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Abstract 

The need for efficient spectrum utilization with reduced error rates has brought a 

paradigm shift in wireless communication systems from a Single Input and Single 

Output (SISO) systems to Multiple Input Multiple Output (MIMO) systems. 

Conventional diversity combiners are used to boost the received Signal to Noise 

Ratio at the Cognitive Radio receiver. However, these methods require perfect 

estimation of the channel. This paper proposes a Meta-Analytic approach based 

on p-Values for combining the data received from a secondary user equipped 

with multiple antennas. The effect of the p-Value method as receiver diversity 

combiner is studied and is compared with the existing non-coherent combining 

schemes, which do not need channel state information. The weighted Z test and 

Fisher’s method are used to combine the p-Values derived from the Anderson 

Darling (AD) and Jarque Bera (JB) test statistics. A ballpark figure of the merits 

of these diversity combining methods are provided in this study. Through 

extensive Monte Carlo simulations, it is shown that the weighted Z test using the 

Anderson Darling test statistic provides a probability of detection very close to 

the existing non-coherent diversity combiners. Hence, this novel statistical 

approach based on p-Values provides a promising solution to combine the test 

statistics from multiple receiver antennas. 

Keywords: Diversity combiners, Goodness of fit tests, p-Value, Probability of 

detection, Spectrum sensing. 
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1. Introduction 

Sensing the availability of the radio channel is one of the salient tasks in Cognitive 

Radio (CR). The sensing performance can be enhanced by either augmenting the 

Signal to Noise Ratio (SNR) measured at the cognitive radio device or increase the 

dimension of the received signal space. In a practical wireless environment, it is 

critical to increasing the received SNR, as the signal received at CR can be deeply 

faded and shadowed. The reliability of wireless communication system suffers 

when the signal received at the CR antenna is faded. To overcome this effect of 

small-scale fading in the detection of primary user activity, diversity techniques are 

employed to provide an improvement in the received SNR and hence, achieve a 

higher probability of detection [1, 2]. 

In the past decades, different kinds of diversity combiners have been exhaustively 

investigated in the literature. From the studies, the Maximal Ratio Combining 

(MRC), Equal Gain Combining (EGC), and Selection Combining (SC) are the most 

commonly used diversity combiners. These diversity combining techniques no doubt 

provide an improvement in the received SNR but they demand the learning of the 

Channel State Information (CSI). Hence, this increases the implementation 

complexity [3-5]. The MRC technique to maximize the output SNR is discussed in 

[5, 6] with the assumption that the exact channel information can be estimated at the 

receiver. But practically the perfect estimation of the channel cannot be achieved and 

hence, this estimation error decays the sensing accuracy. 

To mitigate the impact of the channel estimation error on the detection 

performance several diversity combining techniques were proposed in the 

literature. The non-coherent combining schemes, which do not need the CSI are 

investigated in [7]. Under this category, the square law combiner (SLC) and square 

law selection (SLS) are studied, which produces the decision statistic using the 

outputs of the square-law devices available in each of the diversity branch. Akbari 

et al. [8] proposed the use of evolutionary algorithms on receiver diversity based 

on the Imperialistic Competitive Algorithm (ICA). It is shown that this combiner 

does not demand the CSI, and it provides superior performance compared to MRC. 

In most of the studies, to test for the null hypothesis several independent tests are 

performed. In most instances, it is necessary to integrate these results from 

independent tests to decide on the presence of the null hypothesis. The results from 

such independent tests are combined using the meta-analytic approach. From the 

review of the existing literature, these approaches using p-Values have been widely 

used by evolutionary biologists to combine the results from different studies. The p-

Value method is widely used as it provides the strength of evidence in disagreement 

with the null hypothesis. Studies in [9-13] have investigated on combining the p-

Values from independent tests.  

