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Neurons in the dorsal pathway of the visual cortex are thought to be involved in motion

processing. The first site of motion processing is the primary visual cortex (V1), encoding

the direction of motion in local receptive fields, with higher order motion processing

happening in the middle temporal area (MT). Complex motion properties like optic flow

are processed in higher cortical areas of the Medial Superior Temporal area (MST). In this

study, a hierarchical neural field network model of motion processing is presented. The

model architecture has an input layer followed by either one or cascade of two neural

fields (NF): the first of these, NF1, represents V1, while the second, NF2, represents

MT. A special feature of the model is that lateral connections used in the neural fields

are trained by asymmetric Hebbian learning, imparting to the neural field the ability to

process sequential information in motion stimuli. The model was trained using various

traditional moving patterns such as bars, squares, gratings, plaids, and random dot

stimulus. In the case of bar stimuli, the model had only a single NF, the neurons of which

developed a direction map of the moving bar stimuli. Training a network with two NFs

on moving square and moving plaids stimuli, we show that, while the neurons in NF1

respond to the direction of the component (such as gratings and edges) motion, the

neurons in NF2 (analogous to MT) responding to the direction of the pattern (plaids,

square object) motion. In the third study, a network with 2 NFs was simulated using

random dot stimuli (RDS) with translational motion, and show that the NF2 neurons can

encode the direction of the concurrent dot motion (also called translational flow motion),

independent of the dot configuration. This translational RDS flow motion is decoded by

a simple perceptron network (a layer above NF2) with an accuracy of 100% on train

set and 90% on the test set, thereby demonstrating that the proposed network can

generalize to new dot configurations. Also, the response properties of the model on

different input stimuli closely resembled many of the known features of the neurons found

in electrophysiological studies.

Keywords: neural field models, weight asymmetry, pattern selectivity, lateral interactions, primary visual area (V1),

middle temporal area (MT), medial superior temporal area (MST)
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INTRODUCTION

Visual motion is experienced by living organisms either due to
self-motion with respect to the environment or by the motion
of individual objects in the environment. Nearly half a century of
research has provided a detailed description ofmotion processing
in mammalian visual cortex. For example, we know that motion
is processed along the visual motion pathway that consists of
at least three hierarchical cortical stages—primary visual cortex
(V1), middle temporal area (MT), and medial superior temporal
area (MST) (Adelson and Movshon, 1982; Movshon et al., 1985;
Movshon and Newsome, 1996; Pack et al., 2001; Orban, 2008;
Gilaie-Dotan, 2016). Neurons in each of these stages have diverse
response properties and are involved in different aspects of
motion processing.

The first cortical stage of primate motion processing starts at
V1 where a subset of cells is highly direction selective (Hubel
and Wiesel, 1968; Movshon and Newsome, 1996). These cells
have relatively small spatiotemporal receptive fields (Hubel and
Wiesel, 1974) and encode the direction of motion of local
features. These motion cues are often different from the motion
of the visual pattern; hence locally encoded motion cues are
ambiguous (Wallach, 1976) and result in the so-called aperture
problem (Fennema and Thompson, 1979; Wuerger et al., 1996;
Pack et al., 2001, 2003). These local motion cues are integrated by
the second stage cells at MT (Adelson and Movshon, 1982; Pack
et al., 2001; Born and Bradley, 2005) that have relatively larger
receptive fields and compute the direction of pattern motion.
Earlier experimental studies of pattern motion selectivity were
conducted with stimuli consisting of moving plaids (Rodman
and Albright, 1989). They showed that MT cells are capable of
encoding two-dimensional motion (pattern motion) while V1
cells encode one dimension of stimulus motion (component
motion: the motion of a pattern boundary segment such as bar,
edge and sinusoidal grating). MT is also thought to estimate
overall pattern velocity by combining local velocity cues from
V1 (Adelson and Movshon, 1982; Bowns, 1996, 2018). However,
some cells in MT (Majaj et al., 2007) selective to components
moving in preferred direction rather than the direction of
pattern motion. From optical imaging and single-cell recording
studies we know that MST cells receive projections from MT,
and respond selectively to the higher order optic flow motion,
including translation, radial, rotation and combinations of the
latter two (Tanaka and Saito, 1989; Duffy andWurtz, 1991; Orban
et al., 1995; Morrone et al., 2000).

