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Purpose: Advanced analysis methods for multi-voxel magnetic resonance spectroscopy
(MRS) are crucial for neurotransmitter quantification, especially for neurotransmitters
showing different distributions across tissue types. So far, only a handful of studies
have used region of interest (ROI)-based labeling approaches for multi-voxel MRS data.
Hence, this study aims to provide an automated ROI-based labeling tool for 3D-multi-
voxel MRS data.

Methods: MRS data, for automated ROI-based labeling, was acquired in two different
spatial resolutions using a spiral-encoded, LASER-localized 3D-MRS imaging sequence
with and without MEGA-editing. To calculate the mean metabolite distribution within
selected ROIs, masks of individual brain regions were extracted from structural
T1-weighted images using FreeSurfer. For reliability testing of automated labeling a
comparison to manual labeling and single voxel selection approaches was performed
for six different subcortical regions.

Results: Automated ROI-based labeling showed high consistency [intra-class correlation
coefficient (ICC) > 0.8] for all regions compared to manual labeling. Higher variation was
shown when selected voxels, chosen from a multi-voxel grid, uncorrected for voxel
composition, were compared to labeling methods using spatial averaging based on
anatomical features within gray matter (GM) volumes.

Conclusion: We provide an automated ROI-based analysis approach for various types
of 3D-multi-voxel MRS data, which dramatically reduces hands-on time compared to
manual labeling without any possible inter-rater bias.

Keywords: MRS, GABA, glutamate, automated labeling, multi-voxel, FreeSurfer

Abbreviations: CRLB, Cramér-Rao lower bounds; CSF, cerebrospinal fluid; FOV, field of view; GABA, gamma-Aminobutyric
acid; Gln, glutamine; Glu, glutamate; Glx, combination of glutamate and glutamine; GM, gray matter; ICC, intra-class
correlation coefficient; MPRAGE, magnetization-prepared rapid gradient-echo sequence; MRS, magnetic resonance
spectroscopy; ROI, region of interest; RPC, reproducibility coefficient; tCr, total creatine; SNR, signal-to-noise ratio;
tNAA, total N-acetylaspartate; VOI, volume of interest; WM, white matter.
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INTRODUCTION

Magnetic resonance spectroscopy (MRS) enables the
quantification of neurotransmitters and several other metabolites
in the human brain. Especially glutamate (Glu) and gamma-
aminobutyric acid (GABA), which are the main excitatory and
inhibitory neurotransmitters within the central nervous system,
respectively, have been the focus of neurological (Agarwal and
Renshaw, 2012) and psychiatric research (Sanacora et al., 2004;
Ramadan et al., 2013; Poels et al., 2014). Both neurotransmitters
appear in relatively low concentrations of 5–15 mM for Glu
and 1–2 mM for GABA in the human brain (De Graaf, 2007;
Haga et al., 2009). Hence, an adequate analysis method is
essential for the detection of possible changes. Large voxels,
used both in single voxel and multi-voxel MRS, inevitably
contain different tissue types, including gray matter (GM), white
matter (WM) or cerebrospinal fluid (CSF). Moreover, different
tissue types contain varying concentrations of metabolites,
which has been reported for GM and WM (Jensen et al.,
2005; Bhattacharyya et al., 2011; Zhu et al., 2011; Harris
et al., 2015). Furthermore, aberrant neurotransmitter levels
within one region, or spatial differences across various regions
can have a substantial impact on quantification methods
(Gasparovic et al., 2006; Bhattacharyya et al., 2011; Geramita
et al., 2011; Gussew et al., 2012). Hence, an adequate analysis
approach is crucial for metabolites of high spatial or tissue
specific variability.

Up to now most studies used single-voxel approaches with
relatively big voxel sizes ranging from 1 to 8 cm3 for glutamate
and 8–27 cm3 for GABA quantification to maximize the signal-
to-noise ratio (SNR) in reasonable scan times. Different analysis
approaches for single-voxel MRS have been developed thus far.
On a basic level MRS data is corrected for the fraction of
either solely the CSF (Foerster et al., 2013) or GM (Stagg et al.,
2009) in a voxel, which reduces inter-subject variability. Voxel
tissue compositions are usually determined by segmentation
of additionally acquired T1-weighted images using statistical
parametric mapping (Ashburner and Friston, 2005) or FMRIB
software library (Zhang et al., 2001). In more advanced analysis
approaches, composition parameters of GM, WM, or CSF,
based on different relaxation times or visibility of water, can be
included in a final correction model (Harris et al., 2015; Long
et al., 2015; Mikkelsen et al., 2016; Porges et al., 2017).

During the last years an increasing trend towards multi-
voxel MRS sequences, both 2D and 3D, has developed to cover
larger parts of the brain. This makes more sophisticated data
analysis approaches necessary. One simple way of dealing with
multi-voxel data is to select single voxels from a multi-voxel
grid (Lai et al., 2018). In other approaches, similar to single-
voxel data, the volume of interest (VOI) is segmented into
GM, WM and CSF and proportions are used as covariates
in a final model (Bradley et al., 2016). Depending on the
favored metabolites to be analyzed and the field strengths of the
scanner voxel sizes can differ tremendously between acquisition
methods to obtain a sufficient SNR. While there are approaches
to measure small voxels with low SNR, that are clustered for
the analysis, others rely on bigger voxels with sufficient SNR,

within each voxel, which can either be moved in the grid
during the postprocessing (i.e., voxel shifting) to cover regions
of interest (ROIs) or using interpolation methods to refine the
acquired grid.

