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I. INTRODUCTION 

Negative group delay (NGD) was initially presented by Bril-

louin [1] in the 1960s, and it has been studied actively since the 

research on superluminal effects was published in [2]. The NGD 

characteristics have been demonstrated in various systems. In the 

microwave area, NGD circuits are used to compensate for group 

delays usually caused by the use of filters or amplifiers [3, 4]. 

Many studies have been conducted to utilize the NGD phenom-

enon by employing various structures, such as a defected mi-

crostrip structure and a defected ground structure [5]. In [6], the 

familiarity between a non-Foster reactive property and NGD 

networks with loss compensation was discussed theoretically and 

experimentally. A loss-compensated NGD network composed of 

cascading two unit cells and amplifiers was also presented for 

larger NGD effects. Some design equations were proposed 

through an S-parameter analysis [6–9], a lossy coupling matrix 

synthesis [10], and a filter analysis [11]. The design equations for 

negative group delay circuit (NGDC) using lumped RLC reso-

nators are also available based on the specification of the signal 

attenuation and NGD [12, 13]. In this study, we derive the 

mathematical relations among signal attenuation, NGD, and 

bandwidth for a convenient and systematic design of the NGDC 

composed of RLC resonators. The effects of the NGDC are 

evaluated in the time and frequency domains using narrow- and 

wide-band pulse inputs. To verify the proposed design equations, 

we fabricate an NGDC composed of lumped elements at 1 GHz. 

The group delays of the fabricated NGDC are measured and 

compared with those obtained from the presented design equa-

tions. 
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II. ANALYSIS AND SYNTHESIS OF A GROUP  

DELAY CIRCUIT 

1. Analysis 

Fig. 1(a) shows an equivalent circuit consisting of a parallel res-

onant circuit connected in a series with a transmission line. 𝑍଴ 

is the characteristic impedance of the host transmission line. Fig. 

1(b) shows an equivalent circuit consisting of a series resonant 

circuit connected in parallel with a transmission line. 𝑌଴ is the 

characteristic admittance. Most passive NGD structures can be 

modeled on the basis of these equivalent circuits in Fig. 1(a) and 

(b).  

In Fig. 1(a), the admittance of 𝑌ேீ஽ of the parallel resonant 

circuit can be expressed as 
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where 𝐺଴  is the conductance, 𝜔  is the angular frequency, 

𝜔଴ is the resonant angular frequency given by 1/ඥ𝐶଴𝐿଴, and 

ඥ𝐶଴/𝐿଴ (or 𝜔଴𝐶଴) is the susceptance slope parameter. The last 

expression in (1) is an approximation based on the assumption 

that 𝜔 is near 𝜔଴. 

The impedance 𝑍ேீ஽ can be approximated as 
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Then, the input impedance Zin is the sum of 𝑍ேீ஽ and Z0. 

The reflection coefficient S11 is obtained as 
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When 𝜔 ൌ 𝜔଴, S11 (3) is simplified to 
 

 

   
  (a)                          (b) 

Fig. 1. (a) Equivalent circuit for the NGD structure made of a parallel 

GCL resonator connected in a series with a transmission line. (b) 

Equivalent circuit for the NGD structure made of a series RLC 

resonator connected in parallel with the transmission line. 
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The transmission coefficient (S21) of the NGDC unit cell can 

be obtained by the ratio of the transmitted voltage (𝑉ଶ
ି) and input 

voltage (𝑉ଵ
ା) given by 
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The real and imaginary parts of S21 are represented by 
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and 
 

21

0 0 0
2

0 0

2 [2 ( )]
Im[ ]

(1 2 )

Z C
S

Z G

 


 ,
            (7) 

 

respectively. 

S21 (5) at 𝜔0 is simplified to 
 

21

0 0
0

0 0

2
( ) ,

1 2

Z G
S

Z G
 


                

(8)
 

 

which is purely real and positive. That is, the transmission at 𝜔଴ 

across the NGDC in Fig. 1(a) occurs without a phase delay. The 

phase for the NGDC is obtained as 
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Then, the group delay (𝜏) [8] can be shown to be given by 
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which is negative, and its magnitude is observed to become max-

imum at the resonant angular frequency 𝜔଴ and zero when 𝜔 

is far away from 𝜔଴. The group delay is another word for a signal 

envelope delay [14]. The frequency dependence in (10) prevents 

a pulse input from being entirely copied in advance of the input 

at the output terminal. The maximum NGD is expressed as 
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As 𝐺଴  becomes smaller, the signal transmission becomes 

smaller, as implied by (8), but the effect of the NGD becomes 

larger, as shown by (11). The magnitude of the NGD is shown 

to be proportional to 𝐶଴ as is the susceptance slope 𝜔଴𝐶଴. 

