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Objective: Somatosensory evoked potentials (SEPs) enable the investigation of

thalamocortical and early cortical processing. Previous studies reported alterations

of SEPs in patients with schizophrenia as well as in individuals in the prodromal

stage. Moreover, cannabis use as an environmental risk factor for the development of

schizophrenia has been demonstrated to influence SEP parameters in individuals at risk

to develop psychosis. The aim of this study was to explore the course of SEP changes

and the impact of concomitant cannabis use in individuals at risk to develop psychosis

who sought medical help.

Methods: Median nerve SEPs including high-frequency oscillations (HFOs)

superimposed on the primary cortical response (N20) were investigated using

multichannel EEG in individuals (n = 54 at baseline) remaining at risk to develop

psychosis at follow-up after 1 year (high-risk: n = 19; ultra-high-risk: n = 27) vs.

subjects with conversion to psychosis (n = 8) and a healthy control group (n = 35).

Longitudinal and cross-sectional analyses of SEP components as estimated by dipole

source analysis were performed.

Results: The longitudinal development of the N20 strength depended on cannabis

use. In cannabis non-users, a greater decrease of N20 strengths over time was

associated with more negative symptoms at baseline. At baseline, converters did

not differ from subjects remaining at risk. At follow-up, converters showed increased

low- and high-frequency activity than at-risk subjects and did not differ from controls.

Conclusion: The results of this study lead to the suggestion that the deficits in early

somatosensory processing in individuals at risk to develop psychosis may not represent

a marker for a genetic risk for psychosis but rather reflect state-dependent factors such

as negative symptoms. On the other hand, the transition to psychosis seems to represent

an interstage between reduced sensory registration from the at-risk state and gating

deficits in the chronic state.
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INTRODUCTION

The neuropathological picture of psychosis is not static but
changes over time (1). Patients with psychosis often show less
severe manifestations of the illness for days up to years prior
to onset of full-blown clinical picture (2). These early signs
are characterized by subtle, self-experienced deficits and mostly
non-specific symptoms, also termed “basic symptoms” (3) often
accompanied by attenuated negative symptoms (3–5). Early signs
that are more proximal to the onset of psychosis tend to be more
specific for psychotic disorders and are mostly characterized
by attenuated positive symptoms of psychosis (6, 7). The term
“psychosis risk syndrome” was proposed to indicate a possible
risk of developing psychosis (4, 8).

Early intervention is thought to reduce the duration of
untreated psychosis and to prevent or delay transition to
psychosis by attenuating the symptoms of individuals at clinical
high-risk for psychosis (4, 9). Higher levels of attenuated
positive symptoms, poor social functioning, some genetic
risk, e.g., having a first-degree relative with a psychotic
disorder, have been so far identified as consistent predictors
of conversion to psychosis (10). There is additionally some
evidence that cannabis use, respectively cannabis use on top
of a genetic vulnerability, increases the risk of developing
psychosis (11–13).

For better prognostic accuracy, neurobiological markers are
also increasingly used in early recognition of psychosis. Human
median nerve somatosensory evoked potentials (SEPs) offer the
opportunity to investigate thalamocortical and early cortical
processing (14–17). The thalamus as a gate of access for sensory
information to reach the cerebral cortex (18–20) is considered to
play a crucial role in the pathophysiology of psychosis (21–23) as
well as of bipolar disorder, particularly with a history of psychosis
(24). Based on their heritability and state-independence, deficits
in sensory gating have frequently been discussed as a potential
neurophysiological endophenotype of psychosis. They have been
shown in subjects at risk as well as in patients with first-episode
and chronic psychosis, are present in both predominantly
positive and negative symptom patients, and have also been
found in unaffected relatives and in schizotypal personality
disorder (25). However, this hypothesis needs further elucidation,
as sensory gating deficits were significantly more pronounced in
chronic psychosis compared to the at-risk state and first-episode
psychosis suggesting that they might be a state marker of the
expression of the disease rather than a state-independent marker
of genetic risk for psychosis (26).

SEPs initially show a cortical low-frequency response
occurring 20ms after stimulation, i.e., the N20 (27), which is
supposed to be generated by excitatory postsynaptic potentials in
Brodman area 3b pyramidal cells (28). With high-pass filtering,
an oscillatory burst of low-amplitude and high-frequency
(600Hz) wavelets superimposed on the N20 can be isolated
(27, 29–33). These somatosensory high-frequency oscillations
(HFOs) in SEP have been shown to play an important role
in sensory information processing (34). Early and late HFOs,
i.e., the wavelets before and after the peak latency of the initial
N20, have been supposed to arise from separate generators

since these two components differ in their responsiveness
to various modulations, such as sleep-wake cycle or tactile
interference (34, 35). The early part of the HFOs is presumably
generated from action potentials of thalamocortical fibers (35–
37). The generation of the late part of HFOs remains unclear as
pyramidal “chattering” cells (38), cortical fast-spiking inhibitory
interneurons (33) and thalamocortical relay cells (35) have been
proposed as neuronal generators.

