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Oxidative status may play a role in chronic inflammation and neurodegeneration which
are considered critical etiopathogenetic factors in Multiple Sclerosis (MS), both in the
early phase of the disease and in the progressive one. The aim of this study is to explore
oxidative status related to iron metabolism in peripheral blood of stable Relapsing-
Remitting MS with low disability. We studied 60 Relapsing-Remitting MS patients (age
37.2 ± 9.06, EDSS median 1.0), and 40 healthy controls (age 40.3 ± 10.86). We
measured total hydroperoxides (dROMs test) and Total Antioxidant Status (TAS), along
with the iron metabolism biomarkers: Iron (Fe), ferritin (Ferr), transferrin (Tf), transferrin
saturation (Tfsat), and ceruloplasmin (Cp) panel biomarkers [concentration (iCp) and
enzymatic activity (eCp), copper (Cu), ceruloplasmin specific activity (eCp:iCp), copper
to ceruloplasmin ratio (Cu:Cp), non-ceruloplasmin copper (nCp-Cu)]. We computed also
the Cp:Tf ratio as an index of oxidative stress related to iron metabolism. We found
lower TAS levels in MS patients than in healthy controls (CTRL) and normal reference
level and higher dROMs and Cp:Tf ratio in MS than in healthy controls. Cp and Cu were
higher in MS while biomarkers of iron metabolism were not different between patients
and controls. Both in controls and MS, dROMs correlated with iCp (CTRL r = 0.821,
p < 0.001; MS r = 0.775 p < 0.001) and eCp (CTRL r = 0.734, p < 0.001; MS
r = 0.820 p < 0.001). Moreover, only in MS group iCp correlated negatively with Tfsat
(r = -0.257, p = 0.047). Dividing MS patients in “untreated” group and “treated” group,
we found a significant difference in Fe values [F (2, 97) = 10.136, p < 0.001]; in particular
“MS untreated” showed higher mean values (mean = 114.5, SD = 39.37 µg/dL) than
CTRL (mean 78.6, SD = 27.55 µg/dL p = 0.001) and “MS treated” (mean = 72.4,
SD = 38.08 µg/dL; p < 0.001). Moreover, “MS untreated” showed significantly higher
values of Cp:Tf (mean = 10.19, SD = 1.77∗10−2; p = 0.015), than CTRL (mean = 9.03,
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SD = 1.46 ∗10−2). These results suggest that chronic oxidative stress is relevant also
in the remitting phase of the disease in patients with low disability and short disease
duration. Therefore, treatment with antioxidants may be beneficial also in the early stage
of the disease to preserve neuronal reserve.

Keywords: multiple sclerosis, oxidative stress, iron metabolism, total antioxidant status, hydroperoxides,
ceruloplasmin:transferrin ratio, ceruloplasmin

INTRODUCTION

Multiple sclerosis (MS) is a chronic immune-mediated condition
that can affect the brain and the spinal cord and is characterized
by a relapsing remitting (RRMS) course eventually followed
by secondary progression (SPMS) or gradual progression of
disability since the beginning (primary progressive MS – PPMS).
MS has been traditionally considered a focal inflammatory
demyelinating disease of the white matter, while today the
role of chronic and diffuse gray matter neurodegeneration in
the disability accrual is well established (Stys et al., 2012).
Neurodegeneration accompanies demyelination since the early
phases of the disease and becomes the main pathological feature
in the secondary and primary progressive forms.

Inflammation and neurodegeneration are mutually dependent
phenomena. Inflammation, in fact, induces degeneration, likely
through excitotoxicity mechanisms (Centonze et al., 2009); on
the other hand neurodegeneration can induce inflammatory
response, both in the central nervous system (CNS) and in
peripheral blood (Träger and Tabrizi, 2013), as demonstrated
also in other neurodegenerative conditions (i.e., amyotrophic
lateral sclerosis, Alzheimer’s disease, Parkinson’s disease, and
Huntington’s disease) (Träger and Tabrizi, 2013). Nevertheless,
consolidated biomarkers of chronic inflammation in MS
are lacking, although many studies have identified oxidative
stress markers as particularly promising to estimate peripheral
inflammation in MS since inflammation leads to oxidative stress
and vice-versa (Naidoo and Knapp, 1992; Karg et al., 1999;
Besler and Comoǧlu, 2003; Ferretti et al., 2005; Koch et al., 2006;
Alimonti et al., 2007; Ortiz et al., 2009, 2013; Ghabaee et al., 2010;
Ristori et al., 2011; Miller et al., 2012; Oliveira et al., 2012; Tasset
et al., 2012). The majority of these studies have demonstrated an
increase of peripheral inflammation in the progressive forms of
MS or during a relapse; few of them have suggested that oxidative
stress and antioxidant capacity are elevated also in RRMS during
the remitting phase (Ferretti et al., 2005; Koch et al., 2006; Miller
et al., 2012; Oliveira et al., 2012).