Fig. 2 shows the magnitudes and phases of 𝑆ଶଵ when 𝜏ሺ𝜔଴ሻ 

(11) is assumed to be −0.5, −1, and −5 ns and 𝑆ଶଵሺ𝜔଴ሻ ൌ 0.5 at 
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1 GHz. In the case of 𝜏ሺ𝜔଴ሻ = −1 ns, Z0 = 50 Ω, G0 = 1/100 

(1/Ω), C0 = 10 pF, and L0 = 2.53 nH. As the magnitude of 

𝜏ሺ𝜔଴ሻ  becomes larger, the bandwidth of the NGD becomes 

smaller. This will result in more signal distortion if an input signal 

bandwidth is wider than the NGDC bandwidth. The positive 

phase slopes near 1 GHz shown in Fig. 2(b) lead to NGD s, as 

explained in (10). 

So far, we have analyzed the NGD equivalent circuit given in 

Fig. 1(a) in terms of the signal transmission 𝑆ଶଵ and NGD 𝜏. 

 

2. Synthesis 

On the contrary, if specific values of 𝑆ଶଵሺ𝜔଴ሻ and 𝜏ሺ𝜔଴ሻ are 

desired for a particular NGD circuit design, (8) and (11) can be 

simultaneously solved for the design equations given by 
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(a) 

 

 
(b) 

Fig. 2. (a) Magnitudes of 𝑆ଶଵ. (b) Phases of 𝑆ଶଵ for different group de-

lays when 𝑆ଶଵሺ𝜔଴ሻ is fixed at 0.5 at 1 GHz. 

and 𝐿଴ is obtained with 
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Fig. 3 shows the capacitance values of the NGD circuit for dif-

ferent 𝑆ଶଵሺ𝜔଴ሻ  and 𝜏ሺ𝜔଴ሻ  at 1 GHz using (13). Whereas 

𝐺଴ (12) depends only on 𝑆ଶଵሺ𝜔଴ሻ , 𝐶଴  and 𝐿଴  depend on 

both 𝑆ଶଵሺ𝜔଴ሻ and 𝜏ሺ𝜔଴ሻ. Expressions (12)–(14) are actually 

the design equations to realize the specifically required values of 

𝑆ଶଵሺ𝜔଴ሻ and 𝜏ሺ𝜔଴ሻ. With (12) and (13), the quality factor of 

the NGD circuit may be expressed as 
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Moreover, the 3 dB fractional bandwidth (BW) is roughly 

given by 
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The bandwidth (16) becomes large as 𝑆ଶଵሺ𝜔଴ሻ  (8) or  

𝜏ሺ𝜔଴ሻ (11) becomes small. Note that if the two among the three 

design parameters 𝑆ଶଵሺ𝜔଴ሻ  (8), 𝜏ሺ𝜔଴ሻ  (11), and bandwidth 

(16) are specified, the rest is determined automatically. This re-

lation is summarized in Table 1. 

 

 
Fig. 3. Capacitance values for different 𝑆ଶଵሺ𝜔଴ሻ and 𝜏ሺ𝜔଴ሻ. 

 
Table 1. Relation among design parameters 𝑆ଶଵሺ𝜔଴ሻ, 𝜏ሺ𝜔଴ሻ, and BW 
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Fig. 4(a) shows the group delay 𝜏ሺ𝜔ሻ (10) as a function of 
frequency for different 𝑆ଶଵሺ𝜔଴ሻ’s of −6, −10, and −20 dB when 

𝜏ሺ𝜔଴ሻ is −1 ns at 1 GHz. As 𝑆ଶଵሺ𝜔଴ሻ becomes smaller, the 

bandwidth of 𝜏ሺ𝜔ሻ becomes larger; this is the important trade-

off feature of the presented NGDC. Fig. 4(b) shows 𝑆ଶଵሺ𝜔ሻ as 

a function of frequency for the different 𝑆ଶଵሺ𝜔଴ሻ’s of −10, −20, 

−30, and −40 dB when 𝜏ሺ𝜔଴ሻ  is fixed at −1 ns at 1 GHz.    
The symbols represent the calculated results using (5), and the 

lines represent the circuit-simulated results based on Fig. 1(a).   

 

 
(a) 

 

 
 (b) 

Fig. 4. (a) Group delay 𝜏ሺ𝜔ሻ as a function of frequency for the different 

𝑆ଶଵሺ𝜔଴ሻ’s of −6, −10, and −20 dB. (b) 𝑆ଶଵሺ𝜔ሻ as a function of 

frequency for the different 𝑆ଶଵሺ𝜔଴ሻ’s of −10, −20, −30, and −40 

dB when 𝜏ሺ𝜔଴ሻ = −1 ns at 1 GHz (symbols using (5), lines cir-

cuit simulations). 