Hence, this paper adopts the above-discussed method and proposes the p-Value 

based approach to combine the data received from multiple branches of the CR 

receiver. The proposed statistical test is more robust as it is independent of the 

primary user signal. However, these tests require the noise distribution to be known 

a priori. The preliminary focus of this study is to analyse the effect of meta-analysis 

based approaches such as the p-Value method as receiver diversity combiner and 

compare it with the existing non-coherent combining schemes, which do not need 

CSI. Figure 1 gives the classification of the diversity combining algorithms. To 

overcome the effect of imperfect estimation of channel state information, the p-
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Values approach based on statistical methods is the first of its kind for combining 

data from diversity branches. These methods depend only on the exact significance 

levels or p-Values and not on the form of the data. Hence, they are called non-

parametric or omnibus tests. 

 

Fig. 1. Classification of diversity combining techniques. 

The challenges of reliable sensing at very low signal-to-noise ratio in a fading 

environment are addressed by employing multiple sensing antennas at a CR 

receiver. Hence, this study considers SIMO (Single Input, Multiple Output) models 

and it is often used to reduce the impact of ionospheric fading and interference in 

wireless communication. The channel is considered to be affected by Additive 

White Gaussian noise (AWGN). The primary signal is considered as a sinusoidal 

pilot tone. Two significant blind sensing schemes considered for calculating the 

test statistic are 1) Energy detection 2) Goodness of Fit test. The efficacies of these 

methods are evaluated using Monte Carlo simulations. The results show that the 

proposed combining method provides detection very close to the existing non-

coherent diversity combiners.  

This paper is organized as follows: Section 2 gives the overview of blind 

sensing schemes for primary user detection, Section 3 discusses the proposed 

method, Section 4 discusses the results and Section 5 concludes the paper. 

 

2. System Model 

Consider the scenario of Single Input Multiple Output (SIMO) system with one 

transmit antenna and multiple receiver antennas. Assume that each CR contains M 

antennas. The M diversity branches are assumed to be sufficiently far from each 

other. Hence, this paper takes full advantage of this assumption that the received 

signals are statistically independent with negligible correlation. Corresponding to 

the signal received in the ith antenna of the CR device the hypotheses H0 and H1 are 

defined as: 
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H0: xi[k]=vi[k] 

H1: xi[k]=h s[k]+vi[k]                                                                                           (1) 

where h is the amplitude gain of the channel, i is the antenna index (i=1, 2,..M) at 

each CR, s[k] is the transmitted signal by PU and vi[k] is the AWGN noise 

component.  

Two scenarios considered in the study are: 

Case 1: The sample sizes received from each of the ith antenna are same. 

Case 2: The sample sizes received from each of the ith antenna are different. 

Two methods of detection of PU are detailed as follows: 

 

2.1. Energy detection based sensing 

Energy Detector (ED) is a blind sensing method with low computational and 

implementation complexities. Each individual branch at the receiver is provided 

with an energy detector to provide the instantaneous individual branch energy 

measurements. The energy of the received signal at the ith branch is Yi and N the 

sample size. The decision static Yi is compared against a fixed threshold λ.  

    𝑌𝑖 =  ∑ [𝑥𝑖[𝑘]]2𝑁
𝑘=1                                                                                              (2) 

The simple hypothesis testing problem is formulated in Eq. (3). The probability 

of detection is investigated under the Neyman-Pearson (NP) criterion (using 

constant false alarm rate): 

    𝑌𝑖 =  

𝐻1

>
<
𝐻0

    𝜆                                                                                                        (3) 

Non-coherent diversity combiners 

The non-coherent combining schemes are more preferable to provide the diversity gain 

when the CSI is unavailable. One such method in this category is the square law 

techniques. The operation in Eq. (2) is executed using a square law device provided at 

each diversity branch of the CR receiver. The signal received from each ith antenna is 

combined to form a better estimate of the primary user signal than using single antenna 

using Square Law Selection (SLS) and Square Law Combining (SLC) [7]. 