Whenever it comes to the definition of ROIs for data
analysis, one has to be careful to consider their size and
position in the VOI. Several studies use interpolation and
manual delineation methods to localize ROIs in multi-voxel
data (Mathew et al., 2009; Shungu et al., 2012; Bradley et al.,
2016). However, manual masking methods can easily be impaired
by systematic errors and suffer from potential inter-rater
variability. A first automated ROI-based approach using the
metabolite imaging and data analysis system (MIDAS) software
and the automated anatomical labeling atlas in the Montreal
neurological institute space (Maudsley et al., 2006, 2009; Sabati
et al., 2015) was recently developed. However, this approach
requires spectral data derived from a specific EPSI sequence
to match input criteria, which is not applicable for other MRS
sequences and results in difficulties regarding low resolution
MRS data.

Hence, this work aims to introduce an automated ROI-based
labeling method for multi-voxel MRS data using FreeSurfer.
FreeSurfer is a well-established segmentation software allowing
for both cortical and subcortical segmentation in the individual
space (Fischl et al., 2002; Desikan et al., 2006; Destrieux et al.,
2010). FreeSurfer has shown solid results both in healthy as
well as atrophic subjects for segmentation purposes (Liem et al.,
2015) or cortical thickness evaluations (Seiger et al., 2018). The
provided method, which is applicable for different kinds of multi-
voxel MRS data sets, aims to reduce inter-rater variability and
hands-on time for manual labeling approaches. To investigate
the reliability of the proposed labeling method, a comparison
with manual labeling and selected voxels of the multi-voxel grid
was conducted.

MATERIALS AND METHODS

Magnetic Resonance Imaging
MRS measurements were performed on a 3 Tesla MR Scanner
(MAGNETOM Prisma, Siemens Medical, Erlangen, Germany)
using a 64-channel head coil at the Medical University
of Vienna. This study was approved by the ethical committee
of the Medical University of Vienna. Participants gave written
consent to participate in this study.

Structural Images
For accurate placement of the VOI and further automated
segmentation, 3D T1-weighted anatomical reference images
were acquired via a magnetization-prepared rapid gradient-echo
(MPRAGE) sequence (TR = 1,800 ms, TE = 2.37 ms, 208 slices,
288 × 288 matrix size, slice thickness = 0.85 mm, voxel
size = 1.15× 1.15× 0.85 mm3, flip angle = 8◦, anterior-posterior
phase encoding) with a total scan time of 3:39 min.

Magnetic Resonance Spectroscopy
Low-Resolution GABA-Edited MRS
For spectroscopic measurements, a constant-density, spiral-
encoded, 3D-MRS imaging sequence with MEGA-LASER
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FIGURE 1 | Illustration of automated region of interest (ROI)-specific magnetic resonance spectroscopy (MRS) analysis: structural T1-weighted MR images (A) are
automatically segmented in cortical and subcortical areas using FreeSurfer (B). Masks of individual ROIs are extracted (C). Multi-voxel MRS data is resampled to the
resolution of the MR images (D,E) and coregistered with individual masks (F), resulting in distributions within single ROIs (G).

editing, as described in Bogner et al. (2014a) was used. Real-time
correction for rigid motion bias (i.e., translations and rotations)
and correction of center frequency changes was applied (Bogner
et al., 2014a,b). All MRS slices were placed parallel to the anterior
commissure–posterior commissure line. VOI was centered to the
medial to posterior part of the corpus callosum and to cover the
hippocampus bilaterally, with VOI = 80 (l-r) × 90 (a-p) × 80

(s-i) mm3 and field of view (FOV) = 160 × 160 × 160 mm3.
The acquired matrix size of 10 × 10 × 10 (i.e., ∼4 cm3

nominal voxel size) was interpolated to a 16 × 16 × 16 matrix
(i.e., ∼1 cm3 nominal voxel size) during spectral processing
steps. Gradient-echo imaging based shimming with subsequent
manual optimization was performed. During the EDIT-ON
acquisition, the MEGA-editing pulses (60 Hz Gaussian pulses

FIGURE 2 | Exemplary in vivo proton MR spectra obtained with the gamma-aminobutyric acid (GABA)-editing MEGA-LASER 3D MRSI sequence from selected
voxels of each ROI. The LCModel fit of metabolites in the EDIT-OFF and DIFF (difference spectrum; subtraction of EDIT-ON and EDIT-OFF) spectrum is shown,
respectively.
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of 14.8 ms duration) were set to 1.9 ppm, editing the coupled
4CH2 triplet of GABA resonating at 3.02 ppm (Andronesi
et al., 2010; Mullins et al., 2014). VOI selection via LASER and
low-power and wide-bandwidth GOIA pulses enabled MEGA
editing with an echo time of 68 ms (Bogner et al., 2014a).
For real-time correction, volumetric, dual-contrast, echo planar
imaging based navigators that update center frequency and head
position changes for each pair of EDIT-ON/OFF acquisitions
were used (i.e., with a repetition time of 1.6 s, an update occurs
every 3.2 s). For 3D-MRSI, 32 acquisition weighted averages
and two-step phase cycling were employed, in a total scan
time of 15:09 min.