Efforts to model the properties of neurons in the motion
pathway had progressed with the accumulation of physiological
results. There are models that successfully account for various
properties of V1 cells, such as orientation selectivity, ocular
dominance, and direction selectivity. Adelson and Bergen
(1985) used phase independent spatiotemporal filters (created
using oriented Gabor functions) to achieve direction selectivity.
The filters were designed as quadrature pairs tuned for both

Abbreviations: NF, Neural Field; V1, Primary Visual Cortex; MT, Middle

Temporal Area; MST, Medial Superior Temporal Area; RDS, Random Dot

Stimulus; RF, Receptive Field.

directions. Saul and Humphrey (1990) achieved direction
selectivity by designing both lagged and non-lagged cells. A
model of Simoncelli and Heeger (1998) demonstrated direction
selectivity of V1 cells and pattern selectivity of MT cells by
integration of constraints. The Heeger model is non-linear and
simulated the moving stimulus-response as the sum of the
responses to a set of sequential stimuli evenly spaced in time, with
an explicit time variable. Others showed that activity-dependent
self-organization results in direction selectivity (Shouno and
Kurata, 2001; Miikkulainen et al., 2006). Miikkulainen et al. used
intra-cortical circuitry to incorporate excitatory and inhibitory
effects along with LGN lagged cells to achieve direction selectivity
(Miikkulainen et al., 2006).

These early studies either processed the entire stimulus
trajectory, or a subset of the trajectory via time-lagged input
at a single time step, which is biologically unrealistic. Some
models (Somers et al., 1995) focus on explaining a single
functional property like orientation selectivity or direction
selectivity, therefore accounting only for a subset of visual
neural behaviors. The models proposed by Miikkulainen
et al. (2006) attempt to explain diverse properties such
as orientation selectivity, direction selectivity and ocular
dominance of neuronal population in the Primary visual
cortex which is the first stage in the motion pathway.
Bichler et al. proposed an interesting 2 layer feedforward fully
connected neural network model that can learn temporally
correlated features directly from vision sensor data using
biologically plausible unsupervised STDP learning scheme
(Bichler et al., 2012). The biologically plausible motion
estimation model (Bowns, 2018) which is an enhanced version
of Component-Level Feature Model (Bowns, 2011), can estimate
the motion trajectories successfully from 7,000 synthetic
moving images.

In this paper, we describe a computational model that can
explain the diverse properties of the neurons, such as direction
selectivity, pattern selectivity, and translation flow selectivity at
different regions of the motion pathway. The proposed network
can develop Gabor like receptive fields (Marcelja, 1980; Bowns,
2018) as a result of training the weight connections with moving
bars using biologically plausible unsupervised learning rule.
A study (Fu, 2004) reported that visual response properties
like orientation selectivity, direction selectivity etc. are crucially
dependent on the lateral interactions in the visual cortical
circuit. They hypothesized that during adaptation Spike-Time-
Dependent Plasticity (STDP) allows motion stimuli to induce
asymmetry in the intracortical connections. The crucial role
of lateral interactions in the development of the retinotopic
map (Philips and Chakravarthy, 2015) was recently modeled
using LISSOM (Philips and Chakravarthy, 2015) which can be
considered as a neural field model with short-range excitation
and long-range inhibition. Thus, each neural field unit has
excitatory lateral connections with its neighboring units and
inhibitory lateral connections with units farther away. We take
our lead from this model and used asymmetric Hebb rule
to introduce asymmetry in the intra-cortical circuit during
adaptation to visual motion stimuli. The famous Hebb postulate
(Morris, 1999) can be described as follows:
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When an axon of cell A is near enough to excite cell B or
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased.

MODEL ARCHITECTURE

The architecture of the proposed hierarchical motion processing
network with two NFs is shown in Figure 1A. As described
in Figure 1A every neuron makes lateral connections with
neurons in its neighborhood in two ways: (i) short-range lateral
excitatory connections and (ii) long-range lateral inhibitory
connections. These lateral connections are permitted to be
asymmetric. Also, every neuron is connected to its receptive field
via afferent connections. All afferent and lateral connections are
randomly initialized.

Training Procedure
A number of simulations were conducted using traditional
patterns used in earlier studies (Simoncelli and Heeger, 1998;
Bowns, 2018) such as moving bars, moving plaids, moving
RDS etc. to ensure the role of asymmetric lateral interactions
in driving motion selective responses. To begin with, various
network properties (number of NFs, NF dimension, and number
of iterations in settling process) and parameters (receptive field
size, excitatory and inhibitory radius, learning rates used during
weight adaptation, scaling factors used in lateral interaction) need
to be defined depending on the cortical region intended tomodel.
For example, direction selectivity of V1 cells was modeled by a
single NF, whereas the pattern selectivity ofMT cells wasmodeled
with a network of two NFs. The general strategy adopted for
choosing the model parameters is discussed in the subsequent
sections. In each simulation, for each NF, parameter set varies
(as shown in Table 1) and is determined through trail-and-
error method.