 Square-law selection 

The energy vectors from M diversity branches, Y1, Y2, · · · , YM are used in SLS. The 

branch with the highest energy is selected. The test statistic is given in Eq. (4): 

𝑌𝑠𝑙𝑠 = 𝑚𝑎𝑥 (𝑌1, 𝑌2, … . . 𝑌𝑀)                                                                                   (4) 

 Square law combining 

The energy vectors from M diversity branches, Y1, Y2, · · · , YM are gathered and 

combined in SLC to make a combined decision. The test statistic is given in Eq. (5): 

𝑌𝑠𝑙𝑐 = ∑ 𝑌𝑖
𝑀
𝑖=1                                                                                                    (5) 
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2.2. Goodness of fit tests based sensing 

The most well-known class of Gaussianity tests are used to determine whether a 

signal's samples are normally distributed or not. These tests check for the departures 

from the normal distribution. When the random variable X under consideration is 

normally distributed, the null hypothesis H0 is declared [14]. The detection of the 

signal embedded in noise can be done by the Goodness of Fit Test (GoFT). It is a 

blind non-parametric hypothesis testing method, which decides on the null 

hypothesis if the received samples follow the noise Cumulative Distribution 

Function (CDF) denoted as F0. 

Let x[k] denote the set of N discrete time vector observations k=1, 2….N. The 

ith component of x[k] denoted as xi[k], i=1, 2…M. The signal detection in noise is 

given as a simple hypothesis testing problem in [15-17] and is expressed as 

Decide on H0: if 𝐹𝑛(𝑥) = 𝐹0(𝑥) 

Decide on H1: if 𝐹𝑛(𝑥) ≠ 𝐹0(𝑥)               (6) 

where Fn(x) is the empirical CDF of the received sample.  

In statistical hypothesis testing, there are two categories of errors namely 1) 

False positive or type I error that occurs when H0 is rejected when it is really 

true. 2) False negative or type II error that occurs when H0 is erroneously failed 

to be rejected when it is really false. The type I error rate is also called the 

significance level and is usually denoted as alpha (α) and the latter is denoted 

as beta (β). 

In most of the studies [10-13], experimenters have used either a significance 

level of 0.05 or 0.01. Lower significance levels require stronger sample evidence 

to be able to reject the null hypothesis. The 0.01 level is more conservative than the 

0.05 level. Hence, this study considers type 1 error in signal detection in noise with 

α=0.05 and the critical values are calculated using this assumption. 

The goodness of fit tests can be broadly categorised into i) Empirical Distribution 

Function (EDF) Tests and ii) Tests based on descriptive measures. This paper features 

two important GoFTs one from each of the above-mentioned categories. 

 Empirical Distribution Function (EDF) Tests 

Anderson Darling Test 

Anderson Darling (AD) test is the best distance test for small samples. To test 

the normality of a random sample x[k] the Anderson-Darling test statistic 

formulated in [18, 19] is given as: 

 𝐴𝑛
2 = −𝑁 −

∑ (2𝑘−1)(𝑙𝑛 𝑧𝑘−𝑙𝑛𝑧(𝑁+1−𝑘))
𝑁

𝑘=1

𝑁
                                                            (7) 

with  𝑦𝑘 = (𝑥𝑖 − �̆�) 𝑆⁄  , 

�̌� = ∑ 𝑥𝑘
𝑁⁄  and 𝑆2 = ∑ (𝑥𝑘 − �̌�)2 (𝑁 − 1)⁄                  (8) 

According to D’Agostino and Stephens [20], when the mean and variance of 

the sample are unknown, the adjusted AD statistic is  
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  𝐴 = 𝐴𝑛
2(1 +

0.75

𝑁
+

2.25

𝑁2 )                                                                                     (9) 

where zk = F0(yk) is the assumed distribution, N denotes the sample size, ln is the 

natural logarithm. 

The spectrum sensing problem is expressed as: 

H0: A ≤ λcv                                                                                                            (10) 

H1: A > λcv 

where λcv is a critical value. If the computed value of A exceeds the critical value 

then H0 is rejected. A table of thresholds for different values of Pf is given in [14]. 

