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In this paper, a computational method based on machine learning technique for

identifying Alzheimer’s disease genes is proposed. Compared withmost existingmachine

learning based methods, existing methods predict Alzheimer’s disease genes by using

structural magnetic resonance imaging (MRI) technique. Most methods have attained

acceptable results, but the cost is expensive and time consuming. Thus, we proposed

a computational method for identifying Alzheimer disease genes by use of the sequence

information of proteins, and classify the feature vectors by random forest. In the proposed

method, the gene protein information is extracted by adaptive k-skip-n-gram features.

The proposed method can attain the accuracy to 85.5% on the selected UniProt dataset,

which has been demonstrated by the experimental results.
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INTRODUCTION

Alzheimer’s disease (AD) is a common cause of dementia, and it can lead a degeneration of brain.
The research shows that more than 35 million people have been affected by Alzheimer’s disease all
over the world. It is predicted that there will be over 70 million people diagnosed by Alzheimer’s
disease in 2030, and the number will be increased by 50% in 2050 (Brookmeyer et al., 2007).

Until now, there is no treatment for AD. As the status becoming worse, it will destroy the ability
of speak and think. At last, AD will lead to die. So, it is meaningful to predict AD at an early stage.
Machine learning methods have been extensively used in multiple fields of bioinformatics (Zeng
et al., 2014; Wang et al., 2016; Liu Y. et al., 2017; Zhang et al., 2017a; Cheng et al., 2018; Fu et al.,
2018; Liu et al., 2018; Peng et al., 2018a; Song et al., 2018), such as anticancer peptides prediction
(Xu et al., 2018b), identification of antioxidant proteins (Xu et al., 2018a), disease gene identification
(Jiang et al., 2017; Liu G. et al., 2017; Peng et al., 2017; Zeng et al., 2017a; Zhang et al., 2017b; Cheng
et al., 2018,a,b; Liu et al., 2018a,b; Zhu et al., 2018), microRNA classification (Wei et al., 2014;
Chen et al., 2016; Zeng et al., 2018; Zhang et al., 2018), protein remote homology detection (Liu
et al., 2014b; Liu and Li, 2018), drug-induced hepatotoxicity prediction (Li et al., 2018; Su et al.,
2018), DNA binding protein identification (Zhang and Liu, 2017; Liu, 2018), protein interaction
identification (Guo et al., 2011, 2012, 2014; Ding et al., 2016, 2017a,b; Peng et al., 2018b) and so on
(Li et al., 2016, 2017; Zou et al., 2016; Zeng et al., 2017a,b; Hu et al., 2018; Xue et al., 2018; Zhang
and Liu, 2018; Zhang et al., 2018). In this paper, machine learning method is used to identify AD.

Because the structural features of brain is related to AD, the structural brain information is
described by structural magnetic resonance imaging (MRI) data. Most existing works use machine
learning methods, such as ensemble classifier, deep learning method to classify AD and non-AD
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samples. However, most existing works are limited by the
expensive cost onmoney and time. For the purpose of identifying
AD efficiently and effectively, a method called k-skip-n-gramRF,
which is based on gene coding information of proteins, is
proposed to recognize AD samples. In this paper, adaptive k-
skip-2-gram is used to extract the information from the protein
sequences, and then the samples are classified by random forest
(RF) classifier. Consequently the classification accuracy can attain
the accuracy to 85.5% using the select data set from Uniprot
database. In our proposed method, adaptive k-skip-n-gram
describes the correlation information of both adjacent and non-
adjacent residues based on traditional n-gram model (Wei et al.,
2017a). The idea of our proposed method is shown in Figure 1.
As Figure 1 shown, the protein peptides are extracted by k-skip-
n-gram method. Each sequence is transferred into a vector. The
training vectors are used to train the parameters of random forest.
The performance of methods is evaluated by testing vectors. The
testing vectors are labeled by trained random forest classifier.