High-Resolution Non-edited MRS
Additionally, a short echo time version of the described sequence
without spectral editing was used to validate the provided
labeling method in MRSI data with higher resolution. Due
to insufficient SNR of GABA+ and Glx in reasonable scan
times in small voxel sizes a non-edited version of the described
sequence was used. The VOI was centered to cover the
putamen and pallidum bilaterally, with VOI = 80 (l-r) × 90
(a-p) × 80 (s-i) mm3, FOV = 160 × 160 × 160 mm3 and
an acquired matrix size of 23 × 23 × 12 (i.e., ∼0.65 cm3

voxel size). To maximize SNR for derived metabolites a
TE of 30 ms was used. Shimming procedure and real-time
motion correction were conducted as described above. For
high-resolution MRSI, 12 acquisition weighted averages and
two-step phase cycling were employed, in a total scan
time of 17:49 min.

MRS Data Analysis
All spectra within the VOI were processed automatically with
an in-house-developed software tool using MATLAB (R2013a,
MathWorks, Natick, MA, USA), Bash (version 4.2.25, Free
Software Foundation, Boston, MA, USA) and MINC (MINC
Tools, Version 2.0; McConnell Brain Imaging Center, Montreal,
QC, Canada), which features a graphical user interface for
automatic data processing and employs LCModel software
(Version 6.3–1, S. Provencher, LCModel, Oakville, ON,
Canada). Three different simulated basis sets were created
using GAMMA, one for the EDIT-OFF (containing 21 brain
metabolites), one for the difference spectrum [containing
GABA+, a combination of glutamate and glutamine (Glx), and
total N-acetylaspartate (tNAA)] and one for the non-edited
spectra derived from the high-resolution MRS [containing
tNAA and total creatine (tCr); (Hnilicová et al., 2016)].
Cramér–Rao lower bounds (CRLB) thresholds were set at
30%. GABA+ and Glx ratios relative to tNAA (GABA+/tNAA
and Glx/tNAA) were calculated and tNAA ratios, derived
from the high-resolution MRSI were calculated relative
to tCr (tNAA/tCr).

Automated Segmentation and ROI-Based
Analysis of Spectral Data
3D-T1-weighted structural images of each individual scan were
automatically segmented using FreeSurfer 6.0 in cortical and
subcortical regions (Fischl et al., 1999, 2002; Desikan et al., 2006;
Destrieux et al., 2010). In-house MATLAB codes were used for

TABLE 1 | Metabolite ratio mean, standard deviation (Stdev) and cramér-Rao lower bounds (CRLBs) values for each region and labeling method.

ROI Automated labeling Rater 1 Rater 2 Voxel

Hippocampus Left Mean ± Stdev GABA+/tNAA 0.15 ± 0.01 0.15 ± 0.01 0.15 ± 0.01 0.15 ± 0.03
CRLB GABA+ 15.04 15.18 15.19 15.81
Mean ± Stdev Glx/tNAA 0.96 ± 0.11 0.96 ± 0.11 0.95 ± 0.10 1.13 ± 0.32
CRLB Glx 7.66 7.48 7.37 7.37

Hippocampus Right Mean ± Stdev GABA+/tNAA 0.16 ± 0.02 0.16 ± 0.02 0.16 ± 0.02 0.15 ± 0.05
CRLB GABA+ 15.27 15.08 15.15 18.02
Mean ± Stdev Glx/tNAA 0.93 ± 0.11 0.94 ± 0.13 0.93 ± 0.12 1.08 ± 0.23
CRLB Glx 8.62 8.47 8.44 9.06

Putamen Left Mean ± Stdev GABA+/tNAA 0.17 ± 0.02 0.17 ± 0.02 0.17 ± 0.02 0.18 ± 0.03
CRLB GABA+ 12.45 12.39 12.49 11.58
Mean ± Stdev Glx/tNAA 1.01 ± 0.09 1.03 ± 0.10 1.02 ± 0.10 1.11 ± 0.18
CRLB Glx 7.30 7.36 7.46 6.03
Mean ± Stdev tNAA/tCr 1.28 ± 0.11 1.25 ± 0.12 1.23 ± 0.11 1.42 ± 0.53

Putamen Right Mean ± Stdev GABA+/tNAA 0.17 ± 0.02 0.17 ± 0.02 0.17 ± 0.02 0.15 ± 0.06
CRLB GABA+ 13.53 13.93 13.84 17.82
Mean ± Stdev Glx/tNAA 0.99 ± 0.14 1.00 ± 0.15 0.99 ± 0.13 1.03 ± 0.53
CRLB Glx 9.62 9.88 10.05 11.67
Mean ± Stdev tNAA/tCr 1.27 ± 0.25 1.23 ± 0.28 1.22 ± 0.28 1.18 ± 0.39

Pallidum Left Mean ± Stdev GABA+/tNAA 0.18 ± 0.02 0.18 ± 0.02 0.18 ± 0.02 0.18 ± 0.03
CRLB GABA+ 11.78 11.64 11.95 11.46
Mean ± Stdev Glx/tNAA 0.93 ± 0.08 0.93 ± 0.09 0.91 ± 0.09 0.92 ± 0.17
CRLB Glx 7.61 7.84 8.73 7.91
Mean ± Stdev tNAA/tCr 1.23 ± 0.19 1.26 ± 0.10 1.27 ± 0.10 1.35 ± 0.21