Oxidative status is considered to be related to iron (Fe)
metabolism. This metal might play a role in the pathogenesis of
inflammation and neurodegeneration in MS, causing microglia
activation, induction of mitochondria dysfunction and free
radicals in the body and in the CNS (Drayer et al., 1987; Bizzi
et al., 1990; Zivadinov et al., 2010, 2018; Sheykhansari et al.,
2018). Ceruloplasmin (Cp) is an acute phase protein (Hellman
and Gitlin, 2002), playing a fundamental role in copper (Cu)
and Fe metabolism and holding a strong antioxidant function
due to its ferroxidase activity (Gutteridge, 1995): indeed, the
Cp:Transferrin (Tf) system (measured by the Cp:Tf ratio) is

reported to be the main antioxidant system in peripheral blood
(Kozlov et al., 1984). Cp has also been recognized as marker
of inflammation in systemic pathologies (Göçmen et al., 2008;
Tang et al., 2012) and we found that the Cp:Tf ratio is elevated
in Alzheimer’s disease (Squitti et al., 2010; Siotto et al., 2016), in
stroke (Altamura et al., 2009; Squitti et al., 2018b) and in subacute
post-stroke patients affected by neuropathic pain (Siotto et al.,
2017), where it correlates with the clinical status.

Our study aimed to identify possible and easy to test markers
of peripheral inflammation and to explore Fe metabolism in
relation to the clinical status in MS patients with low disability in
the remitting phase. For this purpose, we used two commercially
available biomarker of oxidative stress, along with a panel of
biomarkers related to Fe metabolism, strictly associated with
oxidative stress.

MATERIALS AND METHODS

Subjects
The study was performed at Neuroscience Department of the
Fatebenefratelli Hospital, Isola Tiberina, Rome and at Neurology
Unit of the Campus Bio-Medico University of Rome.

Sixty Relapsing-Remitting MS patients (45 females, age
37.2 ± 9.06) fulfilling the 2010 revision of diagnostic criteria of
MS (Polman et al., 2011) were recruited. Forty healthy unrelated
volunteers (22 females, age 40.3 ± 10.86) of comparable age
were also selected as control group (CTRL). All the included
patients were free from relapses for at least 6 months before the
blood sampling.

Exclusion criteria were the following: therapy with
corticosteroids or ACTH in the month before the blood
sampling, pregnancy, anemia, alcohol, and drug abuse, use
of dietary supplements, chronic diseases potentially inducing
systemic inflammation (heart or pulmonary diseases, diabetes,
autoimmune diseases, etc.), primary or secondary hepatic
diseases, hemochromatosis, aceruloplasminemia and any other
diseases with known or presumable effect on Cu/Fe metabolism.

Local institutional ethics committees approved the study and
all participating subjects gave written informed consent to be
included in the study, in line with the Code of Ethics of the World
Medical Association (Declaration of Helsinki) and the standards
established by the Authors’ Institutional Review Board.

Blood Sampling and Biochemical Assay
Fasting blood samples were collected in the morning and sera
fractions were separated by centrifugation (3000 rpm, 10 min,
and 4◦C). They were then aliquoted and rapidly stored at−80◦C.
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The subject’s aliquots and the reference samples were thawed just
before the assay.

All the serum analyses were performed in duplicate on
the biochemical analyzer Horiba Pentra 400 (ABX Diagnostic,
Montpellier, France).

Total antioxidant blood capacity (TAS) was measured using
the TAS kit (Randox Laboratories, Crumlin, United Kingdom)
(Rice-Evans and Miller, 1994). Hydroperoxide content was
assessed by d-ROMs test (Diacron, Italy) and expressed in
arbitrary units (U.CARR) where 1 U.CARR corresponding to
0.08 mg/100 ml of hydrogen peroxide (Alberti et al., 2000).