 

 Tests based on descriptive measures 

Jarque and Bera test 

The Jarque and Bera (JB) test is another goodness-of-fit test originally proposed 

by Bowman and Shenton [21] to check for normal distribution. It uses the 

skewness and kurtosis to determine whether the sample data is from a normal 

distribution. The data is declared to follow a normal distribution if the JB test 

statistic asymptotically has a chi-squared distribution with two degrees of 

freedom [22, 23]. 

The JB test statistic is the combination of the squares of normalized skewness 

and kurtosis and is given as follows: 

𝐽 =
𝑁

6
(𝛾1

2 +
(𝛾2−3)2

4
)                                                                                          (11) 

where 𝛾1 is the skewness and 𝛾2 is the kurtosis and N is the number of samples. 

The spectrum sensing problem using JB test can be expressed as 

H0: J ≤ λcv                                                                                                             (12) 

H1: J > λcv  

The critical values of the JB test for different sample sizes are given in [22]. 

The primary user signal is declared present if the Jarque Bera test statistic is greater 

than the critical value and is declared as noise otherwise. 

 

3. Proposed Method 

In data analysis, it is generally insufficient using only a single one-dimensional 

summary statistic. Hence, this paper proposes a meta-analysis approach based on 

p-Values to combine data from independent tests to perform the overall assessment. 

The block diagram of the proposed method is given in Fig. 2. The M independent 

samples xi[k] i=1, 2…M from M diversity branches of the CR receiver are tested 

for normality using AD test or JB test. The test statistic is used to determine the p-

Value using the formula mentioned in Table 1 and the interpretation of the test 

results are given in Table 2. The new test statistic is obtained by combining the p-

Values using the methods discussed in Section 3.2. 

https://en.wikipedia.org/wiki/Goodness-of-fit
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Asymptotic_analysis
https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Degrees_of_freedom_%28statistics%29
https://en.wikipedia.org/wiki/Degrees_of_freedom_%28statistics%29
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Fig. 2. Block diagram of the proposed method. 

Table 1. p-Value formula for Anderson Darling test as given in [20]. 

AD statistic p-Value formula 

A > 153.467 𝑝 = 0 

0.6 < A ≤ 153.467 𝑝 = 𝑒(1.2937−5.709∗𝐴+0.0186𝐴2) 

0.34 < A ≤ 0.60 𝑝 = 𝑒(0.9177−4.279∗𝐴−1.38𝐴2) 

0.20 < A ≤ 0.34 𝑝 = 1 − 𝑒(−8.318+42.796∗𝐴−59.938𝐴2) 

A ≤ 0.20 𝑝 = 1 − 𝑒(−13.436+101.14∗𝐴−223.73𝐴2) 

Table 2. Decision table. 

Method Condition Decision 

Classical test If (test statistic > critical value ) H0 is rejected 

Classical test If (test statistic < critical value) H0 cannot be rejected 

p-Value (p-Value < α) H0 is rejected 

p-Value (p-Value > α) H0 cannot be rejected 

 

3.1. Significance of p-Value 

Fisher justified that the p-Value can be viewed as an index of the “strength of 

evidence” against H0, with small p indicating an unlikely hypothesis [24]. 

The steps involved in hypothesis testing using p-Values as specified in [24] are 

given as follows: 

 Define the null and alternative hypotheses. 

 Determine the test statistic from the sample data.  

 Calculate the p-Value using the value of the test statistic obtained from step 2. 

 Fix the significance level α=0.05 and interprets the results using Table 2. 

Thus using the p-Value the compatibility of the data with the null hypothesis is 

measured but this value does not provide the probability on the correctness of the 

null hypothesis. 
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3.2. p-Value based diversity combiner 

From the samples received from M diversity branches of the CR receiver, the test 

statistics (A1,A2….AM) and its corresponding p-Values (p1,p2…..pM) are computed. 

This paper adopts the following statistical methods to integrate the p-Values from 

independent tests [9-13] to have an overall assessment on the detection of the 

primary user signal activity. 