The training set is created with short sequences/videos, each
composed of 10 images/frames at the most. During training, the
individual sequence from the training set was drawn randomly
and presented to the network image by image over the time
period T (Figure 1B) so that, at a given time step t, the network
has access only to the current image.

Each neuron in a given NF at time t first calculates its
instantaneous afferent response, which is further modified by
neighboring neurons through lateral interactions that result in
a stabilized activity pattern. For a given time “t” the lateral
interactions were allowed to proceed for several time steps “s,”
called the settling time. Once the settled activity is obtained in
the NF, the weights (both afferent and lateral) will get updated
through asymmetric Hebbian learning (see the following section
for details). Now the network is ready for the presentation of
the next image at time t+1. This process is repeated until we
present the last image of the sequence. Before presenting the next
sequence, the neuron activity in the NFwas reset to zero, bringing
the neurons to the resting state. Presenting the entire training set
once to the network is termed as an epoch. Training was carried
out until the weights are saturated. Weights are called saturated
if 80% of the change in weights (1W) approaches to 0. Once the

training is completed, the network response was abstracted as a
map (using the procedure described in the following sections)
to check for the topographic self-organization. Also, the model
results were compared with motion sensitivity results from
electrophysiological experiments. All simulations were carried
out using MATLAB.

Equations Used for Training
Initial Response
For each image presentation, the initial activity Sij of the neuron
at (i,j) is computed as a scalar product of afferent weight vector
Wij and its receptive field Xij Equation (1); σ is piecewise linear
sigmoid activation function; γaff is a constant scaling factor.

Sij = σ
(

γaff ∗
(

Wij.Xij

))

(1)

As the afferent connections are random initially, the initial
activity pattern on the NF was widespread and distributed all
over the NF. This distributed activity was focused into a localized
response by the effect of lateral interactions as follows.

Lateral Interactions
Each neuron’s initial response was strengthened and sharpened
by both short-range lateral excitation and long-range lateral
inhibition over several time steps (Figure 1B). A number of
time steps are represented by a parameter called the settling
time (Table 1). At each of these discrete time steps “s,” the
neuron combines its afferent stimulation with lateral interactions
(Equation 2). During the iterations, the initial activity pattern
that spreads over the substantial part of the NF was slowly
converged into a focused patch of activity bubble and settles
in the best responding area of the NF. Note that while
the NF response settles down, the afferent input remains
constant. The overall response of a neuron that combines
both afferent and lateral interactions is described by the
following equation.

ηij (s) = σ (Sij + γexc
∑

kl
ηij (s− 1)∗ Eij,kl

− γ inhb

∑

kl
ηij (s− 1)∗ Iij,kl) (2)

where ηij stands for the activity of the neuron at (i,j),
Eij,kl, and Iij,kl are excitatory and inhibitory weights
from the neuron (k,l) to (i,j). The relative strengths of
excitatory and inhibitory lateral connections of each
NF can be represented by constant scaling factors γexc
and γinhb.

Weight Adaptation
Once the activity has settled, both afferent and lateral weights
for each neuron were modified. The afferent weight connection
between NF unit (i,j) and input pixel (k,l) is modified as

1Wij,kl(t) = αaff ∗Xkl ∗ηij(t) (3)

The lateral weights are modified according to a variation of
the Hebbian learning. Classical Hebbian learning is temporally
symmetric: weight update is dependent on the correlation
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FIGURE 1 | The architecture of the motion processing system. (A) Neural field Model: It consists of two NFs, analogous to V1 and MT of the visual cortex. Input layer

represents the receptor surface such as the retina. Each NF is organized as a two-dimensional array of neurons with lateral connections. Every neuron has excitatory

afferent (incoming; shown in dotted lines) connections from units in their square-shaped RF. Neighboring neurons have overlapping RFs. In addition, every neuron

receives inputs from two types of lateral connections: excitatory connections (green circle represents excitatory radius) with nearby neighbors and inhibitory with

neurons farther away (red circle represents inhibitory radius). (B) the timeline of input sequence presentation to the network: The model response to a moving stimulus

was simulated at two different time scales. The sequence of n frames was presented to the network over a period of time T. Motion within the stimulus sequence was

generated at several discrete time steps “t.” The number of time steps is equal to the number of frames within the sequence. For a given time “t” the lateral

interactions were allowed to proceed for several time steps “s,” called the settling time.

TABLE 1 | Parameters used in various simulations.

