format (Magnoni, 2015).

The defining components of a particular middleware solution are the communication
protocol (transport-level TCP and UDP, wire-level AMQP, ZeroMQ/ZMTP, MQTT),
the communication styles (request/reply, publish/subscribe), and the data serialization
method (typically realized with an interface definition language like Protobuf or
Apache Thrift). Many middleware solutions are based on a central broker, for example,
ActiveMQ and RabbitMQ. The additional hop through the broker adds a constant
value to the communication latency (Dworak et al., 2012). ZeroMQ is an example of
broker-less middleware, in which the message queuing logic runs locally within each
communicating component (ZeroMQ, 2008).

EPYPES

EPypes is a Python-based software framework that combines pipes and filters and
publish-subscribe architectures. It allows to develop data processing pipelines, the behavior of
which is defined by their response to events. EPypes defines a computational graph, which is
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% The term hyperparameters is borrowed
from machine learning, where it refers to
parameters that characterize a particular
algorithm, as opposed to model para-
meters. Semantics of hyperparameter
tokens in this paper is similar, although
the considered computational graphs can
be used to model a wide variety of
algorithms.

a static data structure modeling a data processing algorithm, abstractions used for
execution of computational graphs, and a hierarchy of pipelines, which extend the algorithm
logic defined with computational graphs to be a part of a publish-subscribe system.

Computational graph

At the core of EPypes lies CompGraph, a data structure that models a data processing
algorithm as a computational graph, that is, as a network of functions and data tokens.
Formally, a CompGraph can be described as a bipartite DAG G:

G = (F,T,E)

where F is a set of functions, T is a set of data tokens, and E is a set of directed edges
between functions and tokens and vice-versa. The latter implies that edges of only the
following two kinds are permitted: (f, ;), where f€ F, t; € T, and (t;, g), where ge F, ;€ T.

A function f € F is associated with a Python callable. A token ¢ € T represents
a data object of an arbitrary type. If function f correspond to a callable with m input
parameters and » outputs, it has to be connected to n input and m output tokens.

Let Iny C T denote the set of input tokens to f, and Out; C T denote the set of output
tokens from f.

Functions in G are uniquely identified by their string-based names. This allows to use
the same Python callable several times in the computational graph.

Once a computational graph G is constructed, and it conforms to the requirements of
acyclicity, its execution can be scheduled. Topological sort of G results in an order of
vertices (functions and tokens) so that all the directed edges point from a vertex earlier in
the order to a vertex later in the order. With invoking functions in this topological order,
all the precedence constraints will be satisfied.

For many computational procedures, one can typically distinguish between parameters
carrying the primary data entities and parameters that tune the procedure. In this paper,
the former are referred to as payload parameters, and the latter as hyperparameters’.
Thus, tokens belonging to these two parameter sets of function f form the input parameter
set of f: Inp= Py U Hp. It is further presumed that all hyperparameter tokens are frozen,
that is, given fixed values, during the construction of graph G. The set of non-frozen
source tokens is referred to as free source tokens, and is used to provide input to
the computational graph.

In the computational graph example shown in Fig. 2, rectangle vertices represent
functions in the function set F = {f}, f,, f3}, white circular vertices represent payload tokens,
and gray circular vertices—hyperparameter tokens. In accordance with the previously
defined notation, each function in F has the following associated token sets:

fi Hy={t,t3} Py ={t} Outy, = {ty,t5}
L H, =09 P, = {ts} Outy, = {ts}
f3 Hf3 = {t7} Pf3 = {t5, t6} Outf3 = {tg}

Token t, is the only free source token, and its value is required to perform a computation.
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Figure 2 An example abstract computational graph. Full-size K&] DOTI: 10.7717/peerj-cs.176/fig-2

A concrete example
Consider a simple computational graph that defines a processing chain in which a color
image is first converted to grayscale, then blurred with a Gaussian kernel, with the
blurred image further used to perform edge detection with the Canny algorithm.