Pallidum Right Mean ± Stdev GABA+/tNAA 0.17 ± 0.02 0.17 ± 0.02 0.17 ± 0.02 0.18 ± 0.05
CRLB GABA+ 14.07 14.50 14.26 13.89
Mean ± Stdev Glx/tNAA 0.94 ± 0.12 0.98 ± 0.15 0.96 ± 0.12 1.00 ± 0.41
CRLB Glx 9.14 9.39 9.33 9.54
Mean ± Stdev tNAA/tCr 1.40 ± 0.15 1.38 ± 0.11 1.39 ± 0.15 1.64 ± 0.37
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FIGURE 3 | Bland-Altman plot with limits of agreement indicating 1.96∗SD (dotted lines) for mean GABA+/total N-acetylaspartate (tNAA) ratios within all regions
showing the agreement between two labeling methods for automated labeling vs. rater 1 (A), automated labeling vs. rater 2 (B), rater 1 vs. rater 2 (C) and
automated labeling vs. selected voxels (D). RPC, reproducibility coefficient and % of values; CV, coefficient of variation (SD of mean values in %).

mask extraction of individual ROIs. GABA+/tNAA, Glx/tNAA
and tNAA/tCr maps were interpolated to the resolution of the
MPRAGE images (288 × 288 × 208) using nearest-neighbor
interpolation and were overlaid with masks for each ROI (see
Figure 1). An internal threshold for each ROI of 100% valid
voxels per ROI for further quantification was set. ROIs which did
not match quality criteria were excluded from further analysis.
Mean GABA+/tNAA, Glx/tNAA, tNAA/tCr ratios and CRLB
values were derived for individual ROIs.

Comparison of Labeling Approaches
For purposes of quality control, mean GABA+/tNAA
and Glx/tNAA ratios from six regions (hippocampus, putamen
and pallidum bilaterally) were compared between the automated
labeling approach and manually drawn ROIs by two trained
neuroscientists (rater 1 and rater 2) using MINC. Therefore,
MRS data of 18 healthy subjects [10 female, mean age and

standard deviation (25 ± 3 years) with no history of psychiatric
disorders, neurodegenerative diseases or brain injuries] was
used. Apart from the mask extraction, the same procedure
as described for automated labeling was used in manual
labeling for quality control and calculation of GABA+/tNAA
and Glx/tNAA ratios. Moreover, a comparison between
automated labeling and single voxel selection from a multi-
voxel grid was performed. For this purpose, one selected
voxel, within each desired region was chosen manually by
one rater from the original grid (1 cm3 voxel size). Mean
GABA+/tNAA and Glx/tNAA ratios derived from each voxel
were compared to values derived from the automated labeling
approach. Exemplary MRS-spectra of selected voxels are
shown in Figure 2.

To validate automated labeling for different voxel sizes,
spectral maps of eight healthy subjects [four female, mean
age and standard deviation (23 ± 2 years)] were acquired
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FIGURE 4 | Bland-Altman plot with limits of agreement indicating 1.96∗SD (dotted lines) for mean Glx/tNAA ratios within all regions showing the agreement
between two labeling methods for automated labeling vs. rater 1 (A), automated labeling vs. rater 2 (B), rater 1 vs. rater 2 (C) and automated labeling vs. selected
voxels (D). RPC, reproducibility coefficient and % of values; CV, coefficient of variation (SD of mean values in %).

for four regions (putamen and pallidum bilaterally) using
non-edited high-resolution MRSI (0.65 cm3 voxel size). The
same labeling procedure as described above was conducted with
derived tNAA/tCr ratio maps.

Statistical Analysis
To detect possible differences between the analysis methods,
paired t-tests were performed using IBM SPSS Statistics (v25.0,
2010, SPSS, Inc., an IBM Company, Chicago, IL, USA). Overlay
indices for each ROI were calculated between masks derived
from automated labeling and each rater, as well as among both
raters, using Szymkiewicz–Simpson coefficient. For consistency
of mean ROI values of GABA+/tNAA, Glx/tNAA and tNAA/tCr
ratios between automated labeling, manual labeling and selected
voxels, intra-class correlation coefficients (ICC) were calculated
using a two-way mixed model with absolute agreement, where
values near 1 refer to absolute and 0 to no agreement between

two measures (Weir, 2005). Furthermore, Bland-Altman analysis
was conducted using MATLAB.

RESULTS

Szymkiewicz–Simpson coefficient revealed values >0.7 for each
ROI and labeling comparison.

Low-Resolution GABA-Edited MRS
Mean GABA+/tNAA and Glx/tNAA showed no significant
difference between automated/manual labeling and automated
labeling/selected voxels in any region (p > 0.2). Data distribution
and underlying CRLB values are displayed in Table 1. Bland-
Altman plots showed high consistency within automated and
manual labeling for each region [reproducibility coefficient
(RPC) ≤0.01, or ≤8% of values for GABA+/tNAA, and RPC
≤ 0.11 or ≤10% of values for Glx/tNAA ratios], and low
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FIGURE 5 | Graphical illustration of intra-class correlation coefficient (ICC) values for each region and metabolite ratio [ICC with upper and lower bound (error bars)]
between labeling methods for GABA+/tNAA (A), Glx/tNAA (B) and tNAA/tCr (C).

consistency between automated labeling and selected voxels
[GABA+/tNAA: RPC = 0.06 (40%); Glx/tNAA: RPC = 0.56
(41%); see Figures 3, 4].

ICC analysis revealed high consistency between automated
labeling and each rater for manual labeling (ICC > 0.9), with
highest deviation in the pallidum, see Figures 5A,B. ICC
comparison between selected voxels and automated labeling
showed lower consistency (ICC ranging from 0.35 to 0.83).