 Fisher’s test 

Fisher [25] proposed one popular method of combining the p-Values. Let p1,  p2, 

…, pM be the significance probabilities of the test statistic A or J in the ith sample 

received from each diversity branch of the CR receiver. The joint assessment of the 

normality is based on the M values of the statistic. The different significance 

probabilities obtained from M diversity branches are combined using Fisher's 

method as given in Eq. (12). 

𝐹𝑇 = −2𝑙𝑛(∑ 𝑝𝑖
𝑀
𝑖=1 )                                                                                  (12) 

 Z test 

Stouffer et al. [26] proposed another approach called the z test to combine these p-

Values. This method primarily converts to z values using the relation zi = F-1 (pi), 

where F-1 is the inverse CDF of standard Gaussian distribution. The Z test statistic 

for CR receiver equipped with M antennas is formulated as 

𝑍𝑇 = (∑ 𝑧𝑖

√𝑀
⁄

𝑀
𝑖=1 )                                                                                      (13) 

 Weighted Z test 

Mosteller and Bush [27] generalised the Z-test by giving weight w to each Z-Value. 

Under the null hypothesis, Zw follows normal distribution described with 

parameters μ = 0 and σ2 = ∑ 𝑤𝑖
2𝑀

𝑖=1 .The weights are usually taken as the sample 

sizes. The weighted z-test is defined as: 

ZW = (∑ wizi

√∑ wi
2M

i=1
⁄

𝑀
𝑖=1 )                                                                          (14) 

Algorithm 1. p-Value based diversity combining 

1. Obtain M observation samples from each of the diversity branches of the CR node. 

2. Let Zi, (i = 1 …M) be the observation vector. Sort the observations from each branch 

in ascending order. 

3. Calculate the AD test or JB test statistic using Eqs. (7) - (11)  

4. Let Ai (i = 1…M) denote the test statistic obtained for M diversity branches. 

5. Using the formula given in Table 1 calculate the p-Value  p1,  p2, …, pM 

6. The p values are combined using Eqs. (12 to 14) to obtain the new decision statistic. 

7. Reject null hypothesis if the new decision statistic is less than the predefined 

significance level. 
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4. Results and Discussion 

4.1. Monte Carlo simulations 

The performance analysis of spectrum sensing using receiver diversity in a CR 

environment are carried out using 1) Energy detection and 2) Goodness of Fit Test. 

The detection probability is used as a standard of measurement to determine the 

sensing accuracy. The following assumptions are made in the simulations. 

 The system model has Single Input Multiple Output. 

 The primary transmitter signal is a sinusoidal pilot signal of known frequency. 

 Additive White Gaussian Noise with μ = 0 and σ2 = 1. 

 The significance level (type I error) is set to α = 0.05. 

 The test statistic and hence, the p-Values are independent as they are calculated 

from samples received from different diversity branches, which have a 

negligible correlation.  

 Sample sizes in the study: 

Scenario 1: The sample size received from each of the ith antenna is held 

constant, i.e., 100 samples. 

Scenario 2: The sample size received from each of the ith antenna is varied, the 

sample sizes are taken as 10, 50, 240 samples. 

In Fig. 3 probability of detection vs. SNR using the square-law techniques 

for N = 100 samples, M = 3 and Pf = 0.05 under scenario 1 are studied. As 

evident from the Eqs. (4, 5), the SLC method of diversity combining 

outperforms SLS. This is supported by the simulation results presented in Fig. 

3. The Fisher’s method, Z test and the weighted Z test are investigated as 

diversity combiners in the context of spectrum sensing. The detection 

probability using the above-mentioned diversity combiners are studied using 

AD test and JB test in Figs. 4 and 5 respectively for sample lengths considered 

in scenarios 1 and 2. Detection probability is used as a metric to evaluate the 

performance of the earlier mentioned tests as diversity combiners.  

 

Fig. 3. Probability of detection vs. SNR for sinusoidal pilot  

signal for N = 100 samples, M = 3 and Pf =0.05 under scenario 1. 
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From Figs. 4 and 5, the following observations are made: 

 It is observed that the AD test shows a higher probability of detection 

compared to the JB test. 