Iron (Fe) was measured by the photometric test using Ferene
(Higgins, 1981) (Horiba ABX, Montpellier, France). Transferrin
(Tf) levels were measured by immunoturbidimetric assay (Skikne
et al., 1990) and Ferritin was measured by latex-enhanced
turbidimetric immunoassay (Simó et al., 1994) (Horiba ABX,
Montpellier, France). Concentration of immunological Cp (iCp)
was measured by immunoturbidimetric assay (Wolf, 1982)
(Futura System SRL, Rome, Italy). The enzymatic activity of
Cp (eCp) was tested with an automated version of the manual
Schosinsky o-dianisidine eCp assay (Lehmann et al., 1974;
Schosinsky et al., 1974), adapted by our laboratory (Siotto et al.,
2014). The serum copper (Cu) concentration was measured using
the colorimetric assay of Abe et al. (1989) (Randox Laboratories,
Crumlin, United Kingdom).

For each sample, we also computed the specific activity
of Cp (enzymatic activity per mg of Cp concentration in
IU/mg∗10−1), as the ratio between the Cp enzymatic activity and
immunoturbidimetric Cp concentration (eCp/iCp) (Siotto et al.,
2014) and the ratio between Cp and Tf serum concentrations
(Cp:Tf ∗10−2) (Nobili et al., 2013). nCp-Cu was calculated by
means of the equation provided by Walshe [appendix of Walshe
(2003)] on the basis of total copper and iCp concentrations
in serum. For each serum copper and ceruloplasmin pair, we
computed the amount of copper bound to ceruloplasmin (CB)
and the amount of nCp-Cu, following standard procedures
(Appendix 1: “Calculation of ‘free copper’ concentration”). The
Cu:Cp ratio (Twomey et al., 2006; Squitti et al., 2014) was
calculated as reported in Twomey et al. (2006). Moreover, Tf
saturation (Tf-sat) was calculated by dividing serum Fe (µg/dL)
by the total iron binding capacity (TBC = TF in mg/dL∗1.25) and
multiplying by 100.

Statistical Analysis
Smirnov test was applied to test the normality distribution
of continuous variables. To test difference in age and clinical
characteristics between two groups was applied the Student’s
t-test or, when necessary, non-parametric Mann-Whitney test.
A logarithmic transformation was applied to minimize the
variability and to better approximate the data distribution
to normality.

Correlation between all biochemical variables were calculated
by the Pearson’s correlation coefficient separately in the
MS and CTRL groups to look for any differences in the
reciprocal behavior of the variables between the two groups.
Non-parametric Spearman’s correlation was calculated to test
the correlation between the biochemical variables and the

clinical variables (EDSS, disease duration). Analysis of variance
(ANOVA) model was applied to evaluate the difference in
the biochemical variables between CTRL and MS patients
and between CTRL and MS divided in “untreated MS” and
“treated MS,” adjusting for sex and age. The results were
presented as mean and standard deviation (SD). Benjamini-
Hochberg procedure was applied to adjust the p-value in multiple
comparisons. A p-value < 0.05 has been considered statistically
significant. The statistical analysis was performed using IBM
SPSS Statistics for Windows version 19.0.0.

RESULTS

All patients had a low disability [Expanded Disability Status Scale,
EDSS 1.0 (0.0–4.5)], except for a single male patient with EDSS
4.5. Patients on disease modifying therapy (DMT) were 78%, of
which 85% treated with interferon-beta (Significant demographic
and clinical data are listed in Table 1). Patients and controls
did not diverge for age but were different for sex distribution
(p = 0.018, see Table 1).

Differences in biochemical variables, adjusted for sex and
age in ANOVA analyses, between MS patients and CTRL were
reported in Table 2. TAS was significantly lower in patients than
in controls (MS mean = 1.24, SD = 0.14 vs. CTRL mean = 1.39,
SD = 0.13 mmol/L; p = 0.001) and lower than normal reference
range indicated by the manufacturer (1.30–1.77 mmol/L). The
total hydroperoxides in circulation were higher in MS patients
than in healthy volunteers (MS mean = 329.6, SD = 75.15 vs.
CTRL mean = 295.2, SD = 61.38 UCarr; p = 0.032). Moreover,
the Cp:Tf ratio was higher in MS patients than in controls (MS
mean = 9.89, SD = 1.48∗10−2 vs. CTRL mean = 9.03, SD = 1.46
∗10−2; p = 0.005) (Table 2 and Figure 1).