High-Resolution Non-edited MRS
Mean tNAA/tCr showed no significant difference between
automated/manual labeling and automated labeling/selected
voxels in any region (p > 0.1). Bland-Altman analysis showed
high consistency within automated and manual labeling for
each region (RPC ≤0.2 or ≤15%), and low consistency between
automated labeling and selected voxels [RPC = 0.73 (51%)].
ICC analysis revealed—similar to low-resolution data—a high

consistency between automated labeling and each rater for
manual labeling (ICC > 0.8), see Figure 5C. Poor consistency
could be shown when selected voxels were compared with
automated labeling (ICC ranging from 0.18 to 0.77).

DISCUSSION

This study aims to introduce an automated ROI-based labeling
for multi-voxel MRS data. Previous studies relied on manual
labeling approaches for ROIs or selected single voxels from
a grid within a selected a region. Our method provides an
unbiased approach for performing ROI-based analysis of multi-
voxel MRS data using spatial averaging based on anatomical
features. Furthermore, correction of underlying tissue types
is automatically applied, depending on the ROI. Profound
data analysis methods are of particularly high importance for
metabolites, which differ in concentration according to the
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underlying tissue type (Jensen et al., 2005; Bhattacharyya et al.,
2011; Harris et al., 2015). Regional metabolite ratios, calculated
by ROI-based labeling, showed similar distributions compared to
other studies (Bednařík et al., 2015). When analysis approaches
were compared, automated ROI-based labeling showed solid
results compared to manual ROI-based labeling and lower
consistency with selected voxels from a multi-voxel grid in both
low- and high-resolution MRS data (see Figure 5).

Metabolite ratios of selected voxels showed higher deviation
within the group for all tested regions and lower consistency
regarding clustering methods for ROI-based approaches. Smaller
voxel sizes showed even worse results, when selected voxels were
compared to automated or manual labeling. One can assume,
that these effects result from the fact that voxel composition
is neglected in selected voxels, whereas automated and manual
labeling allow for better selection of GM-rich regions (Lai et al.,
2018). Moreover, averaging across several voxels reduced error
rates. Furthermore, Bland-Altman plots revealed systematic
errors in extremes of the data distribution for selected voxels (see
Figures 3D, 4D). Hence, it is crucial to include voxel composition
(Porges et al., 2017) and neighboring voxels into the data analysis.

In the comparison of automated and manual labeling, similar
distributions could be shown across different regions. Lowest
variation was shown in the putamen, a visually definite region.
However, in regions that are less visually defined, e.g., the
pallidum, higher inter-rater variability could be detected. This in
turn shows the importance of automated, unbiased labeling for
MRS data.

The proposed automated analysis approach aims to be
applicable for a broad range of 3D multi-voxel MRS analyses,
independently of the acquisition method. However, the use is
limited by the applicability and accuracy of automated cortical
and subcortical segmentation of structural images. FreeSurfer has
shown solid results in a sample of elderly patients (Liem et al.,
2015) or when lesions are detected (Guo et al., 2018) which allows
the use of this method in a clinical setting.

Limitations
The signal contributions of adjacent voxels in a multi-voxel
grid are a challenge for data analysis of multi-voxel MRS
data. The signal derived from a selected region/voxel is always
contaminated (Bradley et al., 2016). However, normalization of
ROIs within subjects in a longitudinal study design helps to
keep partial volume effects on a constant level. Furthermore, one
has to consider that the proposed automated labeling approach
can be applied if either the originally derived multi-voxel grid
provides a sufficient resolution (Goryawala et al., 2016) or
whenever high SNR allows downsampling of bigger voxel sizes.
However, downsampling should be handled with caution since
insufficient SNR within a region will increase error rates.

Conclusion
This method provides a helpful tool for automated multi-
voxel data analysis for the assessment of one or multiple ROIs.
Especially, data analysis for longitudinal studies will benefit
from using this approach, since metabolite concentrations can
be derived in each region, regardless of exact voxel position
during data acquisition. This approach yields several advantages
compared to other analysis methods for multi-voxel MRS
data. Automated ROI-based labeling enables MRS data analysis
of desired regions applicable for a variety of different input
data, with tremendously reduced hands-on time compared to
automated labeling. Due to a masking method in the individual
space inherent to FreeSurfer, a correction for changes in GM
volume, e.g., due to atrophy in elderly patients, is applied.
Hence, as a result of downsampling or clustering of the MRS
data in desired regions, data can be disposed solely in gray or
WM areas. In turn, correction models for voxel composition
are not required (Porges et al., 2017). However, an automated
labeling approach is to favor over manual labeling in terms of
inter-rater bias. Especially regions that are challenging to draw
manually are expected to yield better results when drawn in an
automated manner.
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Bednařík, P., Moheet, A., Deelchand, D. K., Emir, U. E., Eberly, L. E.,
Bareš, M., et al. (2015). Feasibility and reproducibility of neurochemical profile
quantification in the human hippocampus at 3 T. NMR Biomed. 28, 685–693.
doi: 10.1002/nbm.3309

Bhattacharyya, P. K., Phillips, M. D., Stone, L. A., and Lowe, M. J. (2011).
In vivo magnetic resonance spectroscopy measurement of gray-matter
and white-matter γ-aminobutyric acid concentration in sensorimotor
cortex using a motion-controlled MEGA point-resolved spectroscopy
sequence. Magn. Reson. Imaging 29, 374–379. doi: 10.1016/j.mri.2010.
10.009