 The weighted Z test performs better than the Z test and Fisher's test in both AD 

and JB test studies for case 2, i.e., when the numbers of individuals in a sample 

are different. It provides detection very close to the existing square law 

combiners. 

 When the sample sizes are equal, the performance of the weighted Z test and Z 

test is identical. 

 In the low SNR regimes, the weighted Z test works as a better diversity 

combiner compared to the other two methods as it provides a higher probability 

of detection. 

 

(a) Scenario 1. 

 

(b) Scenario 2. 

Fig. 4. Probability of detection vs. SNR of the proposed method  

using AD test with sinusoidal pilot signal, M = 3 and α = 0.05, μ = 0. 

-20 -15 -10 -5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Signal to Noise Ratio in dB

P
ro

b
a
b
ili

ty
 o

f 
d
e
te

ct
io

n

Diversity Combining Using p Values from Anderson Darling Test with Constant Sample Lengths

 

 

Fishers method

Z Test

Weighted Z Test

-20 -15 -10 -5 0 5 10 15 20
0.95

0.96

0.97

0.98

0.99

1

Signal to Noise Ratio

P
ro

b
a
b
ili

ty
 o

f 
d
e
te

ct
io

n

Diversity Combining Using p Values from Anderson Darling Test with Varied Sample Lengths

 

 

Fishers method

Z Test

Weighted Z Test



Novel Receiver Diversity Combining Methods for Spectrum Sensing . . . . 2893 

 
 
Journal of Engineering Science and Technology     September 2018, Vol. 13(9) 

 

 

(a) Scenario 1. 

 

(b) Scenario 2. 

Fig. 5. Probability of detection vs. SNR of the proposed method 

using JB test with sinusoidal pilot signal, M = 3 and α = 0.05, μ = 0. 

Table 3 gives the tabulation of p-Values, Fisher’s test, weighted Z test and Z 

test statistic for scenario 1 and scenario 2 for M=3. The p-Values from M diversity 

branches are combined using Eqs. (12-14) to obtain the FT, ZT and ZW test statistic. 

From Fig. 6 and the tabulation, the following can be inferred. 

 As the number of samples used for hypothesis testing grows, it yields smaller 

p-Values hence, increases the probability of detection of the primary user. 

As the mean of the random noise increases, the power of the combined test statistic also 

grows [13]. From the scatter plot in Fig. 7, it can be inferred that as the SNR increases 

there is a linear decrease in the p-Value, which helps in validating the decision of rejection 

of null hypothesis as the SNR increases (or decision on the presence of the PU signal). 

Table 3. Comparison of the p-Value combining  

techniques for M = 3 receiver diversity for SNR of -20 dB. 

Study 
Sample 

length 
μ Z-test WZ-test 

Fisher’s 

test 

p-Value from M  

diversity 

branches 

p1 p2 p3 
Scenario 1 100 0 -0.5915 -0.5915 -1.0255 0.96 0.44 0.26 

 100 1 0.0106 0.0106 -0.8040 0.59 0.54 0.35 

Scenario 2 100 0 -0.5852 0.1667 -0.9826 0.54 0.98 0.10 

 100 1 -0.0399 1.2971 -0.9614 0.67 0.88 0.05 
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Fig. 6. Effect of number on samples on  

probability of detection for M = 3, using weighted Z-test. 

 

Fig. 7. Scatter plot of SNR vs. p-Value  

for M = 3, α=0.05, N = 100 and sinusoidal pilot signal. 

5.  Conclusions 

A novel meta-analytic approach to combine the data received from multiple 

diversity branches of the CR receiver is proposed. A ballpark figure of the merits 

of these diversity combining methods are provided in this study. Results show that 

AD test shows superior performance compared to JB test. The weighted Z test using 

the AD statistic is preferable compared to other methods as it shows superior 

detection compared to the Z test and Fisher’s test even when the samples received 

from each antenna is varied. Also, the algorithm proposed improves the detection 

of the PU in low SNR regimes. Through extensive Monte Carlo simulations, it is 

shown that the Weighted Z test using the Anderson Darling test statistic provides 

primary user detection very close to the existing non-coherent diversity combiners. 