In the proposed method, adaptive n-gram-k-skip model
is used to represent the gene coding information by a 400-
dimensional vector. Then an ensemble classifier named random
forest (RF) is used to classify the samples. In the experiments,
the accuracy of the proposed classifier is 85.5%, which is
competitive to existing works with low cost. In other words, the

FIGURE 1 | The flow chart of proposed method.

experimental results demonstrated that the proposed methods
can be utilized to identify AD samples. The contributions of our
work include:

• A computational model for predicting Alzheimer’s disease is
proposed in the paper. The experimental results demonstrate
that the classification accuracy of the prediction model is
85.5%, which is competitive to some existing works with low
cost and fast speed.

• Different from previous work using MRI data, the gene coding
information of proteins is considered to identify Alzheimer’s
disease protein. Each protein sequence is represented by a
400-dimensional vector, which the information of distance is
considered.

• In our work, random forest is used to classify the AD protein
peptides and non-AD protein peptides. Random forest is an
ensemble classification method based on bagging, which is
used to predict AD peptides in the work.

The rest of the paper is organized as follows. Section
Materials and Methods introduces the dataset and the
proposed method (k-skip-n-gram-RF) for identifying AD
peptides. The results of AD prediction are described in
Section Results and Discussions. The conclusion is made in
Section Conclusions.
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MATERIALS AND METHODS

Benchmark Dataset
The used data is selected from the UniProt database. The data
set S is composed of positive samples S+ and negative samples
S
−. The positive sample set is represented by Alzheimeir’s disease
(AD) samples, and the negative sample set is represented by
non-AD samples.

Positive Data Set
The positive data set contains AD samples. The samples are built
by the sequences which are labeled by “Alzheimer’s disease.” As
a result, 310 AD samples are selected from the UniProt database.
To avoid the overestimation of the performance, the sequences
with more than 60% similarity are removed. Thus, there are 279
positive samples left.

Negative Data Set
The data labeled with “non Alzheimer’s disease” are chosen, then
there are 312 non-AD samples. The proteins which are confirmed
as non Alzheimer’s disease are also selected in the negative data
set. After CD-HIT program (Fu et al., 2012), 1,743 negative
samples are left in the benchmark data set for experiments.

In the experiments, the benchmark data set is divided into
training data set and testing data set. The training data are used
for train the classifier, and the testing data are used for the
performance evaluation.

Random Forest
Random forest (Ho, 1995) is an ensemble classifier by combining
decision trees together. Due to its effectiveness, random forest
has been widely used in many bioinformatics problems (Deng
and Chen, 2015; Liu, 2018). The key idea will be introduced
briefly here.

The key element in random forest is decision tree. The
decision trees are built based on bagging. Bagging is a sampling
method. The used samples will be put back into the data set for
reusing. In other words, a sample may be used more than one
time for building data set. For example, there is a data set with
n samples. If m decision trees are needed, m data sets will be
built by bagging for training. Each node on the decision tree is
represented by a feature used for classification (Quinlan, 1986).
The features used on different levels of the tree are selected
in sequence by the entropy value. Entropy is considered as
information gain, and the entropy is calculated as Equation (1).
The information gain is calculated as Equation (2)

Ei(x) = −
∑k

i=1
pi(x) log

pi(x) (1)

EG = Entropy−
∑

x
Ei(x) (2)

The attribute with the maximum entropy gain is selected.
Random forest is built based on the decision tree, so the features
with larger information gains will be selected first in the training
process. Because random forest is an ensemble classifier, the
decision is made by voting process shown as Figure 2. As
Figure 2 shown, the sample will be assigned to the class with the

maximum votes. In our problem, the decision trees are trained by
protein sequences, and the input of Figure 2 is protein peptide.

Sequence Representation
The sequence information of each protein peptides is encoded
into a 400-dimensional feature vector by adaptive k-skip-2-gram
model (Wei et al., 2017a). The k-skip-2-grammethod is proposed
based on k-skip-n-gram. The key idea of k-skip-n-gram is the
distance information integrated into traditional n-gram model
(Liu et al., 2014a). However, the maximum value of k is the
length of the shortest amino acid, which is small for long peptides.
Thus, for the purpose of mining more relation between peptides,
adaptive k-skip-n-gram method is proposed in and used in
our method.