Bogner, W., Gagoski, B., Hess, A. T., Bhat, H., Tisdall, M. D., van der Kouwe, A. J.,
et al. (2014a). 3D GABA imaging with real-time motion correction, shim
update and reacquisition of adiabatic spiral MRSI. Neuroimage 103, 290–302.
doi: 10.1016/j.neuroimage.2014.09.032

Bogner, W., Hess, A. T., Gagoski, B., Tisdall, M. D., van der Kouwe, A. J.,
Trattnig, S., et al. (2014b). Real-time motion- and B0-correction for LASER-
localized spiral-accelerated 3D-MRSI of the brain at 3T. Neuroimage 88, 22–31.
doi: 10.1016/j.neuroimage.2013.09.034

Bradley, K. A., Mao, X., Case, J. A., Kang, G., Shungu, D. C., and Gabbay, V. (2016).
Increased ventricular cerebrospinal fluid lactate in depressed adolescents. Eur.
Psychiatry 32, 1–8. doi: 10.1016/j.eurpsy.2015.08.009

De Graaf, R. A. (2007). In vivo NMR Spectroscopy. Chichester, UK:
Wiley.

Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D.,
et al. (2006). An automated labeling system for subdividing the human cerebral
cortex on MRI scans into gyral based regions of interest. Neuroimage 31,
968–980. doi: 10.1016/j.neuroimage.2006.01.021

Destrieux, C., Fischl, B., Dale, A., and Halgren, E. (2010). Automatic
parcellation of human cortical gyri and sulci using standard anatomical
nomenclature. Neuroimage 53, 1–15. doi: 10.1016/j.neuroimage.2010.
06.010

Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al.
(2002). Whole brain segmentation: automated labeling of neuroanatomical
structures in the human brain. Neuron 33, 341–355. doi: 10.1016/S0896-
6273(02)00569-X

Fischl, B., Sereno, M. I., Tootell, R. B., and Dale, A. M. (1999). High-resolution
intersubject averaging and a coordinate system for the cortical surface. Hum.
Brain Mapp. 8, 272–284. doi: 10.1002/(sici)1097-0193(1999)8:4<272::aid-
hbm10>3.0.co;2-4

Foerster, B. R., Pomper, M. G., Callaghan, B. C., Petrou, M., Edden, R. A.,
Mohamed, M. A., et al. (2013). An imbalance between excitatory and inhibitory
neurotransmitters in amyotrophic lateral sclerosis revealed by use of 3-T
proton magnetic resonance spectroscopy. JAMA Neurol. 70, 1009–1016.
doi: 10.1001/jamaneurol.2013.234

Gasparovic, C., Song, T., Devier, D., Bockholt, H. J., Caprihan, A., Mullins, P. G.,
et al. (2006). Use of tissue water as a concentration reference for proton
spectroscopic imaging. Magn. Reson. Med. 55, 1219–1226. doi: 10.1002/mrm.
20901

Geramita, M., van der Veen, J. W., Barnett, A. S., Savostyanova, A. A., Shen, J.,
Weinberger, D. R., et al. (2011). Reproducibility of prefrontal γ-aminobutyric
acid measurements with J-edited spectroscopy. NMR Biomed. 24, 1089–1098.
doi: 10.1002/nbm.1662

Goryawala, M. Z., Sheriff, S., and Maudsley, A. A. (2016). Regional distributions
of brain glutamate and glutamine in normal subjects. NMR Biomed. 29,
1108–1116. doi: 10.1002/nbm.3575

Guo, C., Ferreira, D., Fink, K., Westman, E., and Granberg, T. (2018).
Repeatability and reproducibility of FreeSurfer, FSL-SIENAX and SPM
brain volumetric measurements and the effect of lesion filling in multiple
sclerosis. Eur. Radiol. doi: 10.1007/s00330-018-5710-x [Epub ahead of
print].

Gussew, A., Erdtel, M., Hiepe, P., Rzanny, R., and Reichenbach, J. R. (2012).
Absolute quantitation of brain metabolites with respect to heterogeneous
tissue compositions in 1H-MR spectroscopic volumes. MAGMA 25, 321–333.
doi: 10.1007/s10334-012-0305-z

Haga, K. K., Khor, Y. P., Farrall, A., and Wardlaw, J. M. (2009). A systematic
review of brain metabolite changes, measured with 1H magnetic resonance
spectroscopy, in healthy aging. Neurobiol. Aging 30, 353–363. doi: 10.1016/j.
neurobiolaging.2007.07.005

Harris, A. D., Puts, N. A., and Edden, R. A. (2015). Tissue correction
for GABA-edited MRS: considerations of voxel composition, tissue
segmentation, and tissue relaxations. J. Magn. Reson. Imaging 42, 1431–1440.
doi: 10.1002/jmri.24903

Hnilicová, P., Považan, M., Strasser, B., Andronesi, O. C., Gajdošík, M.,
Dydak, U., et al. (2016). Spatial variability and reproducibility of GABA-edited
MEGA-LASER 3D-MRSI in the brain at 3 T. NMR Biomed. 29, 1656–1665.
doi: 10.1002/nbm.3613

Jensen, J. E., Frederick Bde, B., and Renshaw, P. F. (2005). Grey and white
matter GABA level differences in the human brain using two-dimensional,
J-resolved spectroscopic imaging. NMR Biomed. 18, 570–576. doi: 10.1002/
nbm.994