The iCp values were higher in patients with respect to healthy
controls (MS mean = 26.9, SD = 3.86 vs. CTRL mean = 24.8,
SD = 3.28 mg/dL; p = 0.006) and coherently the Cu values were a
slightly higher in patients (MS mean = 13.7, SD = 0.29 vs. CTRL
mean = 12.8, SD = 0.33 µmol/L; p = 0.043; Figure 1).

The following biological variables correlated both in healthy
controls and MS patients: dROMs with iCp (CTRL: r = 0.821,
p < 0.001; MS: r = 0.775 p < 0.001) and eCp (CTRL: r = 0.734,
p < 0.001; MS: r = 0.820 p < 0.001). Moreover, in MS patients
iCp correlated negatively with Tfsat (r = -0.257, p = 0.047) but it
not survived after the adjustment for multiple comparisons (B-
H adjusted p = 0.094) (Figure 2). No additional correlations were
found among any of the other biochemical parameters and EDSS,
disease duration (all p > 0.2).

Considering untreated MS patients and treated MS as two
separate groups, we did not observe differences in disease
duration (Mann Whitney test p = 0.10) and EDSS (Mann
Whitney test p = 0.448).

We performed the ANOVA analyses comparing the two
groups of MS patients with CTRL. All analyses were adjusted for
sex and age. TAS was significantly lower in both patients’ groups
than in controls (“untreated MS” mean = 1.25, SD = 0.14 mmol/L
and “treated MS” mean = 1.23, SD = 0.15 mmol/L vs.
CTRL mean = 1.39 SD = 0.15 mmol/L; p = 0.015 and
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TABLE 1 | Demographic of multiple sclerosis patients (MS) and healthy volunteers (CTRL).

n Age Mean (SD) Disease duration Median (range) EDSS Median (IQR) Patients on Disease Modifying Therapy (DMT) (n)

MS patients 60 37.2 (9.06) 2.39 (0.01–19.86) 1.0 (1–2) 41 (78%)

Females 45 36.0 (9.08) 3.9 (0.2–20.1) 1.0 (0.0–1.75) 32

Controls 42 40.3 (10.86)

Females 22 40.4 (11.05)

In non-bold are reported data of Female MS and Female CTRL.

TABLE 2 | Biological variable differences in multiple sclerosis patients (MS) and in healthy volunteers (CTRL).

Biochemical variables MS n = 60 CTRL n = 42 ANOVAa p-value

Total antioxidant capacity (TAS, mmol/L) Mean (SD) 1.24 (0.14) 1.39 (0.13) 0.001

Hydroperoxides, dROMs (UCarr) Mean (SD) 329.6 (75.15) 295.2 (61.38) 0.032

Iron (Fe, µg/dL) Mean (SD) 85.7 (42.97) 78.6 (27.55) 0.268

Ferritin (Ferr, ng/mL) Median (25–75) 42.2 (22.8–110.17) 39.6 (26.23–112.47) 0.236b

Transferrin (Tf, g/L) Mean (SD) 2.75 (0.05) 2.79 (0.05) 0.616

Ceruloplasmin (iCp, mg/dL) Mean (SD) 26.9 (3.86) 24.8 (3.28) 0.006

Copper (Cu, µmol/L) Mean (SD) 13.74 (0.29) 12.84 (0.33) 0.043

Ceruloplasmin activity (eCp, IU/L) Mean (SD) 105.5 (21.94) 97.6 (19.14) 0.142

Cp:Tf ratio (∗10−2) Mean (SD) 9.89 (1.485) 9.03 (1.463) 0.005

Transferrin saturation (Tf sat, %) Mean (SD) 25.2 (13.96) 22.7 (8.43) 0.192

Ceruloplasmin specific activity (eCp/iCp IU/mg∗10−1) Mean (SD) 3.85 (0.09) 3.91 (0.10) 0.667

Copper not bound to ceruloplasmin (nCp-Cu, µmol/L) Mean (SD) 1.05 (0.2) 1.12 (0.22) 0.832

Cu:Cp ratio Mean (SD) 6.76 (0.11) 6.85 (0.12) 0.589

aANOVA model was applied to evaluated the difference in the biochemical variables between healthy controls and SM patients adjusting for sex and age.
bANOVA model was applied considered the logarithmic transformation of the variable.
Bold indicates p < 0.05.