The following listing shows the steps of the computational graph construction.

import cv2

def grayscale (im):
return cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)

def gaussian_blur(img,kernel_size):
return cv2.GaussianBlur (img, (kernel_size, kernel_size), 0)

func_dict = {
‘grayscale’: grayscale,
‘canny’: cv2.Canny,
‘plur’: gaussian_blur

func_io = {
‘grayscale’: (‘image,’ ‘image_gray’),
‘plur’: ((‘image_gray,’ ‘blur_kernel’),’image_blurred’),
‘canny’: ((‘image_blurred,'’canny_lo,’ ‘canny_hi’), ‘edges’),

cg = CompGraph(func_dict, func_io)

After importing the OpenCV Python module (cv2), two helper functions are defined
for grayscaling and blurring (the function for edge detection is used as-is). The structure
of the computational graph is specified as two dictionaries. The func_dict
dictionary defines mapping from unique function identifiers (in this case, strings
“grayscale”, “blur”, “canny”) to the respective callable objects. The func_io
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CompGraph [—< CompGraphRunner
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Figure 3 Class digram of EPypes abstractions dealing with computational graphs.
Full-size K&] DOT: 10.7717/peerj-cs.176/fig-3

dictionary defines input/output relationships between the functions in a form of tokens.
Each function identifier is mapped to a tuple describing input and output tokens that can
be one of the following forms, depending on the respective functions’ signatures:

e (x, y) for single input and single output;

® ((x1, ..., Xp), ) for multiple inputs and single output;

o (X, (1, ..., ¥)) for single input and multiple outputs;

o ((x1, o Xpm)> (V15 «r ¥,)) for multiple inputs and multiple outputs.

An instance of CompGraph is then constructed based on func_dict and func_io.

To be executable, a computational graph has to be supplied to the constructor of
CompGraphRunner. The latter is used to store the hyperparameter tokens and schedule
execution of the graph with the topological sort. Internally CompGraphRunner delegates
storage and retrieval of token data to an instance of TokenManager (Fig. 3).

In the following example, we specify the Gaussian blur kernel, and low/high threshold of
the Canny algorithm in dictionary params. The latter, together with the original
computational graph cg is used to construct a CompGraphRunner:

hparams = {
‘plur_kernel’: 11,
‘canny_lo’: 70,
‘canny_hi’: 200

runner = CompGraphRunner (cg, hparams)

Visualization of this parametrized computational graph is shown in Fig. 4.
The hyperparameter tokens are highlighted in gray.

To run a CompGraphRunner, its run method is invoked with keyword arguments
corresponding to names and values of free source tokens. In the provided example the only
free source token is image. Therefore, the running syntax is the following:

im = cv2.imread(‘image. jpg, cv2.IMREAD_COLOR)
runner.run(image=im)

A CompGraphRunner can be used as a namespace for accessing any token value by the
token key. The interface for this operation is the same as for a Python dictionary.
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Figure 4 Computational graph for edge detection. Full-size K&l DOT: 10.7717/peerj-cs.176/fig-4

For example, to visualize the blurred image from the computational graph in Fig. 4
using Matplotlib, the following syntax is applied:

plt.imshow(runner[‘image_blurred’'])

Pipelines
To introduce additional functionality to algorithms expressed as computational graphs and
transform them into runtime reactive components, a hierarchy of pipeline classes is defined.
As shown in Fig. 5, the basic building block of EPypes pipelines is a Node, which
is a runtime counterpart to a function. An instance of Node based on function f can be
invoked as a callable object, with parameter values corresponding to the positional input
arguments of f. A network of node instances corresponding to the graph G form
a NodeBasedCompGraph. The latter constitutes the main component of a Pipeline,
as well as its subclasses (SourcePipeline, SinkPipeline, and FullPipeline).
An instance of the Pipeline class is constructed similarly to the earlier example of
CompGraphRunner, but with the additional name argument:

pipe = Pipeline (‘MyPipeline’, cg, hparams)

Because Pipeline is defined as a subclass of Node, its instances constitute callable
objects, and are functionally equivalent to instances of Node. The whole pipeline is
orchestrated by an instance of CompGraphRunner (Fig. 5). The internal structure of a
Pipeline is visualized in Fig. 6.
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Figure 5 Class digram of EPypes Pipelines. Full-size K&l DOT: 10.7717/peerj-cs.176/fig-5
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Figure 6 Structure of an instance of Pipeline. Full-size K&l DOT: 10.7717/peerj-cs.176/fig-6

Additional capabilities of a Pipeline, as compared with a raw CompGraphRunner,
include time measurement of nodes’ durations, computation of computational graph
overhead, storage of additional attributes, and other functionality added by subclassing
Pipeline.

To allow for reactive behavior of pipelines, they are combined with event queues,
which can be used for subscription to triggering events and publishing the results of data
processing. To realize this, aside from Pipeline, which is not reactive, three other
types of pipelines, coupled with event queues, are defined. Reactive pipelines operate in
context of thread-based concurrency with blocking queues as the synchronization
mechanism. In the Python standard library, a queue . Queue object can be used to
communicate between two threads: the producer thread puts an object on the queue, and
the consumer thread request the object and blocks until the latter becomes available.
The principle of such interaction is shown in a sequence diagram in Fig. 7.