Lai, S., Zhong, S., Liao, X., Wang, Y., Huang, J., Zhang, S., et al. (2018).
Biochemical abnormalities in basal ganglia and executive dysfunction in acute-
and euthymic-episode patients with bipolar disorder: a proton magnetic
resonance spectroscopy study. J. Affect. Disord. 225, 108–116. doi: 10.1016/j.
jad.2017.07.036

Liem, F., Mérillat, S., Bezzola, L., Hirsiger, S., Philipp, M., Madhyastha, T., et al.
(2015). Reliability and statistical power analysis of cortical and subcortical
FreeSurfer metrics in a large sample of healthy elderly. Neuroimage 108,
95–109. doi: 10.1016/j.neuroimage.2014.12.035

Long, Z., Dyke, J. P., Ma, R., Huang, C. C., Louis, E. D., and Dydak, U. (2015).
Reproducibility and effect of tissue composition on cerebellar γ-aminobutyric
acid (GABA) MRS in an elderly population. NMR Biomed. 28, 1315–1323.
doi: 10.1002/nbm.3381

Mathew, S. J., Mao, X., Keegan, K. A., Levine, S. M., Smith, E. L., Heier, L. A., et al.
(2009). Ventricular cerebrospinal fluid lactate is increased in chronic fatigue
syndrome compared with generalized anxiety disorder: an in vivo 3.0 T 1H MRS
imaging study. NMR Biomed. 22, 251–258. doi: 10.1002/nbm.1315

Maudsley, A. A., Darkazanli, A., Alger, J. R., Hall, L. O., Schuff, N., Studholme, C.,
et al. (2006). Comprehensive processing, display and analysis for in vivo
MR spectroscopic imaging. NMR Biomed. 19, 492–503. doi: 10.1002/
nbm.1025

Maudsley, A. A., Domenig, C., Govind, V., Darkazanli, A., Studholme, C.,
Arheart, K., et al. (2009). Mapping of brain metabolite distributions by
volumetric proton MR spectroscopic imaging (MRSI). Magn. Reson. Med. 61,
548–559. doi: 10.1002/mrm.21875

Mikkelsen, M., Singh, K. D., Brealy, J. A., Linden, D. E., and Evans, C. J.
(2016). Quantification of γ-aminobutyric acid (GABA) in 1H MRS volumes
composed heterogeneously of grey and white matter. NMR Biomed. 29,
1644–1655. doi: 10.1002/nbm.3622

Mullins, P. G., McGonigle, D. J., O’Gorman, R. L., Puts, N. A., Vidyasagar, R.,
Evans, C. J., et al. (2014). Current practice in the use of MEGA-PRESS
spectroscopy for the detection of GABA. Neuroimage 86, 43–52. doi: 10.1016/j.
neuroimage.2012.12.004

Poels, E. M., Kegeles, L. S., Kantrowitz, J. T., Javitt, D. C., Lieberman, J. A., Abi-
Dargham, A., et al. (2014). Glutamatergic abnormalities in schizophrenia: a
review of proton MRS findings. Schizophr. Res. 152, 325–332. doi: 10.1016/j.
schres.2013.12.013

Porges, E. C., Woods, A. J., Lamb, D. G., Williamson, J. B., Cohen, R. A.,
Edden, R. A. E., et al. (2017). Impact of tissue correction strategy on
GABA-edited MRS findings. Neuroimage 162, 249–256. doi: 10.1016/j.
neuroimage.2017.08.073

Ramadan, S., Lin, A., and Stanwell, P. (2013). Glutamate and glutamine: a
review of in vivo MRS in the human brain. NMR Biomed. 26, 1630–1646.
doi: 10.1002/nbm.3045

Sabati, M., Sheriff, S., Gu, M., Wei, J., Zhu, H., Barker, P. B., et al. (2015).
Multivendor implementation and comparison of volumetric whole-brain
echo-planar MR spectroscopic imaging. Magn. Reson. Med. 74, 1209–1220.
doi: 10.1002/mrm.25510

Sanacora, G., Gueorguieva, R., Epperson, C. N., Wu, Y. T., Appel, M.,
Rothman, D. L., et al. (2004). Subtype-specific alterations of γ-aminobutyric
acid and glutamate in patients with major depression. Arch. Gen. Psychiatry 61,
705–713. doi: 10.1001/archpsyc.61.7.705

Seiger, R., Ganger, S., Kranz, G. S., Hahn, A., and Lanzenberger, R. (2018).
Cortical thickness estimations of FreeSurfer and the CAT12 toolbox in patients
with Alzheimer’s disease and healthy controls. J. Neuroimaging 28, 515–523.
doi: 10.1111/jon.12521