Like other early evoked potentials, i.e., occurring within
50ms after stimulus application, SEPs are less susceptible to
changes by uncontrollable factors such as attention than later
potentials (17). Even if early evoked potentials have been less
often studied than later ones, their underlying neurophysiology
is better understood than that of the later potentials (14, 17).
Therefore, altered SEPs might represent a robust indicator of
vulnerability for schizophrenia and may offer the possibility of
identifying potential patients before the onset of psychosis and of
supporting prevention efforts.

The previously reported analysis of the baseline data of
the present at-risk sample showed that alterations of early
sensory filtering as measured by SEPs were observable also at
the at-risk level (15). Subjects at risk for psychosis showed
reduced low- and high-frequency source activity compared
to subjects at risk for bipolar disorders and reduced high-
frequency amplitudes compared to healthy controls. This is in
line with the increasing body of evidence suggesting a sensory
gating deficit in schizophrenia (39) and adds evidence to the
assumption that specific sensory dysfunctions precede the onset
of psychosis.

The aim of the present study was to explore the suitability of

SEP as a neurophysiological marker. Therefore, we investigated
the course of early sensory processing in help-seeking individuals

being at risk to develop psychosis at the time of the baseline

examination (15). Specifically, we distinguished between subjects
remaining at risk at follow-up vs. subjects who converted to

manifest psychosis during this time. Based on the progressive
dynamics of structural and functional brain changes throughout
the development of psychosis (40–42), the at-risk population
was further subdivided into a high-risk (HR) and an ultra-
high-risk (UHR) group. Low- and high-frequency components
of SEPs measured at baseline and at follow-up 1 year later
were analyzed in relationship to the clinical symptoms. Given
that the previously reported differences in SEP measures at
baseline were accentuated among cannabis non-users (15), we
aimed to control specifically for the effect of cannabis in the
present study, respectively, to explore SEP in cannabis-free
subjects in case of an effect of cannabis in the whole group. We
thought to find differences in SEP between converters and at-
risk subjects as early as baseline, as it would be expected from
a neurobiological marker.

Our research questions were therefore:

(1) How do SEP parameters vary over time in subjects at risk
with theHR group compared to the UHR group (respectively
in cannabis-free subjects)?

(2) How do SEP parameters vary over time in converters
(retrospectively)?
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(3) Are these neurophysiological alterations (SEP variations
over time) correlated with psychopathology (positive and
negative symptoms at baseline)?

(4) Are there differences between converters compared
to subjects remaining at risk to develop psychosis at
follow-up regarding early sensory filtering at baseline
(retrospectively) and at follow-up (respectively among
cannabis-free subjects)?

MATERIALS AND METHODS

Subjects
Subjects at risk were recruited in the Canton of Zurich,
Switzerland, within the framework of the “Zurich Program for
Sustainable Development of Mental Health Services” (Zürcher
Impulsprogramm zur nachhaltigen Entwicklung der Psychiatrie,
i.e., ZInEP). For details regarding design, recruitment and sample
of this prospective longitudinal multi-level approach on early
recognition of psychoses, see Theodoridou et al. (43).

Psychiatrists, child and adolescent psychiatrists, psychologists,
general practitioners, outreach clinics, counseling services,
teachers, and affected persons or their family members could
refer to one of the four regional early recognition units employing
standardized criteria to identify persons at risk for psychosis and
offering appropriate counseling. The assessment was conducted
by trained and experienced psychiatrists or psychologists. SEP
measurements were carried out in the neurophysiology lab at the
central early recognition center.

After a complete description of the study to participants,
written informed consent was obtained; in case of minors
including the written informed consent of their parents. The
study was approved by the regional ethics committee of the
canton of Zurich and was performed in accordance with the
Declaration of Helsinki. Subjects had to fulfill at least one of the
following three inclusion criteria:

(1) High-risk (HR) status for psychosis assessed by the adult
(44) or children-youth (45) version of the Schizophrenia
Proneness Interview (SPI-A/SPI-CY), with at least one
cognitive-perceptive (COPER) basic symptom or at least two
cognitive disturbances (COGDIS) basic symptoms.

(2) Ultra-high-risk (UHR) status for psychosis as rated by the
Structured Interview for Prodromal Syndromes (SIPS) (6)
with at least one attenuated psychotic symptom, or at least
one brief limited intermittent psychotic symptom, or a
positive state-trait criterion (reduction in global assessment
of functioning of >30% in the past year, plus either
schizotypal personality disorder or first degree relative
with psychosis).