There is a peptide sequence S, denoted by R1R2 . . . Rn, where
n is the length of the sequence. In n-gram model, the occurrence
frequencies of any n consecutive amino acids are measured. The
amino acid set is denoted as L, where Li is the ith element in L.
The n-gram features can be calculated as follows:

Fn_gram =
N(TLm1Lm2 ...Lmn

)

N(Ts)

Where N(Ts) is denoted as the number of all items in the set Ts,
and Ts represents the number of segments with n consecutive
amino acids in the peptide S. Each position has 20 possible amino
acids, so there are 20n dimensions with the length of n peptides
in n-gram model. It is obvious that the features are sparse.
Thus, n-gram-k-skip is proposed to overcome the sparse problem
of n-gram model. The distance information is considered in
k-skip-n-gram model.

In k-skip-n-gram model, distance between residues Ri and Rj

is calculated as Equation (3). For example, if there is i= 2 and j=
3, the distance between A2 and A3 is 0.The distance between A4

and A2 is 1, because A2 and A4 is separated by A3.

Dis = |j− i− 1| (3)

FIGURE 2 | The voting process of random forest.

TABLE 1 | The performance evaluation of k-skip-n-gram-RF.

Sn Sp Acc

k-skip-n-gram-RF 0.855 0.855 0.855
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In the k-skip-n-gram model, the sequence information of
n residues within distance k is calculated, which means
that the only residues within distance k are considered.
The calculation of k-skip-n-gram is shown as Equation
(4). In Equation (4), N(TSkipG) is denoted as all the
elements in TSkipG. The calculation of TSkipG is shown
as Equation (5). In Equation (5), Skip (DT = z) =
{

AiAi+z+1 . . .Ai+z+n−1|1 ≤ z ≤ L− 1, 1 ≤ z ≤ k
}

. When n
equals 1, the model is reduced to n-gram model. For the purpose
of avoiding overfitting problem, n is constrained less than 3.
Thus, only the case of n equals to 2 is analyzed. The model is
considered as k-skip-2-gram. The elements of k-skip-2-gram
include R1R2,R2R3,...,Rn−1Rn,R1R3,. . . Rn−2Rn,. . . R1Rn, which
all of them are two amino acids pair within distance k. The
number of the 2-item combination is 400. Thus, the number of
features extracted by k-skip-2-gram is 400. The 20n dimensional
vector is reduced to a 400 dimensional vector.

fv =

{

N
′
(Lm1Lm2 . . . Lmn )

N(TSkipG)

}

(4)

TSkipG = {∪k
z=1Skip(DT = z)} (5)

The amino acids distance within k is calculated. K is the
minimum sequence length of the peptides. The length of some
sequences is sometimes short. If k is small, the features will
be limited in local information. In adaptive k-skip-n-gram, k is
the length of each sequence. When the information of varying
distances of sequences is described, adaptive k-skip-n-gram is
more flexible than k-skip-n-gram.

TABLE 2 | Comparison of our features with other methods on Sn.

Sn Sp Acc

k-skip-n-gram-RF 0.855 0.855 0.855

Information theory-RF 0.714 0.717 0.715

FIGURE 3 | Comparison of performance evaluation on different classifiers.

Performance Evaluation
In the literature of bioinformatics, accuracy(Acc), specificity(Sp),
sensitivity(Sn) are frequently used for evaluating the performance
of classification methods (Chou, 2001a,b). The performance of
the method is measured by the above metrics. Specificity is
used to measure the rate of retrieved true positive samples of
the real positive samples, which is represented by Equation (6).
Sensitivity is the metric for measuring the rate of real non-
AD samples identified as non-AD samples of real non-AD
samples, which is calculated by Equation (7). Accuracy is the rate
that the samples are classified into the correct class, shown as
Equation (8).

Sp =
TP

P+
(6)

Sn =
TN

P−
(7)

Acc =
TP + TN

P+ + P−
(8)

Where P+ is the number of AD samples, and P− is the number
of non-AD samples. TP is denoted as the number of AD samples
recognized as AD samples. TN is represented by the number of
non-AD samples labeled by non-AD samples by the classifier.

RESULTS AND DISCUSSIONS

In the experiments, the data set is divided into training
set and testing set. The training set is used for learning
parameters, and the testing set is for performance evaluation.
The performance of our proposed method is reported in Section
The Performance of Proposed Method. The performance of
our method compared with other feature selection methods is
described in Section The Comparison of Performance Evaluation
on Feature Extraction Methods. We also compared random
forest with other classifiers, and the performance evaluation
comparison is shown in Section The Comparison of Performance
Evaluation on Other Classifiers.