A SourcePipeline, see Fig. 8, is a subclass of Pipeline whose final output is put to
the output queue g,y A SourcePipeline is in addition parametrized by f,., an output
preparation function, responsible for packaging the chosen data from the pipeline
tokens into a single message that gets published on gy,

An instance of SourcePipeline is constructed as follows:

src_pipe = SourcePipeline (‘MySourcePipeline’, cg, q_out, f_out, hparams)

Semeniuta and Falkman (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.176 9/20


http://dx.doi.org/10.7717/peerj-cs.176/fig-5
http://dx.doi.org/10.7717/peerj-cs.176/fig-6
http://dx.doi.org/10.7717/peerj-cs.176
https://peerj.com/computer-science/

PeerJ Computer Science

Producer | | Queue | | Consumer
: PR
1 put | |

» |
|
event ]
—————————
1 |
1 |
1 |
! ! get
1 lg—
1

Figure 7 Sequence diagram of thread-based producer and consumer interacting through a queue.
Full-size K&l DOT: 10.7717/peerj-cs.176/fig-7
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Figure 8 Structure of an instance of SourcePipeline. Full-size &l DOI: 10.7717/peerj-cs.176/fig-8

As an example of the output preparation function, consider a pipeline, whose
computational graph contains a token with the key pose, corresponding to a 3D pose
estimated from images. To take the data corresponding to this token and package it as a
Python pickle, the following function can be defined:

def prepare_output (pipe):
pose = pipe[‘pose’]
wire_data = pickle.dumps (pose)
return wire_data

Another subclass of Pipeline is SinkPipeline, shown in Fig. 9. It is meant not to be
called manually, but to be triggered as an event e is announced in g;,. Because e can
be an arbitrary object, it is necessary to map its contents to a dictionary d, that describes
what data should correspond to the pipeline’s free source tokens. Such mapping is defined
by event dispatcher function f;,.

An instance of SinkPipeline is constructed in a familiar way:

snk_pipe = SinkPipeline(‘MySinkPipeline’, cg, q_in, f_in, hparams)

The idea of event dispatcher can be illustrated by referring to the computational graph
in the earlier example (Fig. 4). Consider that e constitutes an image as a numpy . ndarray.
Because a CompGraphRunner is invoked with keyword arguments, f;, is defined to
map to the required kwargs dictionary:

def dispatch_image(im) :

return {'image’: im}
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Figure 9 Structure of an instance of SinkPipeline. Full-size K&l DOTI: 10.7717/peerj-cs.176/fig-9
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Figure 10 Structure of an instance of FullPipeline. Full-size Kal DOI: 10.7717/peerj-cs.176/fig-10

The behavior of waiting for an event is realized with an event loop, an instance of
EventLoop class, which is continuously run in a separate thread of execution. It monitors
gin> and, as a new event e becomes available, invokes the associated instance of
SinkPipeline (Fig. 9) having the kwargs from the event dispatcher:

input_kwargs = self._event_dispatcher (event)
self._callback_pipeline.run(**input_kwargs)

Finally, the most comprehensive EPypes entity is Ful1Pipeline, shown in Fig. 10.
It subclasses Pipeline, and provides functionality of both reacting to a stream of
incoming events in g;, and publishing a subset of its processing results to g, as outgoing
events. It is instantiated in the following way:

snk_pipe = FullPipeline (‘MyFullPipeline’, cg, q_in, q_out, f_in, f_out,
hparams)

EPypes-based system development
A distinction between a static computational graph and its runtime counterparts is realized in
order to facilitate smooth system evolution from an early ad hoc development phase to a more
integral whole with well-functioning reactive behavior. As shown in Fig. 11, the development
starts with components having less structure, and proceeds by extension of these components
with functionality and behavior that are facilitated by the proposed tools.