The division into high-risk (HR) and ultra-high-risk (UHR)
subjects within the psychosis-risk group was made with the
aim to distinguish between subjects with a more general
risk (HR, only COPER and/or COGDIS) and subjects with
imminent risk [UHR, only UHR (=15%) and UHR plus
COPER and/or COGDIS (=85%)] of transition to manifest
psychosis (5, 46). In addition to the scales for early recognition,
the Positive and Negative Syndrome Scale (PANSS) (47) was

conducted to measure also the more pronounced psychotic
symptoms. Exclusion criteria for study participation were
manifest schizophrenic, substance-induced, or organic psychosis
or bipolar disorder, current substance or alcohol dependence, as
assessed by the Mini-International Neuropsychiatric Interview
(MINI) (48); age below 13 or above 35 years; or low intellectual
abilities with IQ < 80. Transition to psychosis was determined
according to ICD-10 criteria.

Participants completed the SEP recordings shortly after study
inclusion (t0, baseline assessment) and after 1 year (mean
12.9 months, SD = 2.5 months; t2, follow-up assessment). At
baseline, SEP data were available from 155 subjects fulfilling
inclusion criteria for HR and UHR groups. For comparison, 50
healthy controls (HC), matched regarding age and gender rates
to the whole at-risk group, were enrolled in the study, 45 of
them with available HF-SEPs. For socio-demographic details, see
Hagenmuller et al. (15). The presence of any mental illness in
the HC group was excluded using the MINI. All participants
underwent a structural MRI at baseline prior to testing in order
to exclude any brain abnormalities. At follow-up, SEP recordings
were obtained from 54 subjects fulfilling inclusion criteria for
HR or UHR groups at baseline. Due to project-specific issues, a
follow-up assessment of the HC group could not be performed.
Values in the HC group at baseline were taken as reference values.

Subjects classified as HR or UHR at baseline who converted
to psychosis during the follow-up period (HR n = 1, UHR
n = 7) were classified as the CONV group. Subjects classified
as HR and UHR at baseline who did not convert still formed
the HR resp. UHR groups (together termed the RISK group).
Among the individuals from the HR, the UHR and the CONV
groups, 37% at baseline and 46% at follow-up were receiving
psychotropic medication, essentially antipsychotic and/or anti-
depressive medication. The HC group did not differ statistically
from the RISK group regarding age, sex and handedness.
Specifically, we looked at subjects from the RISK group reporting
no cannabis use at baseline, in contrast to cannabis users, i.e.,
subjects reporting frequent cannabis use (several times per week,
weekly, and monthly). Subjects from the RISK group reporting
rare use (less frequently than monthly) were not included in
the cannabis related analysis. Individuals from the HC group
reporting any cannabis use (n = 10) were excluded from the
analysis. For details see Table 1.

SEP Recording
Subjects were requested to sit in a comfortable chair with their
eyes open, in a sound-attenuated laboratory room. They were
instructed to relax and to avoid movements throughout the
stimulus presentation sequence and the recording. Electrical
transcutaneous stimulation was performed with two electrodes
over the median nerve on the wrist of the dominant hand.
Single constant-current square wave pulses of a duration of
0.2 s were delivered with an intensity of 4mA above individual
motor threshold (max. 20mA) and a stimulus rate of 6Hz
during 12min. To preserve a stable level of vigilance during
stimulus presentation, participants were asked to watch a “Mr.
Bean” movie without sound. EEG data were recorded using a
BrainAmp amplifier and the Brain Vision Recorder software
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TABLE 1 | Descriptive characteristics of the subjects from the high-risk (HR), the ultra-high-risk (UHR) for schizophrenia and the converter (CONV) groups included in the

follow-up analysis compared to the healthy control (HC) group.

RISK

HC HR UHR CONV

N 35 19 27 8

Age at baseline, years (SD) 20.8 (5.6) 23.4 (5.5) 18.8 (5.7) 18.8 (3.7)

Gender (F:M) 16:19 9:10 11:16 4:4

SIPS positive symptoms, WAc (M, SD) Test statistics (group)

- at baseline 5.3 (1.06, 0.70) 10.4 (2.07, 0.67) 9.5 (1.89, 0.85) F(2, 49) = 10.38, p< 0.001

- at follow-up 4.1 (0.81, 0.75) 5.1 (1.01, 0.64) 6.9 (1.37, 1.13) F(2, 42) = 1.62, p = 0.210

Test statistics t(15) = 1.74, p = 0.102 t(23) = 6.29, p< 0.001 t(6) = 0.85, p = 0.427

SIPS negative symptoms, WAc (M, SD)