Parameter Direction

selectivity

Component and Pattern motion selectivity Translational flow selectivity

Thin bar Gratings and Plaids Square object RDS Translate

NF1 NF1 NF2 NF1 NF2 NF1 NF2

Dim 20 × 20 20 × 20 13 × 13 13 × 13 15 × 15 29 × 29 22 × 22

RF 64 × 64 24 × 24 8 × 8 12 × 12 13 × 13 4 × 4 8 × 8

rexc 3 2 3 3 3 3 3

rinhb 10 10 4 6 7 4 5

γaff 1 1 1 1 1 0.3 1

γexc 3.9 8.2 4.8 2.8 2.2 0.68 15.68

γinhb 1 1 3 1 1.5 1 1

αaff 0.05 0.05 0.05 0.3 0.3 0.05 0.05

αexc 0.05 0.05 0.05 0.3 0.3 0.05 0.05

αinhb 0.05 0.05 0.05 0.3 0.3 0.05 0.05

Ts 10 10 8 10 10 10 10

e 500 1,500 500 500 500 200 200

Image size 64 × 64 64 × 64 64 × 64 64 × 64 64 × 64 16 × 16 16 × 16

between pre- and post-synaptic activity. We employ an
asymmetric Hebbian rule (Schulz and Reggia, 2004) where
the change in weight connection 1Wij,kl from (k,l) to (i,j) is
computed as a dot product of pre- and post-synaptic neuron
activities at different time steps as shown in Equation (4).
Presynaptic activity is the settled activity of (k,l) for the previous
frame η kl(t-1) and postsynaptic activity is the increase in the
settled activity of (i,j) for the current frame η ij(t) relatively to
the previous frame. The asymmetric Hebbian rule is combined
with postsynaptic divisive normalization (Turrigiano, 1999)
[Equation (5)] to prevent weights from increasing without

bounds. The calculated new weight is used until the end of the
next settling process.

1Wij,kl(t) = α∗max(0, (ηij (t) − ηij(t − 1)))∗ηkl(t − 1) (4)

where α is the parameter determining the rate of learning. For
each type of connection (excitatory, inhibitory) separate learning
rates were used.

Wnew
ij,kl =

Wold
ij,kl

+ 1Wij,kl
∑

u (W
old
ij,kl

+ 1Wij,kl)
(5)
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where Wnew
ij,kl

is new weight connection from neuron (k,l) to

neuron (i,j) at each “t.” Lateral excitatory, inhibitory, and afferent
weight connections are normalized separately.

In the neural network theory, the connection weight between
two neurons is considered as a parameter that can be adjusted
to optimize the performance of the network. This process of
parameter adaptation is called learning. In biological terms, it
may refer to synaptic changes during development (Gerstner
and Kistler, 2002). The famous Hebb postulate (Morris, 1999) is
phrased as synaptic changes are driven by the correlated activity
of pre- and post-synaptic neurons. Experimental evidence (Tsien,
2000) suggest that the correlation-based synaptic adaptation
processes are involved in neural plasticity. The mathematical
formulation of Hebb’s rule also called correlation-based learning
is an interest of our study because of three aspects: locality,
cooperativity, and competition. Locality means a change in the
synaptic connection depends on local variables. Cooperativity
implies that the pre and postsynaptic neurons have to be
active simultaneously for synaptic weight change to occur.
Competition is essential for any form of self-organization and
topographic pattern formation, where weights of a certain
subgroup of synapses are strengthened at the expense of others.
In simulations, competition can be implemented by inhibitory
interactions and the normalizing sum of all weights converging
onto the same postsynaptic neuron (Gerstner and Kistler, 2002).
Hebb’s original postulate does not contain a rule for a decrease
of synaptic weights. In such a system all weights saturate at
maximum value. To make learning rule more competitive and
useful divisive normalization was proposed (Miikkulainen et al.,
2006) where each weight is intended to scale down in proportion
to its original value. They also stated that initially normalization
terms were introduced for a computational reason (Rochester
et al., 1956) but many works (Turrigiano, 1999) has uncovered
a number of neural regulatory mechanisms within the cell
that regulate the overall synaptic strength during adaptation.
There are many variants of Hebbian learning rule (Gerstner and
Kistler, 2002). STDP is one variant of Hebbian learning where
synaptic weight gets strengthen if presynaptic neuron fires just
before postsynaptic neuron. Another variant is an asymmetric
Hebbian rule (Schulz and Reggia, 2004) and closely resemble
the experimentally observed temporal asymmetry embodied in
the Spike-Time-Dependent Plasticity (STDP) (Fu, 2004; Caporale
and Dan, 2008).