In the early development phase, vision algorithms, as well as other data
processing routines, are prototyped using the available tool set: different alternatives
can be implemented and evaluated in an interactive manner using tools like Jupyter
and supported by OpenCV and a pool of scientific Python libraries (NumPy, Pandas,
Scikit-image, Scikit-learn). As the result of prototyping, a collection of well-tested
functions is developed. At this stage, the developer can specify computational graphs
from the pool of these functions.
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Figure 11 Layered system development framework. Full-size K&] DOT: 10.7717/peerj-cs.176/fig-11

The process of computational graph engineering involves a great deal of prototyping itself.
Despite the fact that CompGraph constitutes a highly-structured entity, the flexibility of its
definition brings a number of advantages over coding up the algorithm as a single
function. Most importantly, the flat structure of the computational graph, along with
Graphviz-based visualization capabilities, gives a transparent view on the data flow in
the developed algorithm. It also allows for incorporating several alternative branches as a
part of the same graph. The uniquely-named tokens provide an isolated namespace, which is
specifically useful when prototyping in a Jupyter notebook. The mechanism of
hyperparameter tokens allows for systematic management of the set of thresholds and other
configuration values while being on a single hierarchical level (without a cascade of function
calls). The well-defined structure of a computational graph facilitates automated
manipulation of it, for example, extending the original graph with additional functions,
union of two or more graphs, and union with renaming of functions and tokens.

When a computational graph is developed, it can be used to construct pipelines.

The non-reactive Pipeline provides additional capabilities to the computational graph: it
is runnable, includes time measurement functionality, and can be flexibly subclassed,

as done in reactive pipelines (SinkPipeline, SourcePipeline, and FullPipeline).
The latter are used to expose the developed algorithm in online mode.

EPypes use case

In order to illustrate practical application of the EPypes framework and show its suitability
for building data processing components in distributed environments, this section presents
a run time use case scenario with the associated experiment. The presented scenario
demonstrates how EPypes can be deployed as a part of a real distributed system

(with the communication based on ZeroMQ and Protobuf) and what timing properties
may be expected in this case. In particular, a major concern is how much overhead

is introduced by the additional abstractions in the EPypes architecture. Furthermore, it is
of interest how repeatable this overhead is, as well as what role it plays comparing to
communication latency and the application-specific processing time.
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System description

As shown in Fig. 12, the case system is comprised of three nodes: (1) the robot control
node, (2) the image acquisition service, and (3) the EPypes-based image processing
node. The robot control node coordinates the robot’s work cycle and realizes
communication with external systems. The system performing stereo acquisition from
two cameras is designed as a streaming service, built using the FxIS framework
(Semeniuta ¢ Falkman, 2018). For each associated camera, a stream of images is captured
in its own thread of execution, and a number of recent frames are retained at each
moment. External systems can request images from the service that closely correspond
to the request timestamp.

The nodes run in the distributed environment and communicate through ZeroMQ
publish/subscribe sockets and in-process blocking queues. For publishing and
subscribing, EPypes provides two thread-based abstractions, namely ZMQPublisher and
ZMQSubscriber. The former encapsulates a ZeroMQ PUB socket and acts as a consumer
of an in-process queue: as a new data is available on the queue, it gets published.

An example in Fig. 12 is the PUB2/q,,, pair. ZMQSubscriber encapsulates a ZeroMQ SUB
socket, which is polled with the Poller object. On arrival of a new message, the latter is
put on the connected in-process queue. An example in Fig. 12 is the SUB1/g;, pair

The robot control node runs on an ARM-based Raspberry Pi 3 single-board computer with
the Raspbian operating system, while the vision-related components are deployed to an
Ubuntu-based x86-64 machine. The latter has an Ethernet connection to a stereo camera pair
(GigE Vision-based Prosilica GC1350), which are used by the image acquisition node.

The following communication loop is considered:

1. Robot announces request for timely image processing results; the image request is
announced asynchronously as an event at PUB1.

2. Images most closely associated with the request are acquired and, as a tuple of numpy .
ndarray, communicated to the processing component via the common in-process
queue images-

3. Image processing node extracts the desired features from the images, which are
communicated back to the robot via the PUB2/SUB2 asynchronous socket pair.
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The target vision algorithm performs ORB feature detection, description, and matching
(Rublee & Bradski, 2011). Figure 13 shows the corresponding computational graph.
After image features are identified in each image, collections of feature descriptors are
matched against each other using OpenCV’s BFMatcher object, with the matches returned
in sorted order by match distance. The final gather_keypoints function produces an
array of the matched keypoints’ coordinates.