- at baseline 13.1 (2.18, 0.89) 13.1 2.18 (1.22) 17.3 (2.88, 1.08) F(2,49) = 0.93, p = 0.401

- at follow-up 6.5 (1.08, 0.95) 7.4 (1.23, 1.08) 11.0 (1.83, 1.82) F(2,42) = 0.46, p = 0.635

Test statistics t(15) = 3.65, p = 0.002 t(23) = 3.05, p = 0.006 t(6) = 1.90, p = 0.107

Anti-depressive med. (n) –

- at baseline 5 5 1

- at follow-up 7 7 3

Antipsychotic med. (n, CPZea) –

- at baseline 4 (85.2) 5 (104.2) 5 (230.3)

- at follow-up 3 (166.9) 8 (117.8) 5 (275.1)

Cannabis use at baseline

yes/no (missings or not included) 0/35 8/19 (27) 1/7b

aAntipsychotic medication status is given in chlorpromazine equivalent (CPZe) dosage (49).
bCannabis analysis was not performed in the CONV group.
cWA, weighted average = mean scores × number of items (5 positive, 6 negative), M, mean; SD, standard deviation.

t- and p-values are given in italic type.

(both Brain Products GmbH, Munich, Germany). Electrodes
were applied to the scalp using carefully positioned nylon caps
(BrainCap with 32 channels, Easycap, Herrsching-Breitbrunn,
Germany) in accordance with the international 10/20 system.
Scalp electrode impedances were kept below 10 k�. EEG
channels were referenced to FCz. Data were collected with a
sampling rate of 2,500Hz.

SEP Data Analysis
Using the Brain Electrical Source Analysis (BESA 5.1.8: MEGIS,
Munich, Germany; www.besa.de) software, dipole source analysis
was computed individually for each subject with at least 4,000
artifact-free sweeps over a period of 100ms, from 20ms before
to 80ms after the stimulation. Single dipole sources were fitted
for each subject for a time period between 14 and 24ms. An
approach with one dipole was considered to be sufficient for
demonstrating differences in signal composition between the
subgroups, although an optimal source configuration would
include at least three dipoles (14). This is in accordance
with other studies, such as Norra et al. (50) or Waberski
et al. (51). The resulting dipole waveform was digitally
filtered with:

(1) A low-pass filter of 450Hz (12 dB/octave slope, zero phase
shift) and a high-pass filter of 40Hz (12 dB/octave slope,
zero phase shift) to determine latency and strength of
the low-frequency activity as estimated by dipole source

analysis. The strength of the low-frequency activity source
was determined semi-automatically as the absolute value of
the minimum of the source waveform between 14 and 24ms
(N20). See Figures 1A–F for examples.

(2) A low-pass filter turned off and a high-pass filter of
450Hz (12 dB/octave slope, zero phase shift) to extract
HFOs. Latencies of the negative oscillatory maxima and
maximum peak-to-peak amplitudes were measured—
peaking before the maximum of N20 for early HFO
components, resp. after the N20 maximum for the late HFO
components (52).

All peaks were plotted with the software Python
(Python Language Website, http://www.python.org) and
inspected visually.

Statistical Analysis
The Kolmogorov-Smirnov test revealed that data were normally
distributed (all p= n.s.). As the Levene test revealed homogeneity
of most variances, parametrical tests were used.

(1) Regarding the HR, UHR, and CONV groups over time,
longitudinal data of interest (SEP parameters) were analyzed
with paired t-tests and repeated-measures ANOVA with the
within factor “time” and the between factor “cannabis use,”
and “age” (in years) and “medication” (yes/no) at baseline
as covariates. For clarity, only significant effects of covariates
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FIGURE 1 | Examples of N20 curves at baseline (t0) and at follow-up (t2) from the (A) healthy control (HC), (B) converter (CONV), (C) high-risk (HR) cannabis

non-users, (D) ultra-high-risk (UHR) cannabis non-users, (E) high-risk (HR) cannabis users, and (F) ultra-high-risk (UHR) cannabis users groups.

were mentioned. For the cannabis-related analysis, because
of the small group size of cannabis users, we grouped the
HR and the UHR groups (without CONV) into one RISK
group. Significant effects of cannabis led to further analysis
among cannabis non-users. To further explore changes over
time, within-subject indices of N20 strengths were obtained
by subtracting values at baseline from values at follow-up
(N20 diff), with a negative result indicating a decrease in N20
strength (t0 > t2).

(2) Correlation coefficients between SEP variations over time
and clinical psychopathology were calculated with Pearson’s
r. The psychopathological data included SIPS positive and
negative symptoms at baseline.