p = 0.005, respectively) which is consistent with our previous
observations. The total hydroperoxides in circulation were
no longer significantly different between the three groups
(p = 0.081). Dividing MS patients in “untreated” group and
“treated” group, we found a significant difference in Fe values
[F(2, 97) = 10.136, p < 0.001]; in particular “untreated MS”
showed higher mean values (mean = 114.5, SD = 39.37 µg/dL)
than CTRL (mean 78.6, SD = 27.55 µg/dL p = 0.001) and
“treated MS” (mean = 72.4, SD = 38.08 µg/dL; p < 0.001).
Moreover, “untreated MS” presented significantly higher values
of Cp:Tf (mean = 10.19, SD = 1.77∗10−2; p = 0.015), than CTRL
(mean = 9.03, SD = 1.46 ∗10−2) (Figure 3).

DISCUSSION

The main result of this study is that in RRMS patients with
low disability in the early phase of disease, the oxidative stress
status is altered, as it is revealed by low levels of TAS, and
high levels of total hydroperoxides and of Cp:Tf (Table 2 and
Figure 1). In fact, even though EDSS scores were low, suggesting
a low rate of neurodegeneration, all the serum biomarkers
of oxidative status analyzed revealed a marked imbalance in
systemic oxidative stress.

Another interesting result is that dividing MS patients in
“treated” and “untreated,” we found increased level of Fe and
Cp:Tf ratio in “MS untreated,” suggesting a role of therapy in
oxidative stress related to Fe levels (Figure 3).

We employed TAS and dROMs as oxidative stress markers,
two easy to use and common laboratory assays to test general
oxidative stress status of the body, and the Cp: Tf ratio which
is an index optimized from our laboratory to explore oxidative
stress mediated by Fe.

The TAS is a measure of the total antioxidant capacity
of general circulation. The biochemical assay is based on the
principle of inducing the antioxidant defense of serum; this
is achieved by introducing a radical reagent opportunely and
previously formed in the sample; the serum sample is then added.
Serum can exert a suppression of the radical in a way that is
directly proportional to the ability of all antioxidant components
in serum to counteract the radical oxidation. We found that
serum samples of MS patients were not able to counteract the
induced oxidative stress, as revealed by TAS values lower than
healthy control and reference range (Table 2 and Figure 1).
No differences in TAS levels were found between “treated MS”
and “untreated MS”; TAS values were significantly lower in both
patients’ group and under the reference range.

The dROMs is a test that measures directly the hydroperoxides
circulating in serum (Cesarone et al., 1999; Alberti et al., 2000).
High dROMs have been found in patients with different chronic
conditions, correlating with the clinical outcome (Daniil et al.,
2008; Capone et al., 2012; Vassalle et al., 2012; Taguchi et al.,
2013) and with C reactive protein (Kotani and Taniguchi, 2012;
Taguchi et al., 2013). Moreover, antioxidant administration has
been demonstrated to reduce dROMs (Cornelli et al., 2001).
In this study we noticed a very strong positive correlation
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FIGURE 1 | Scattered dot plot with bar plot (mean with SD) of total antioxidant status (TAS), hydroperoxides (dROMs), ceruloplasmin transferrin ratio (Cp:Tf), and
ceruloplasmin (iCp) in CTRL and MS.

between iCp and eCp and dROMs (both in healthy CTRL and
in MS with a Spearman’s rho close to 0.8, Figure 2). On this
basis, dROMs test appears as an alternative measurement of
Cp enzymatic activity, or related to the antioxidant activity of
Cp. Erel et al. (Harma, 2006) sustained that the chromogen
employed in dROMs test was a substrate of the ferroxidase
Cp while another study asserted that there is no correlation
between ceruloplasmin and dROMs (Colombini et al., 2016).
Nevertheless, the hypothesis that enzymatic o-dianisidine assays
such as eCp might in turn be influenced by the presence of
blood hydroperoxides cannot be excluded. Whether measuring
oxidative stress or the ferroxidase activity of Cp (as sustained by
Erel), dROMs is a reliable method to detect a peripheral response
to a systemic stress.

In this study we found dROMs levels higher in MS compared
to healthy controls (Table 2 and Figure 1) but no differences were
found dividing patients in treated or not.