The communicated messages that are send over wire are serialized in the Google’s
Protocol Buffers (Protobuf) interchange format. Three message types are used:

e AttributeList represents a collection of key/value attributes, where an attribute
can be either a string, a double, or an int32.

e Event, sent over PUB1/SUB1, is comprised of an id (string), a type (string),
and attributes (Attributelist);

e JustBytes, sent over PUB2/SUB2, is comprised of an id (string), content (bytes),
and attributes (AttributeList);

The computational graph shown in Fig. 13 forms a basis for an instance of a
FullPipeline. Its event dispatcher f;,, handles tuples with pairs of images put onto
Qimages- The output preparation function f is responsible for packaging the output data as
a JustBytes Protobuf message, with its content being the Pickle-serialized value of
the first 20 rows of the keypoints_paired token (numpy.ndarray), and the
attributes filled by timestamps and durations captured with the image acquisition
service and the EPypes pipeline.

Time measurement experiment

The robot control node announces a series of vision requests and extracts attributes from the
response Protobuf messages. In addition, it records the timestamps of when the vision
request get announced () and when the corresponding response is obtained (tyresp)-
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The difference between these timestamps accounts for the trip duration of the current request:

Tyip = tvresp - tvreq

For execution of both the image acquisition service and the vision pipeline, two
timestamps are added to the properties set: f..,r, when the component reacted to
the incoming event, and ¢, right before publishing the outgoing event. Their difference
T,—p provides the measurement of the component’s processing time, including processing
of incoming and outgoing events:

Tr—p = lpub — freact

Properties related to the vision pipeline that get added to the outgoing Protobuf message
comprise vision processing time t,,, overhead from orchestrating the computational graph o,
and timestamps of start and finish of the event dispatcher fi, (1,1, t;,|) and the output

preparation function fou (t,,1, .| )» Which define the corresponding function durations:

Yo = Yl — It
Tfout = tfoutl - t_‘foutT

Computational graph overhead o, is measured internally by the pipeline
(p.compute_overhead()), and constitutes the difference between total processing time
of the pipeline and the sum of processing times of all the enclosed nodes:

0g = Tp — — Z{rn foreachnode n € p}

After each request is finished, the robot control node records all the obtained properties.
The latter are further aggregated in a Pandas data frame, with a row of properties’ values per
each request. From the available data, the following overhead metrics can be computed:

1. Network overhead measures how much the trip duration is greater than the time spent in
all the components:

Onetwork = Tirip — (Tgizl;geacquistition) + Tgf;onpipeline))
2. EPypes overhead is computed as an excess time in the vision pipeline in addition to the
processing in the computational graph and in the functions f;, and f,.¢
ion piveli

Ocpypes = Tﬁgszlfonplpe e (Tp + U + U)

Figure 14 demonstrates the timeline of 100 vision requests and the associated durations
of the image acquisition service, the vision pipeline, and the overhead from network
communication.

Data has been collected from five experiments, each with 500 vision requests. For each
experiment, a maximum likelihood estimation of log-normal probability density

function is performed for distributions of o.; and o The same estimation is

epypes*
performed for all data combined. Figures 15 and 16 show visualization of these PDFs.
A PDF for each individual experiment is visualized as a shaded area under the curve.

The PDF for all data is shown as a thick curve. The thin vertical line specify the
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modal value of the PDF for the combined dataset, and the enclosing thick vertical lines
delimit the overall range of measurements for the combined dataset.

It can be seen from Fig. 15 that overhead from performing data processing based on a
computational graph o, is characterized by matching log-normal distributions for every
experiment, with most of the probability density located around 0.3 ms. The EPypes
overhead Ocpypes» a5 shown in Fig. 16, has much tighter range of possible values, distributed
log-normally with matching distributions for every experiment, and with most of the
probability density around 0.02 ms. Overall, for a vision algorithm that naturally requires
tens of milliseconds to perform the processing, the overheads introduces by EPypes can be
considered negligible.

Related work
The idea of explicit utilization graph-based representation of data processing algorithms
has been on the surface for many years. The availability of engineering tools, data science
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frameworks, and modeling formalisms, described in the Background section, shows

the efficacy of the pipeline thinking when designing systems with streaming logic.

The distinctive approach of EPypes lies in its tight integration with the Python ecosystem,
support for algorithm prototyping, and abstractions for integration of the developed
computational graphs into distributed systems.

The EPypes architecture is a logical continuation of the concept of discrete event data
flow, earlier presented by Semeniuta ¢ Falkman (2015). This earlier work attempted
to define a data flow formalism with distinct notion of event as the one used in
publish/subscribe systems. However, the presented formalism didn’t include a reference
implementation at the time. EPypes has, in turn, refined the notion of reactive pipelines
and made it usable in real scenarios.