(3) With regard to the HR, UHR, CONV, and HC groups
at follow-up, cross-sectional group comparisons
were performed with Student’s t-test, ANOVA (N20
strength as dependent variable) or MANOVA (peak-
to-peak amplitudes of HFO early and late parts resp.
latencies of N20, HFO early and late parts as dependent
variables). Age was entered as covariate (significant effects
mentioned). Because the HC group was medication-free,
the covariate medication was removed from the cross-
sectional analyses including the HC group. In order to
reduce possible errors due to multiple testing, simple
contrasts were performed to look at the difference of
the CONV group vs. the other groups at baseline and
at follow-up.

Statistical significance was taken as p < 0.05. Based on the
small sample sizes, effect sizes were provided for the group

comparisons (Cohen’s d, with d= 0.3 indicating a small, d= 0.5 a
medium and d = 0.8 a large effect). SEP parameters were
standardized by computing z-values based on the SEP values of
the HC group at baseline. All statistical tests were performed
using the IBM SPSS Statistics forWindows, Version 20.0 package
(IBM Corp., Armonk, NY).

RESULTS

Variation of SEP Parameters in the HR,
UHR, and CONV Groups From Baseline to
Follow-Up
SEP parameters of the HR and UHR groups at baseline and
follow-up are given in Table 2. Within the HR and UHR
group (without CONV), repeated measures ANOVA revealed no
differences in all SEP parameters between baseline and follow-up,
but a significant interaction of measurement time and cannabis
use on the N20 strength [F(1,23) = 8.51, p = 0.008]. In particular,
cannabis non-users differed from cannabis users regarding the
time-dependent evolution of the N20 source activity.

The N20 strength of cannabis non-users at risk for psychosis
seemed to decrease over time, while the N20 strength of cannabis
users seemed to increase. The mean N20 strength of cannabis
non-users was lower at follow-up than at baseline, but this
difference did not reach significance [t(18) = 1.58, p = 0.131].
Moreover, cannabis non-users showed a significantly weaker
mean N20 strength at follow-up compared to the HC group
[t(52)= 2.96, p= 0.005, d = 0.821].
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FIGURE 2 | Mean N20 strengths in cannabis non-users (n = 19) vs. cannabis

users (n = 8) from the RISK group at baseline (t0) and at follow-up (t2),

compared to the reference values from the HC group (n = 35).

On the other hand, the mean N20 strength of cannabis
users was significantly higher at follow-up than at baseline
[t(7) = −2.59, p = 0.036, d = 1.958]. Interestingly, the mean
N20 strength of cannabis users did not, at follow-up, differ
significantly from the HC group [t(41) = −0.65, p = 0.523],
see Figure 2.

Contrary to the observations in the HR and UHR groups, SEP
parameters of the CONV group seemed to increase over time. In
particular, paired t-tests revealed that the CONV group showed
a significantly stronger HFO late part at follow-up compared to
baseline [t(6)= 2.61, p= 0.040, d = 2.131, see Table 2].

Relationship Between SEP Parameters,
Psychopathology, and Antipsychotic
Medication
With regard to the psychopathological data, there were
no differences in SIPS scores between cannabis non-users
and cannabis users neither at baseline [positive, negative,
disorganized, and general symptoms, t(28) < 0.7, p > 0.54] nor
at follow-up [t(25) < 1.46, p > 0.16]. Moreover, there were no
differences in antipsychotic medication between cannabis non-
users and cannabis users neither at baseline [chlorpromazine
equivalent [CPZe), t(28)< 0.72, p> 0.48] nor at follow-up [t(25)
< 1.6, p > 0.12].

To further explore the decrease of the N20 strength in
cannabis non-users, correlations between within-subject indices
of the evolution of the N20 strengths (N20 diff) over time and
the extent of the positive and negative symptoms at baseline
were calculated. N20 diff correlated negatively with SIPS negative
symptoms at baseline (r = −0.57, p = 0.011), indicating
higher scores on the negative symptoms subscale of the SIPS
at baseline being associated with a greater decrease of N20

FIGURE 3 | Correlations of negative symptoms at baseline with the amount of

N20 strength decrease over time (N20 diff) in cannabis non-users from the

RISK group, with negative values representing smaller values at follow-up than

at baseline.

strengths over time (Figure 3). On the other hand, there was
no relationship between the N20 decrease and SIPS positive
symptoms at baseline.

Given the potential impact of antipsychotic medication on the
neurophysiological data, additional correlational analyses on the
relationship between SEP parameters and CPZe were performed.
However, there was no relationship between SEP parameters and
antipsychotic medication neither at baseline (r < 0.31, p > 0.30)
nor at follow-up (r < −0.18, p > 0.19).