In order to further explore the oxidative stress status in MS,
we also measured the Cp:Tf ratio and we found higher values in
MS than in CTRL (Table 1 and Figure 1) and in the group of
“untreated MS” (Figure 3). This ratio is reported to be the main
antioxidant system in serum, and it was measured with Electron

Paramagnetic Resonance Spectroscopy by Kozlov et al. (1984).
The Cp:Tf variable analyzed in this study, is a calculated index
that provides a good quantification of this antioxidant system
(Altamura et al., 2009; Nobili et al., 2013). In fact, it quantifies
the existing ratio between Cp and Tf. A correct “handling” and
distribution of Fe is evinced by a correct stoichiometry between
these two proteins. When this occurs, there is consequently a
lower probability to develop oxidative stress because the two
proteins work in concert reducing levels of ferrous ions, Fe2+,
the Fe ion more toxic (Singh et al., 2012) that reacts with
hydrogen peroxides initiating oxidative stress chain reactions
via Fenton’s and Heber Weiss reactions and generating reactive
oxygen species.

According to the hypothesis of cerebrospinal venous
insufficiency (Zamboni et al., 2009; Zivadinov et al., 2010)
abnormality in blood drainage from the brain and spinal cord
may contribute to nervous system damage in MS through Fe
overload and deposition (Singh and Zamboni, 2009; Singh,
2010). In 2018 a clinical trial study showed no efficacy of
venous percutaneous transluminal angioplasty (Zamboni et al.,
2018); in fact, the treatment did not increase the proportion of
patients who improved functionally nor did it reduce the mean
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FIGURE 2 | (A,B) Correlation between hydroperoxides (dROMs) and ceruloplasmin (iCp and eCp, respectively) in CTRL. (C,D) Correlation between hydroperoxides
(dROMs) and ceruloplasmin (iCp and eCp, respectively) in MS. (E) Correlation between ceruloplasmin (iCp) vs. transferrin saturation (TfSat %) in MS.
A p-value < 0.05 was considered statistically significant.

FIGURE 3 | Bar plot (mean with SD) of iron (Fe) and ceruloplasmin transferrin ratio (Cp:Tf) in CTRL, MS in disease modifying therapy (treated MS), and in MS not in
disease modifying therapy (untreated MS).

number of new combined brain lesions on magnetic resonance
imaging (MRI) at 12 months. However, the CCSVI hypothesis
has been linked with the potential effects of Fe deposition in
the brain parenchyma. Together with radiological data which
suggest excessive Fe accumulation in the brain of MS patients
(Drayer et al., 1987; Bizzi et al., 1990; Zivadinov et al., 2010), this
hypothesis drove researchers attention upon the Fe as a possible
cause of neurodegeneration, although the reasons of Fe overload
are not clear yet and presumably they do not depend on CCSVI.
The brain Fe accumulation could lead to chronic cell stress, with
consequent axonal and neuronal death. Moreover, there are some
heme-involved processes that caused lipid oxidation. During
de-myelinization, Fe could be released from myelin sheath (for
an extensive review see Adamczyk and Adamczyk-Sowa, 2016).

However, we did not find any significant difference between
MS group and controls in the markers strictly related to Fe as
Fe itself, Ferr, and Tf. On the other hand, we found significant
higher level of Fe in “untreated MS” respect to both control and
“treated MS” (Table 2 and Figure 3). Despite preliminary and
limited by the small sample size, these results are quite interesting
as they highlight the importance of better investigating the role of
treatment in Fe metabolism.

Looking at the other variables, we also found iCp and
Cu higher in MS patients compared to healthy controls. Cp
is acute-phase reactant in inflammation processes (such as
infection, chronic diseases, arthritis and several neoplasia) and
Cu follows the same trend being structurally bound to Cp. Holo-
Cp biosynthesis occurs in liver where the Cu is charged in the
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apo-form of the protein. The Cu in the Cp is not exchangeable,
being part of the protein structure. So, in MS, the rise of Cp
can explain also the rise of Cu due to an inflammation status.
Recently, a study from De Riccardis et al. (2018) on 38 MS
patients with EDSS scores under 3.5 reported that Cp and Cu
values were higher in MS than in controls of an age and sex
matched group of 39 subjects, according to our results. Moreover,
they found a significant increase in dROMs values in MS patients.

In our study we found no significative difference in other
important markers of Cu status like nCp-Cu that measures the
portion of Cu not structurally bound to Cp, and Cu:Cp ratio
which is an index of the correct stoichiometry between Cu and Cp
(Table 2). Conversely, in various study on different neurological
diseases, such as Alzheimer’s or Wilson’s disease (Siotto et al.,
2016; Squitti et al., 2018a) or stroke (Siotto et al., 2017; Squitti
et al., 2018b) we found these specific markers of Cu status altered,
with a clear indication of Cu dishomeostasis.