The Performance of Proposed Method
The experimental results of our proposed method are
reported in Table 1. Table 1 shows that the accuracy of our
proposed method is 0.855, which means that the proposed
method can classified the 85.5% samples correctly in the
benchmark data set. Sp(specificity) describes the performance
for identifying AD samples. 85.5% AD samples of all the
positive samples in the data set will be recognized in the
experiment. Moreover, 85.5% non-AD samples of the negative
samples can be classified correctly by the proposed method.
The experimental results demonstrated that the method
is practical.

The Comparison of Performance
Evaluation on Feature Extraction Methods
For the purpose of showing the effective performance of our
proposed method, the feature select method of our proposed
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method is compared with information theory. Information
theory is a feature selection method representing.

The comparison results are shown in Table 2. The metrics
of accuracy, sp and sn of k-skip-n-gram method performs
are better than that of information theory. The accuracy
of the proposed method (k-skip-n-gram-RF) is better
than that of information theory based random forest. The
accuracy of information theory method is 0.715, while
the accuracy of k-skip-n-gram is 0.855. For the problem
of Alzheimer’s disease protein prediction, k-skip-n-gram
performs better than information theory when random forest
is used.

The Comparison of Performance
Evaluation on Other Classifiers
To demonstrate the performance of our classifier, the
classification methods are compared with other classification
method, such as naive bayes (Peter Norvig, 1995), LibD3C
(Lin et al., 2014), Adaboost (Rojas, 2009), and bagging. The
mentioned methods are shown as followings.

Naive bayes is probability method. The sample is labeled by
the class with the maximum probability.

LibD3C is an ensemble based method. k-means is integrated
into the method for classifier selection.

Adaboost and bagging are ensemble classification algorithms.
The difference between then is the building strategy of sample set.
Bagging reuses the samples during classification. In Adaboost, the
samples classified to the wrong class, the weight will be increased.
The samples which are classified into the correct class, the weight
will be decreased.

The comparison of our proposedmethod with other classifiers
on Sn, Sp and accuracy is shown in Figure 3. Random forest
performs better than other classifiers on Sn, Sp and Acc. Random
forest is an ensemble classifier with competitive performance.
The accuracy of naïve bayes and is 0.801 and 0.812. The accuracy
of bagging and LibD3C is 0.83 and 0.837. When the features of
proteins are extracted by k-skip-n-gram method, the accuracy of
random forest is 0.855, which is better than that of othermethods.
As the results shown, LibD3C preforms better than naïve bayes,
Adaboost and bagging.

The feature selection method and classifiers are compared.
The k-skip-n-gram method can represent more accurately than
information theory. Random forest performs better than other
classifiers. Thus, the experimental results demonstrate that our
proposed method can provide competitive results.

CONCLUSIONS

In this paper, we study the problem of Alzheimer’s disease
prediction by using gene coding information. MRI data are
usually used to identifying Alzheimer’s disease, but the data
are complex and with expensive cost. Different from previous
work, the information is extracted from the protein peptides
by k-skip-n-gram model for Alzheimer’s disease prediction.
Finally, random forest is used to classify Alzheimer’s disease
(AD) samples and non-AD samples. The accuracy of our
proposed method is 85.5%, which means that it is meaningful
for Alzheimer’s disease detection with low cost. In the
literature, most work have provided web server for protein
classification, and we will develop our web server for Alzheimer’s
disease proteins classification. Moreover, to further improve
the prediction performance, there are still many aspects can
be explored. For example, other effective machine learning
algorithms, such as ensemble learning algorithms and deep
learning algorithms, have recently showed they can achieve
better performance than traditional algorithms (Mrozek et al.,
2009a; Wei et al., 2017b, 2018a; Wang et al., 2018). On the
other hand, feature representation learning has demonstrated
that it can exploit more informative features and improve the
performance in multiple bioinformatics problems (Mrozek et al.,
2009b; Momot et al., 2010; Liu et al., 2015;Wei et al., 2018b, 2019;
Tang et al., 2019).
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