It is also observed that the probability of detection obtained with the proposed 

method is higher than the functional requirements of obtaining a detection 

probability of 0.9 as specified in the cognitive radio IEEE 802.22 Wireless Regional 

Area Network (WRAN) Standard [28]. Hence, this novel statistical approach based 

on p-Values provides a promising solution to combine the test statistics from 
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multiple receiver antennas. Furthermore, this study can be further extended to 

detection when the p-Values of individual diversity branches are correlated. 

 

Nomenclatures 
 

A Anderson Darling test statistic 

h Amplitude gain of the channel 

H0 Null hypothesis 

H1 Alternate hypothesis 

i Antenna index 

J Jarque Bera test statistic 

k Sample index 

M Number of antennas in each CR 

N Sample size 

Pd Probability of detection 

Pf Probability of false alarm 

s[k] Transmitted signal 

v[k] Noise component 

x[k] Received signal 

Y Energy measurement 
 

Greek Symbols 

α Type I error rate 

Β Type II error rate 

γ1 Measure of skewness 

γ2 Measure of kurtosis 

λ Fixed Threshold 

λcv Critical Value 

μ Mean 

σ2 Variance 
 

Abbreviations 

CSI Channel State Information 

SIMO Single Input Multiple Output 

SNR Signal to Noise Ratio 

References 

1. Yucek, T.; and Arslan, H. (2009). A survey of spectrum sensing algorithms for 

cognitive radio applications. IEEE Communications Surveys & Tutorials, 

11(1), 116-130. 

2. Meitzner, J.; Schober, R.; Lampe, L.; Gerstacker, W.H.; and Hoeher, P.A. 

(2009). Multiple-antenna techniques for wireless communications - a 

comprehensive literature survey. IEEE Communications Surveys & Tutorials, 

11(2), 87-105. 

3. Wang, P.; Fang, J.; Han, N.; and Li, H. (2010). Multiantenna-assisted spectrum 

sensing for cognitive radio. IEEE Transactions on Vehicular Technology, 

59(4), 1791-1800. 



2896       Deepa. N. Reddy and Y. Ravinder 

 
 
Journal of Engineering Science and Technology     September 2018, Vol. 13(9) 

 

4. Digham, F.F.; Alouini, M.-S.; and Simon, M.K. (2007). On the energy 

detection of unknown signals over fading channels. IEEE transactions on 

communications, 55(1), 21-24. 

5. Annavajjala, R.; and Milstein, L.B. (2005). Performance analysis of linear 

diversity-combining schemes on rayleigh fading channels with binary 

signaling and gaussian weighting errors. IEEE Transactions on Wireless 

Communications, 4(5), 2267-2278. 

6. Herath, S.P.; and Rajatheva, N. (2008). Analysis of equal gain combining in 

energy detection for cognitive radio over Nakagami channels. Proceedings of 

the IEEE Global Telecommunications Conference. New Orleans, Louisiana, 

United States of America, 1-5. 

7. Herath, S.P.; Rajatheva, N.; and Tellambura, C. (2009). On the energy 

detection of unknown deterministic signal over Nakagami channels with 

selection combining. Proceedings of the IEEE Canadian Conference on the 

Electrical and Computer Engineering. St. John, Newfoundland, Canada, 

745-749. 

8. Akbari, M.; Manesh, M.R.; El-Saleh, A.A.; and Reza, A.W. (2014). Receiver 

diversity combining using evolutionary algorithms in rayleigh fading channel. 

The Scientific World Journal, Article ID 128195, 11 pages. 

9. Pettitt, A.N. (1977). Testing the normality of several independent samples 

using the Anderson-Darling statistic. Journal of Royal Statistical Society, 

Series C (Applied Statistics), 26(2), 156-161. 