Frontiers in Molecular Neuroscience | www.frontiersin.org 9 February 2019 | Volume 12 | Article 28

https://doi.org/10.1002/nbm.3309
https://doi.org/10.1016/j.mri.2010.10.009
https://doi.org/10.1016/j.mri.2010.10.009
https://doi.org/10.1016/j.neuroimage.2014.09.032
https://doi.org/10.1016/j.neuroimage.2013.09.034
https://doi.org/10.1016/j.eurpsy.2015.08.009
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.neuroimage.2010.06.010
https://doi.org/10.1016/j.neuroimage.2010.06.010
https://doi.org/10.1016/S0896-6273(02)00569-X
https://doi.org/10.1016/S0896-6273(02)00569-X
https://doi.org/10.1002/(sici)1097-0193(1999)8:4<272::aid-hbm10>3.0.co;2-4
https://doi.org/10.1002/(sici)1097-0193(1999)8:4<272::aid-hbm10>3.0.co;2-4
https://doi.org/10.1001/jamaneurol.2013.234
https://doi.org/10.1002/mrm.20901
https://doi.org/10.1002/mrm.20901
https://doi.org/10.1002/nbm.1662
https://doi.org/10.1002/nbm.3575
https://doi.org/10.1007/s00330-018-5710-x
https://doi.org/10.1007/s10334-012-0305-z
https://doi.org/10.1016/j.neurobiolaging.2007.07.005
https://doi.org/10.1016/j.neurobiolaging.2007.07.005
https://doi.org/10.1002/jmri.24903
https://doi.org/10.1002/nbm.3613
https://doi.org/10.1002/nbm.994
https://doi.org/10.1002/nbm.994
https://doi.org/10.1016/j.jad.2017.07.036
https://doi.org/10.1016/j.jad.2017.07.036
https://doi.org/10.1016/j.neuroimage.2014.12.035
https://doi.org/10.1002/nbm.3381
https://doi.org/10.1002/nbm.1315
https://doi.org/10.1002/nbm.1025
https://doi.org/10.1002/nbm.1025
https://doi.org/10.1002/mrm.21875
https://doi.org/10.1002/nbm.3622
https://doi.org/10.1016/j.neuroimage.2012.12.004
https://doi.org/10.1016/j.neuroimage.2012.12.004
https://doi.org/10.1016/j.schres.2013.12.013
https://doi.org/10.1016/j.schres.2013.12.013
https://doi.org/10.1016/j.neuroimage.2017.08.073
https://doi.org/10.1016/j.neuroimage.2017.08.073
https://doi.org/10.1002/nbm.3045
https://doi.org/10.1002/mrm.25510
https://doi.org/10.1001/archpsyc.61.7.705
https://doi.org/10.1111/jon.12521
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Spurny et al. Automated Labeling for Multi-Voxel MRS

Shungu, D. C., Weiduschat, N., Murrough, J. W., Mao, X., Pillemer, S., Dyke, J. P.,
et al. (2012). Increased ventricular lactate in chronic fatigue syndrome.
III. Relationships to cortical glutathione and clinical symptoms implicate
oxidative stress in disorder pathophysiology. NMR Biomed. 25, 1073–1087.
doi: 10.1002/nbm.2772

Stagg, C. J., Best, J. G., Stephenson, M. C., O’Shea, J., Wylezinska, M., Kincses, Z. T.,
et al. (2009). Polarity-sensitive modulation of cortical neurotransmitters by
transcranial stimulation. J. Neurosci. 29, 5202–5206. doi: 10.1523/JNEUROSCI.
4432-08.2009

Weir, J. P. (2005). Quantifying test-retest reliability using the intraclass correlation
coefficient and the SEM. J. Strength Cond. Res. 19, 231–240. doi: 10.1519/
15184.1

Zhang, Y., Brady, M., and Smith, S. (2001). Segmentation of brain
MR images through a hidden Markov random field model and the
expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57.
doi: 10.1109/42.906424

Zhu, H., Edden, R. A., Ouwerkerk, R., and Barker, P. B. (2011). High resolution
spectroscopic imaging of GABA at 3 Tesla. Magn. Reson. Med. 65, 603–609.
doi: 10.1002/mrm.22671

Conflict of Interest Statement: RL received travel grants and/or conference
speaker honoraria from Shire, AstraZeneca, Lundbeck A/S, Dr. Willmar Schwabe
GmbH, Orphan Pharmaceuticals GA, Janssen-Cilag Pharma GmbH, and Roche
Austria GmbH. MS has received travel grants from Janssen, Eli Lilly, and
AOP Orphan Pharamceuticals, speaker honoraria from Janssen, and workshop
participation from Eli Lilly. TV received travel grants and compensation for
workshop participation from Pfizer and Eli Lilly and speaker honorary from Shire.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2019 Spurny, Heckova, Seiger, Moser, Klöbl, Vanicek, Spies, Bogner
and Lanzenberger. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Molecular Neuroscience | www.frontiersin.org 10 February 2019 | Volume 12 | Article 28

https://doi.org/10.1002/nbm.2772
https://doi.org/10.1523/JNEUROSCI.4432-08.2009
https://doi.org/10.1523/JNEUROSCI.4432-08.2009
https://doi.org/10.1519/15184.1
https://doi.org/10.1519/15184.1
https://doi.org/10.1109/42.906424
https://doi.org/10.1002/mrm.22671
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles

	Automated ROI-Based Labeling for Multi-Voxel Magnetic Resonance Spectroscopy Data Using FreeSurfer
	INTRODUCTION
	MATERIALS AND METHODS
	Magnetic Resonance Imaging
	Structural Images
	Magnetic Resonance Spectroscopy

	MRS Data Analysis
	Automated Segmentation and ROI-Based Analysis of Spectral Data
	Comparison of Labeling Approaches
	Statistical Analysis

	RESULTS
	Low-Resolution GABA-Edited MRS
	High-Resolution Non-edited MRS

	DISCUSSION
	Limitations
	Conclusion

	DATA AVAILABILITY
	AUTHOR CONTRIBUTIONS
	FUNDING
	ACKNOWLEDGMENTS
	REFERENCES