 

Table 2. Q-factors and bandwidth for the different 𝑆ଶଵሺ𝜔଴ሻ’s of −10, 

−20, −30, and −40 dB when 𝜏ሺ𝜔଴ሻ ൌ  െ1 ns at 1 GHz 

 
𝑆ଶଵ (dB) 

−10 −20 −30 −40

Q-factor 4.595 3.491 3.244 3.173

BW (GHz) (16) 0.218 0.286 0.308 0.315

BW (GHz) (circuit) 0.24 0.29 0.325 0.325

In Table 2, we show the Q factors and compare the band-

widths based on (16) and circuit simulations. The results in Fig. 

4(b) and Table 2 prove the theory to be accurate enough when 

𝜔 is near 𝜔଴. 

In Fig. 5, we show the 3 dB fractional bandwidth (16) of the 

NGDC as a function of 𝑆ଶଵሺ𝜔଴ሻ and 𝜏ሺ𝜔଴ሻ. The bandwidth 

increases as 𝑆ଶଵሺ𝜔଴ሻ decreases and |𝜏ሺ𝜔଴ሻ| gets smaller. 

Table 3 shows the circuit element values of the NGDC ob-

tained using the design Eqs. (12)–(14) assuming that 𝑆ଶଵሺ𝜔଴ሻ 

= 1/2, 1/√10, and 1/10 and 𝜏ሺ𝜔଴ሻ = −0.5, −1, and −2 ns at 1 

GHz. Based on these circuit values, the NGD circuits as shown 

in Fig. 1(a) can be easily realized. 

Fig. 6 shows the diagram of the NGDC combined with an 

amplifier. The attenuated signal through the NGDC is shown to 

be properly amplified using the amplifier. The output signal may 

be somewhat distorted because the bandwidth of the NGDC is 

usually smaller than the bandwidth of the input signal. 

Fig. 7 shows the envelopes and spectra of the input and output 

signals. The rising/falling time and the width of the input pulse 

are 3 ns and 1 ns, respectively. The 1 GHz carrier signal is shown 

only in Fig. 7(a) and is hidden in Fig. 7(b). The output with the 

NGDC is shown to have some NGD features with an attenua-

tion of about 1/10. The effect of NGD is more pronounced after 

amplification 10 times. The spectrum of the output has more 

high-frequency components than that of the input, consistent 

with the time signals in Fig. 7(b). 

In Fig. 8(a), we show the envelopes of the input and output 
 

 
Fig. 5. The 3-dB bandwidth of NGDC as a function of 𝑆ଶଵሺ𝜔଴ሻ 

and 𝜏ሺ𝜔଴ሻ at 1 GHz. 

 

 
Fig. 6. Diagram of the NGDC combined with an amplifier (brief 

sketches of the input and output are shown). 
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Table 3. Calculated circuit values for specific examples 

Desired  Solutions for NGD circuit

|𝑆ଶଵሺ𝜔଴ሻ| 
𝜏ሺ𝜔଴ሻ 
(ns) 

 R0 (Ω) 

(= 1/G0) 

C0  

(pF) 

L0 

(nH)

1/2 −0.5  100 5 5.07

−1  10 2.53

−2  20 1.27

1/√10 −0.5  216.23 1.69 14.98

−1  3.38 7.49

−2  6.76 3.75

1/10 −0.5  900 0.31 82.07

−1  0.62 41.04

−2  1.23 20.52

 

signals with 𝜏ሺ𝜔଴ሻ  = −1 ns and −2 ns, respectively. The ris-

ing/falling time and the width of the input pulse are 3 ns and 3 

ns, respectively. The carrier frequency is again 1 GHz but not 

shown. As the magnitude of 𝜏ሺ𝜔଴ሻ increases, the output ap-

pears more ahead of the input pulse, but its distortion compared 

with the input pulse becomes larger. In Fig. 8(b), we show the 

same when 𝜏ሺ𝜔଴ሻ = −1, −2, and −5 ns. For this case, the ris-

ing/falling time and the width of the input pulse are 6 ns and 6 

ns, respectively. The input pulse in Fig. 8(b) is slowly varying, and 

its spectrum should be narrower than that in Fig. 8(a). This leads 

to less distortion as demonstrated particularly in the case of 

𝜏ሺ𝜔଴ሻ = −2 ns. 

Fig. 9(a) shows the structure of the proposed NGDC com-

posed of lumped RLC elements based on the required 𝑆ଶଵሺ𝜔଴ሻ 

= –20 dB and 𝜏ሺ𝜔଴ሻ = −1 ns at 1 GHz. Fig. 1(b) is the photo-

graph of the measurement setup. The permittivity of the mi-

crostrip transmission line with a thickness of 1.6 mm and the 

lumped element values are 𝜀௥  = 2.2, R0  = 900 Ω, C0 = 0.62 pF, 

and L0 = 41 nH using (12)–(14). The S-parameters of the struc-

ture are measured using a network analyzer. The influence of the 

transmission line is de-embedded on the reference plane at the 

center of the structure. 