10. Zaykin, D.V. (2011). Optimally weighted z‐test is a powerful method for 

combining probabilities in meta‐analysis. Journal of Evolutionary Biology, 

24(8), 1836-1841. 

11. Rosenthal, R. (1978). Combining results of independent studies. 

Psychological Bulletin, 85(1), 185-193. 

12. Bhandary, M.; and Zhang, X. (2011). Comparison of several tests for 

combining several independent tests. Journal of Modern Applied Statistical 

Methods, 10(2), 436-446. 

13. Whitlock, M.C. (2005). Combining probability from independent tests: The 

weighted z‐method is superior to fisher's approach. Journal of Evolutionary 

Biology, 18(5), 1368-1373. 

14. Stephens, M.A. (1974). EDF statistics for goodness of fit and some comparisons. 

Journal of the American Statistical Association, 69(347), 730-737. 

15. Wang, H.; Yang, E.-H.; Zhao, Z.; and Zhang, W. (2009). Spectrum sensing in 

cognitive radio using goodness of fit testing. IEEE Transactions on Wireless 

Communications, 8(11), 5427-5430. 

16. Teguig, D.; Le Nir; V.; and Scheers, B. (2014). Spectrum sensing method 

based on goodness of fit test using chi-square distribution. Electronics Letters, 

50(9), 713-715. 

17. Teguig, D.; Le Nir, V.; and Scheers, B. (2015). Spectrum sensing method based 

on likelihood ratio goodness-of-fit test. Electronics Letters, 51(3), 253-255. 

18. Gurugopinath, S.; and Samudhyatha, B. (2015). Multi-dimensional Anderson-

Darling statistic based goodness-of-fit test for spectrum sensing. Proceedings of 

the IEEE Seventh International Workshop on Signal Design and its Applications 

in Communications (IWSDA). Bengaluru, India, 165-169. 



Novel Receiver Diversity Combining Methods for Spectrum Sensing . . . . 2897 

 
 
Journal of Engineering Science and Technology     September 2018, Vol. 13(9) 

 

19. Romeu, J.L. (2003). Anderson Darling: A goodness of fit test for small sample 

assumptions. RAC Start, 10(5), 6 pages. 

20. D'Agostino, R.B.; and Stephens M.A. (1986). Goodness-of-fit techniques. 

Statistics: Text books and monograph. Boca Raton, Florida: CRC Press. 

21. Bowman, K.O., and Shenton, L.R. (1975). Omnibus test contours for 

departures from normality based on√b1 and b2. Biometrika, 62(2), 243-250. 

22. Thadewald, T.; and Buning, H. (2007). Jarque-Bera test and its competitors 

for testing normality-A power comparison. Journal of Applied Statistics, 34(1), 

87-105. 

23. Adefisoye, J.O.; Golam Kibria, B.M.; and George, F. (2016). Performances of 

several univariate tests of normality: An empirical study. Journal of Biometrics 

& Biostatistics, 7(4), 1-8. 

24. Berger, J.O. (2003). Could Fisher, Jeffreys and Neyman have agreed on 

testing? Statistical Science, 18(1), 1-32. 

25. Fisher, R.A. (1932). Statistical methods for research workers (4th ed.). 

Edinburgh, Scotland: Oliver and Boyd. 

26. Stouffer, S.A.; Suchman, E.A.; DeVinney, L.C.; Star, S.A.; Williams Jr., 

R.M.; (1949). The American soldier: Adjustment during army life. (Studies 

in social psychology in World War II), Vol. 1. Oxford, England: Priceton 

University Press. 

27. Mosteller, F.; and Bush, R.R. (1954). Selected quantitative techniques. 

Handbook of social psychology, vol. 1 (G. Lindzey, ed.). Cambridge, 

Massachusetts: Addison-Wesley. 

28. Stevenson; C.R.; Chouinard, G.; Lei, Z.; Hu, W.; Shellhammer, S.J.; and 

Cardwell, W. (2006). IEEE 802.22: The first cognitive radio wireless regional 

area network standard. IEEE Communications Magazine, 47(1), 130-138. 

 