SEP Parameters at Baseline
At baseline, there was a significant main effect of group on the
strengths of HFO late part [F(3,57) = 2.88, p = 0.044], but not
on the strengths of the N20 nor HFO early part (see Table 2).
Planned contrasts revealed that, at baseline, the CONV group
showed a statistical trend toward lower amplitudes of HFO late
part [0.62, 95%CI (– 0.12, 1.36), p= 0.095, d= 0.85] compared to
the HC group. On the other hand, the CONV group did not differ
from the HR nor UHR groups. Cannabis use had no significant
effect on the SEP parameters at baseline.

SEP Parameters at Follow-Up
At follow-up, there was a significant main effect of group on the
N20 strength [F(3,62) = 3.09, p = 0.033, see Table 2]. Planned
contrasts revealed that the CONV group had significantly
stronger N20 intensity compared to the UHR group [4.96,
95%CI (0.47, 9.45), p = 0.031, d = 1.057]. There was also a
significant main effect of cannabis [F(1,62) = 7.04, p = 0.010],
so that we repeated group comparisons within the cannabis
non-users subgroup.

Among cannabis non-users, ANOVA showed significant
differences between groups (HC, HR, UHR, CONV) regarding
N20 source strengths [F(3,56) = 3.22, p = 0.029]. Planned
contrasts revealed that the UHR group had significantly weaker
N20 strengths [−3.89, 95%CI (−6.76, 1.02), p= 0.009, d = 1.01]
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compared to the HC group. In contrast, the HR and the CONV
groups did not significantly differ from the HC group regarding
these parameters.

Removing the HC group for an exploration of the differences
between at-risk subjects vs. converters at follow-up, ANOVA
showed significant differences among cannabis non-users
regarding N20 source strengths [F(2,21) = 4.87, p = 0.018] and
amplitudes of the late part of HFOs [F(2,13) = 5.31, p = 0.021].
Moreover, there was a trend regarding the amplitudes of the
early part of HFOs [F(2,13) = 3.56, p = 0.058]. Planned contrasts
revealed that the CONV group had stronger N20 source activity
compared to the HR [−3.49, 95%CI (−6.88, −0.09), p = 0.045,
d = 1.409] and the UHR group [−4.63, 95%CI (−7.74, −1.51),
p = 0.006, d = 1.739], as well as greater early HFO amplitudes
[−0.68, 95%CI (−1.30,−0.07), p= 0.032, d= 0.987] and greater
late HFO amplitudes compared to the UHR group [−0.62, 95%CI
(−1.03, −0.21), p = 0.006, d = 1.434]. In addition, there was a
statistical trend for greater HFO amplitudes in the CONV group
compared to the HR group [−0.63, 95%CI (−1.28, 0.015), p =

0.055, d = 0.544], as shown in Figure 4. Finally, there was a
significant effect of medication on late HFO amplitudes [F(1,13)
= 9.98, p= 0.008].

DISCUSSION

In this study, low and high frequency SEP data were collected at
baseline and 1 year later at follow-up in 54 subjects who were
at risk for developing psychosis at time of baseline examination.
This study investigated the course of early sensory filtering
preceding the (putative) onset of psychosis. To our knowledge,
this is the first study investigating SEPs in a longitudinal design
in populations at risk for developing psychosis to date. Based on
the baseline findings (15), we conducted our analysis regarding
cannabis, respectively, we focused specifically on cannabis-
free subjects.

The longitudinal development of the N20 strength depended
on cannabis use. The N20 strengths of cannabis non-users
seemed to decrease over time. SIPS negative symptoms were
associated with this decrease, i.e., more negative symptoms at
baseline were associated with a greater decrease of N20 strength
over time. Additionally, we found that cannabis-free subjects
at risk—and specifically at ultra-high-risk for psychosis—had
weaker N20 strengths at follow-up, compared to the HC group.
These results are in line with our baseline results (15) and
previous reports on decreased early evoked responses in the at-
risk state for psychosis (26). Amplitude reductions in the context
of reduced sensory gating were interpreted as a reduced sensory
registration (26). Sensory registration can be characterized
by high sensory thresholds, i.e., subjects with low sensory
registration pattern may have more difficulties than others to
notice sensory stimuli (53). These observed amplitude reductions
in subjects at risk suggest that sensory registration deficits may
precede the putative onset of psychosis. Furthermore, it has
been proposed that gating deficits are mainly associated with
the negative symptoms of schizophrenia (54–58). Because they
are related to decreased functional outcomes and refractory

to common psychopharmacological treatments (59), negative
symptoms seem to contribute to poorer quality of life early in
the course of schizophrenia (60, 61) and may even represent
themselves a vulnerability for the risk of developing psychosis
(62). Moreover, the thalamus that is supposed to play a key role
in somatosensory gating might be specifically associated with
negative symptoms in schizophrenia (63–66). This association
was also suggested in adolescents at ultra-high-risk for psychosis
in a recent study in the context of increased sleep dysfunction
(67). Negative symptoms have been described as emerging from
a failure of learning during social interactions due to abnormal
synaptic plasticity, the resulting experience of an unpredictable
world being likely to trigger social withdrawal and apathy (68).
In this line, Arnfred and Chen (69) have reported an association
of early somatosensory information processing deficit and higher
social anhedonia scores. They have hypothesized that a lack
of somatosensory readiness degrading the fine-tuning of bodily
attention would lead to aversive experiences of unpreparedness,
secondarily followed by withdrawal and anxiety (69).