In our opinion, in our MS group iCp and Cu were higher due
to systemic inflammation and not as a result of an imbalance
systemic Cu management.

Cp is involved in the metabolism of Fe being the main
ferroxidase of the serum, as it oxidizes Fe from Fe2+ to Fe3+,
which could be charged from Tf for being transported into the
circulation. The increase of iCp in MS and its negative correlation
with TfSat stands for an impairment in the Fe handling, being that
in MS the more circulating Cp correlates with less TfSat (Letendre
and Holbein, 1984; Hellman and Gitlin, 2002). Transferrin itself
showed no differences between MS and CTRL as reported also in
a study on CSF samples (LeVine et al., 1999).

Summarizing our results, the oxidative stress is clearly an
evidence in MS patients, but while the values of TAS and dROMs
appeared not to be influenced by therapy, underlining the general
systemic oxidative stress in MS, Cp:Tf ratio is a good index to
detect oxidative stress strictly related to Fe and potentially related
with therapy.

Cp:Tf ratio values is an easy and good marker to investigate
the mismanagement of Fe. A higher Cp:Tf ratio has been
observed in two studies on stroke patients during acute phase
(Altamura et al., 2009; Squitti et al., 2018b). Moreover, we
recently found an increase of Cp:Tf ratio in subacute stroke
patients affected by neuropathic pain (Siotto et al., 2017). In
this group of patients, TAS levels were lower than normal,
whereas the Cp:Tf ratio was higher. Decreased TAS levels
indicated depletion of the antioxidant system compounds and
a reduced ability to counteract the increased oxidative stress
generated by stroke injury. The parallel increase of Cp:Tf ratio
revealed the activation of systemic processes leading to the
cellular internalization of Fe in order to contain oxidative
stress in subacute post-stroke patients with neuropathic pain
(Carbonell and Rama, 2007).

Similarly, TAS levels, being lower in our group of MS patients,
than both in healthy controls and in the reference range, reveal an
inability to counteract oxidative stress in patients with early MS.
In the meantime, the Cp:Tf system responds to a general status of
oxidation (as depicted also from higher levels of hydroperoxides)
and is activated to exert a cellular internalization of Fe, especially
in patients with higher levels of Fe.

In a study by Oliveira et al. (2012) oxidative stress in MS was
evaluated by measuring various oxidative biomarkers. Compared
to controls, MS patients with EDSS > 3.5 exhibited higher plasma
levels of tert-butyl hydroperoxide-initiated chemiluminescence
and carbonyl protein, as well as lower plasma levels of nitric
oxide, total radical-trapping antioxidant parameter (measured by
the same test we used in current study). In agreement with our
results, Oliveira et al. (2012) demonstrated that oxidative stress
is important in the physiopathology of MS progression. Is it
well known that reactive oxygen species are generated in excess
by macrophages which have been implicated as mediators of
demyelination and axonal damage in both MS and experimental
autoimmune animal models (Gilgun-Sherki et al., 2004).

Another study exploring the value of oxidative stress
biomarkers in MS patients reported that plasmatic advanced
oxidation protein products were significantly higher while ferric
reducing ability and thiol group levels were lower in MS patients
in comparison with healthy controls (Pasquali et al., 2015).

Our results underline the importance to monitor oxidative
stress and Fe in patients, both at the beginning of the disease
and during the DMT. The blood tests employed in this study are
easier to perform and cheaper than other serum and radiological
biomarkers. MRI is a very well-established method for qualitative
and quantitative assessment of MS related damage, but it needs
clinical expertise and cumbersome instrumentation set up.

CONCLUSION

An altered status of oxidative stress and/or antioxidant response
is detectable in MS patients with low disability analyzed during
a relapse-free period, suggesting the occurrence of a systemic
subclinical inflammation that accompanies MS even in the early
stages and in the remitting phase. Assessment of the oxidative
stress biomarkers and particularly of Cp:Tf ratio, which is strictly
related to Fe management, is an easy way to monitor oxidative
stress in MS. Moreover, adding antioxidants to conventional
immunotherapy in MS may be reasonable and highly beneficial
for MS patients due to their ability to reduce oxidative stress.
Further research should be performed to test new antioxidants,
and to develop new methods to monitor oxidative stress.
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