Table 4 presents the circuit element values calculated using 

Eqs. (12)–(14), tuned by electromagnetic (EM) simulations, and 

used for fabrication. The values tuned by the EM simulations are 

different from the theoretical ones. The actually used element 

values are the ones closest to the available ones. 

Fig. 10 shows the circuit-/EM-simulated and measured S-pa-

rameters and group delays as a function of frequency in the case 

shown in Fig. 9. They all show to be in good agreement. The 

output time signals to the input pulses are similar to the dotted 

ones with 𝜏ሺ𝜔଴ሻ = −1 ns in Fig. 8(a). 

In the case of using N unit cells in Fig. 1(a), (8) can be shown 

to be generalized to 
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(c) 

Fig. 7. (a) Modulated input signal and carrier as a function of time. The 

rising/falling time and the width of the input pulse are 3 ns and 

1 ns, respectively. The carrier frequency is 1 GHz. (b) Envelopes 

of the input and output as a function of time with the desired 

𝜏ሺ𝜔଴ሻ = −1 ns and 𝑆ଶଵሺ𝜔଴ሻ = –20 dB. (c) Spectra of the input 

and output as a function of frequency. 

 

and (11) to 
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As the number N of the identical unit cells increases, the signal 

transmission (17) decreases but the NGD (18) does not change  
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(a) 

 

 

 
(b) 

Fig. 8. (a) Circuit-simulated envelopes of the input and output sig-

nals as a function of time with the desired 𝑆ଶଵሺ𝜔଴ሻ =     –20 

dB for different 𝜏ሺ𝜔଴ሻ = −1 ns and −2 ns. Th e rising/falling 

time and the width of the input pulse are 3 ns and 3 ns, re-

spectively. The hidden carrier frequency is 1 GHz. (b) En-

velopes of the input and output as a function of time with 

the desired 𝑆ଶଵሺ𝜔଴ሻ = –20 dB for different 𝜏ሺ𝜔଴ሻ = −1, −2, 

and −5 ns. Th e rising/falling time and the width of the input 

pulse are 6 ns and 6 ns, respectively. The hidden carrier fre-

quency is 1 GHz. 

 
Table 4. Lumped element values for the case in which 𝑆ଶଵሺ𝜔଴ሻ = 

−20 dB and 𝜏ሺ𝜔଴ሻ = –1 ns at 1 GHz 

 R (Ω) L (nH) C (pF)

Theory (12)−(14) 900 41 0.62

Tuned by EM 900 37 0.55

Used for fabrication 900 33 0.5

 
much. 

In the case of the NGDC in Fig. 1(b), the analysis and design 

equations are obtained by simply converting Z0, G0, C0, L0, and 

Zin in this study to Y0, R0, L0, C0, and Yin using the duality princi-

ple. The presented design method is applicable to other previous 

passive NGD circuits, not just the one demonstrated in this  

study. 
 

 
(a) 

 

 
(b) 

Fig. 9. (a) Fabricated NGDC composed of lumped RLC elements 

based on the required 𝑆ଶଵሺ𝜔଴ሻ = –20 dB and 𝜏ሺ𝜔଴ሻ = −1 ns 

at 1 GHz (𝜀௥  = 2.2, thickness = 1.6 mm, R0 = 900 Ω, C0 = 

0.5 pF, and L0 = 33 nH). (b) Photograph of the measurement 

setup. 
 

 
(a) 

 

 
(b) 

Fig. 10. Circuit-/EM-simulated and measured results of the NGD 

circuit when 𝑆ଶଵሺ𝜔଴ሻ = −20 dB and 𝜏ሺ𝜔଴ሻ = −1 ns at 1 

GHz. (a) S-parameters 𝑆ሺ𝜔ሻ. (b) Group delay 𝜏ሺ𝜔ሻ. 
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III. CONCLUSION 

Then characteristics of NGD circuits are systematically char-

acterized using  𝑆ଶଵሺ𝜔଴ሻ, 𝜏ሺ𝜔଴ሻ, and bandwidth. Some de-

sign examples are provided and analyzed in the time and fre-

quency domains. The relations among 𝑆ଶଵሺ𝜔଴ሻ, 𝜏ሺ𝜔଴ሻ, and 

the group delay bandwidth are explained using closed-form ex-

pressions. The circuit-/EM-simulated and the measured S-pa-

rameters and group delays are all shown to be in good agreement. 

The presented NGDC design methods may be useful for many 

applications, such as filters, feed-forward amplifiers, array anten-

nas, and non-Foster reactive elements, among others. 
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