The biological basis of sensory registration deficits in
subjects at risk as well as in patients with manifest psychosis
is still not clear. Alterations in early evoked potentials, such
as SEPs, are typically referred to disturbances of afferent
sensory tracts and impaired thalamic filtering. However,
abnormal functional interactions between the cortex and
thalamus should be considered as well. In this context,
several imaging studies reported characteristic dysfunctions
of thalamocortical networks in schizophrenia that are closely
associated with clinical and cognitive symptoms (70). With
regard to early sensory information processing, Woodward et al.
(71) could demonstrate, by using resting-state fMRI, marked
differences in thalamocortical connectivity in patients with
schizophrenia compared to healthy controls, with increased
motor/somatosensory-thalamic connectivity and reduced
pre-frontal-thalamic connectivity. Interestingly, this pattern
of thalamocortical dysconnectivity was not only present in
chronic schizophrenia but also in early stages of psychosis
(72), presumably due to atypical brain maturation and/or
distinct genetic factors (73). Moreover, it cannot be ruled
out that abnormal functional interactions within specific
cortical networks may be involved in the deficits in sensory
information processing as described in our analysis. In particular,
disturbed functional connectivity and organization within the
somatosensory and sensorimotor cortex in schizophrenia
have been reported by several neurophysiological studies
(74–76). Further research is required in order to elucidate the
etiological significance.

In our sample, contrary to subjects at risk, the group of
converters showed no changes in negative symptoms between
baseline and follow-up. Our retrospective analysis showed that,
at baseline, the group of converters differed from the control
group regarding amplitudes of HFOs, as did at-risk subjects
in our baseline study (15). However, at baseline, the group
of subjects with future transition to psychosis did not differ
from other subjects remaining at risk at follow-up. These results
are in accordance with other studies (26, 77) which found
deficits in sensory registration in subjects at risk compared to
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FIGURE 4 | Mean SEP amplitudes (z-values) for the cannabis non-user subjects from the high-risk (HR, n = 10), ultra high-risk (UHR, n = 9), and converter (CONV, n

= 7) groups at baseline (t0) and follow-up (t2).

controls but did not find any differences between at-risk with
and without conversion. Consequently, it has been suggested that
these deficits in sensory registration may not represent a marker
for a genetic risk for psychosis but rather be influenced by state-
dependent factors (26). Alternatively, it cannot be excluded that
putative converters are confounded within the at-risk groups
and that a longer follow-up period would have influenced these
results by providing more transitions to psychosis. Furthermore,
due to different treatment regimens between baseline and follow-
up, some conversions have possibly been prevented by treatment.
Finally, a lack of statistical power due to the very small sample size
of the converter group cannot be excluded.

At follow up, according to our expectations, we found
differences in SEP parameters between the group of converters
and the subjects remaining at risk, but these differences
turned out to be somewhat counterintuitive. Converters showed
stronger SEP parameters than at-risk subjects but did not differ
from the HC group. It is not clear how this should be interpreted.
In contrast to the present findings, previous studies on SEP
in patients with chronic schizophrenia reported higher N20
mean amplitudes (16, 17, 50) and later HFO than controls
(50). A higher N20 amplitude was interpreted as an impairment
of thalamic filtering of the afferent sensory information
to the cortex (50). More generally, the present findings
stand in contradiction to the extensive literature reporting
decreased evoked responses in patients with schizophrenia,
particularly decreased early responses such as N100 and
P50 (56, 78). However, Valkonen-Korhonen et al. (79) also
found no difference in early attention-independent automatic
processing (100ms after stimulus) in never-medicated first
episode patients compared to healthy controls and reported
that otherwise observed deviances appeared only in attention-
dependent processing after about 250ms. Furthermore, Salisbury
et al. (80) reported deviant mismatch negativity (MMN) in
patients with chronic schizophrenia that were not present at
first hospitalization as well as opposite associations of pattern