Other highly related work within the formal methods domain is Stream Algebra
(Helala, Pu ¢ Qureshi, 2014), with its Go-based implementation (Helala, Pu ¢ Qureshi,
2016). This approach models an image processing algorithm as a set of data streams
that get altered by a set of operators. In the algebra implementation, a stream corresponds
to a Go channel, and the set of defined operators allow to define usable workflow patterns
such as pipeline graphs, fork-join graphs, and pipeline graphs with feedback. The latter
option is naturally supported due to the concurrency features of Go. This approach,
similarly to EPypes, allows to construct high level algorithm from finer functions,
including those from the OpenCV library. The distinctive feature is the support for
feedback, which is disallowed in EPypes due to the acyclicity requirement. The feedback
with EPypes, however, can be realized on a higher systemic level, by incorporating
additional distributed components.

In the contemporary robotics research, the robot operating system (ROS) is widely used as
the underlying platform for the distributed robotic applications relying on data from sensors
and cameras. The general architecture in this case is based on a collection of nodes that
react to arrival of data through publish/subscribe topics, which makes the overall logic
graph-based. The related concept of nodelet (and component in ROS2) allows to realize a
processing graph structure as a part of a single operating system process. Examples of
this approach is often demonstrated on the applications of point cloud processing (Rusu ¢
Cousins, 2011; Munaro et al., 2013; Carraro, Munaro & Menegatti, 2017), as to minimize
latency due to inter-process or remote communication. ROS-based processing graphs,
especially in the single-process case, are somewhat similar to EPypes pipelines. They,
however, target applications with already developed algorithms, as opposed to EPypes, which
supports early-stage prototyping using the graph-based abstractions.

Other academic examples of similar robot/vision architectures include the one based
on the supervisory control theory of discrete-event systems (Kosecka, Christensen ¢
Bajcsy, 1995) and service-oriented dataflow-like components, auto-tuned by higher-level
supervisors (Crowley, Hall ¢ Emonet, 2007).

CONCLUSIONS AND FURTHER WORK

This paper has presented EPypes, an architecture and Python-based software
framework for building event-driven data processing pipelines. Because most of vision
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algorithms and many data processing routines are naturally modeled as pipelines,
EPypes offers a capability of implementing data processing systems as DAGs. Apart from
the functional components comprising the prototype implementation of EPypes,

this paper has presented a system development framework that supports evolution of
computational graphs from an early prototyping phase to their deployment as reactive
pipelines.

The principle of the EPypes abstraction is demonstrated on the example of constructing
a computational graph for edge detection and discussing the inner structure of the
hierarchy of pipelines. Further, a real scenario of deployment of an EPypes pipeline for
features detection and matching to a distributed system is experimentally studied.

It was shown that the ability to adapt reactive behavior to various publish/subscribe
middleware solutions allows to combine EPypes pipelines with already available systems.
The measured timing properties of the image processing component based on EPypes
show that the latter introduces negligible overhead comparing to the application-inherent
processing time.

An important part of further work should be connected with development of software
abstractions on the highest level of the system development continuum shown in Fig. 11.
This will enable fine-tuning and enhancing of reactive pipelines, for example, with
adapters to different messaging systems (e.g., MQTT, RabbitMQ, DDS), parallelizable
nodes, and specialized pipeline management logic. An important task in this case is
implementation of systematic error handling. A failure inside the pipeline (e.g., in
the case of a vision system, due to changed lighting conditions) can be handled by issuing
the corresponding event that will be processed by a remote component. In addition to
queues providing asynchronous messaging, other communication modalities can be
used. An RPC API (such as REST or gRPC) can be established to allow external
systems getting meta-information about the running pipeline and changing values of
hyperparameters. Last, but not least, functionality for interaction with databases
should be integrated.

As the presented software framework is implemented in Python, it naturally
gears toward system prototyping use cases. The static abstractions are useful for algorithm
prototyping, while the transition to the reactive components allow for rapid deployment
of the computational graphs to distributed environments. This allows for harnessing
the available Python data science tools and integrating them into industrial
automation workflow.

The limitation of the proposed implementation lies in its non-deterministic overhead
due to the use of the interpreted garbage-collected programming language. Hence,
applications requiring high rate of operation and more deterministic running time are
more likely to be developed in C++ with custom UDP-based communication protocols or
real-time middleware such as DDS. It is of interest therefore to validate the principles
of EPypes using C++ codebase, as well as to devise a strategy of transforming EPypes-based
computational graphs to high-performance computing components, for example, via
code generation.
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