of symptoms with MMN amplitudes in first episode patients
(smaller amplitudes) vs. in chronic patients (larger amplitudes).
Taken together, a transition to psychosis resp. a first episode may
represent an interstage between a reduced sensory registration
from the at-risk state and a gating deficit in the chronic state.
Our longitudinal analyses accounted for potential medication
impact, but we did not differentiate the effects of antidepressants
vs. antipsychotics because of the small sample size and the
cross-sectional analyses. We omitted the covariate medication
in the cross-sectional analyses because it was closely related
to the group factor (the HC group was medication-free).
Consequently, it cannot be ruled out that medication has an
effect on praxis level on all SEP parameters, particularly in
the converter group that showed the highest dosage. Moreover,
the fact that antipsychotic drugs are not equally effective for
all patients with psychosis contribute to the assumption that
heterogeneity of different underlying disease mechanisms may
lead to a psychopathology with similar clinical presentation.
For example, different neuromodulatory dysregulations—such
as dopaminergic, cholinergic, or serotonergic dysregulation of
NMDA-mediated synaptic plasticity—are hypothesized to lead
to the development of psychotic symptoms (68). Therefore, our
sample of subjects with resp. without transition to psychosis
would represent a heterogeneous group (81) with regard
to underlying synaptic plasticity. Furthermore, symptoms of
depression, anxiety and psychosis often overlap in subjects
at high risk of psychosis (82). Besides this, different patterns
of brain structure alteration were suggested in subjects in
at-risk state with genetic risk vs. with attenuated psychotic
symptoms, the subgroup with genetic risk showing more
similarities of morphology to patients with a first episode
psychosis, one of them affecting the right thalamus (83). Given
that most of the at-risk subjects do not convert to manifest
psychosis, the biological significance of the decreased N20
strengths in our at-risk groups remains unclear and needs
further replication.
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Contrary to the decrease in N20 strengths over time in
the cannabis non-users group, the N20 strengths of cannabis
users seemed to increase over time, being similar at follow-
up to the reference values from the HC group. As it was
hypothesized previously (11, 84), cannabismay produce transient
symptoms and deficits resembling those seen in schizophrenia,
thereby increasing clinical false positive ratings. Additionally, a
superior cognitive profile in schizophrenia-spectrum disorders
with concomitant cannabis use has been reported (85–87), but
this was suggested to be associated with better social skills (in
order to be able to acquire and sustain drug habit) rather than
to reflect a neuroprotective effect of THC (84, 88). In this line,
Koenders et al. (89) have provided the possible explanation that
non-users are a group in whom psychosis may develop without
the extra-risk factor of cannabis use, i.e., that patients who use
cannabis may be less intrinsically vulnerable for psychosis than
non-users.

Our study has methodological limitations. First, the group
of converters was very small, so that statistic power may be
limited and results in this group have to be interpreted with
caution. Based on the heuristic and exploratory nature of the
study, we did not consider a Bonferroni correction for multiple
testing and recommend to replicate the findings in future studies
with greater sample sizes. Moreover, the HC group has not been
screened for prodromal symptoms at baseline by standardized
measures, such as SPI-A or SIPS. Therefore, the validity of the
results may be limited as the potential influence of undiscovered
pre-psychotic syndromes at the low-intensity level cannot be
completely ruled out. Then, cannabis analysis is limited because
many data is missing, we relied on self-reports and did not
perform urinary screening as recommended in the literature (90)
and we did not differentiate between acute and chronic effects of
cannabis (91). However, an analysis of cannabis effects was not
the aim of this paper. On the other hand, the observed results
might be confounded with an effect of alcohol and tobacco, as
several subjects being at risk for psychosis may be prone to use
these substances. At last, an examination of the HC group was
performed only at baseline. We assumed that the time effect
of 1 year on SEP parameters would be negligible in healthy
participants. We are aware that small developmental changes in
the somatosensory afferent pathway from spinal cord to thalamus
seem to be complete by age 17 (92) and some of our participants

were younger than this age. Increases in EP latency with age
were reported (92). Then, the amplitude of the cortical primary

response is known to follow a U-shape curve with aging, being
high during adolescence, low duringmiddle age and high again in
old age (93–95). Additionally, a comparison of participants older
than 60 years with participants in themid-twenties suggested that
the later part of HFOs is associated with aging (96). However,
our groups were all in similar ages and statistical analysis did not
show any effect of age. None the less, a follow-up examination
of the HC group would have provided further insight. Finally,
the presently reported method of dipole source analysis is not
suitable for clinical practice. Further experimentation is needed
to determine if a simple one-channel information would lead to
comparable results.

In summary, the observed deficits in sensory registration may
not represent a marker for a genetic risk for psychosis but rather
reflect state-dependent factors, e.g., negative symptoms. These
amplitude reductions in subjects at risk vs. the lack of differences
between converters and controls resp. the amplitude increases in
chronic schizophrenia previously reported in the literature might
suggest that a transition to psychosis resp. a first episode may
represent an interstage between a reduced sensory registration
from the at-risk state and a gating deficit in the chronic state.
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