General Procedure Used to Model the Parameters
All the parameters were chosen through systematic manual trial
and error exploration (Table 1). For each parameter set, a model
with initial random connections was trained and check for the
unique spatial representation for each of the input sequences. The
parameters that transform different input sequences into very
similar spatial representations are discarded.

While conducting a simulations rexc, γinhb are fixed at 3
and 1 and varied rinhb, γexc systematically to find the suitable
parameter values. A parameter is said to be suitable if the
model learns to spatially represent the sequences in the train set
uniquely. rinhb is set to global (the maximum allowable radius
in NF) initially and reduced in steps of 2. Initially, γexc is given

such a value that assures excitatory-inhibitory balance. When
building a computational model, assumptions must be made
about biological processes that are not well-understood. The
above assumption was also made out of computational necessity
and has not been characterized experimentally. The afferent
connection strength γaff is set to 1, except in the third simulation.
Here γaff is set to 0.3 to reduce the effect of fixed afferent
connection on initial activity. All the three learning parameters
(αaff , αexc, αinhb) take the same value and are chosen as 0.05. Each
moving stimulus is created with a set of images/frames of size 64
× 64. RF is chosen randomly based on the simulation. Using the
parameters Image size and RF, NF dimension was calculated as:

Dim =
Image size− RF

stride
+ 1 (6)

where stride=Number of pixels through which we slide the filter
at every step

The systematic exploration of varying parameters one at a
time showed that the parameters such as αaff, αexc, αinhb, and
settling time are less sensitive and result in a network that is
robust to small changes. However, The parameters rexc, rinhb,
γexc, γinhb that controls the influence of excitatory and inhibitory
inputs, are relatively sensitive and need to fit in the given
temporal sequence.

Generating the Topographic Map of Neuron

Responses
Neurons in the trained network respond selectively to the
direction of motion feature. The preferences of each neuron
often vary systematically across the sheet of neurons in the NF
revealing an underlying topographic structure. Also, due to the
push-pull effect of lateral interactions, short-range excitation
ensures correlated activity to similar stimuli over nearby neurons
and anti-correlated response over long distances. This effect
assembles the neurons within the NF into small patches and each
patch becomes active in the specific direction of stimulus motion.
Such cortical maps were delineated experimentally in monkeys
striate cortex (Blasdel, 1992).

The set of all time-varying stimuli was presented to the trained
network to determine the neurons’ preferred direction of motion.
A neuron is said to be preferred to the specific direction of the
motion of the stimulus if and only if the stimulus is effective
in achieving a maximum response in the neuron. Each neuron’s
preferred direction of motion was used as an entry in the map.

RESULTS

Single NF Simulated Using Moving Bar
Stimuli Shows Direction Selective
Responses Analogous to Those of V1 Cells
In this study, we construct a direction sensitivity map by training
a single NF, using a set of sequences of a moving bar pattern.
The architecture of the network used for this purpose is shown in
Figure 2A, where input images are presented in the input layer,
which is then used to stimulate responses in the NF. NF size,
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FIGURE 2 | Direction sensitivity. (A) The Architecture used to simulate the direction sensitivity of V1 cells: The model consists of two stages: (a) an input layer where

moving bar is presented (b) NF (20 × 20 units) analogous to V1. Green arcs represent the excitatory connections and the red arcs represent the inhibitory

connections. The afferent connections are represented with blue dotted lines (B). Sample bar stimulus moving in 135◦: the bar of size 30 × 2 pixels are placed on 64

× 64 pixels black background and is made to move in 8 directions with the direction of motion perpendicular to the orientation. The motion is captured in a sequence

of 8 frames. (C) Network response to moving bar stimulus after 500 epochs of training: the first and the third columns display the first frame of the moving bar

sequence, the label above it shows the direction of motion of the bar. The response of NF has plotted in the second and fourth columns. Each input is mapped to the

unique spatial position on NF. (D) Direction selectivity map: Direction selectivity map is plotted using the convention described in the section “Generating topographic

map.” We observed that the patch of neurons selective to one direction of motion often has an adjacent patch with opposite direction preference. The arrows indicate

the direction preferences developed by the neurons on NF. The arrow with the highest magnitude indicates the peak response of the neuron (E). The afferent weights

developed by the selected neurons in NF: Initial afferent weights are random. After training Gabor like afferent weights are developed. Different varieties of tuned

afferent weights (64 × 64 pixels each) are selected from the whole population (Figure S1) and displayed here.

number of epochs and other network parameters used in the
simulation are shown in Table 1.

The training set consists of 8 sequences of a bar moving in 8
directions: 0, 45, 90, 135, 180, 225, 270, and 315◦. For instance, in
0◦, the bar is placed in vertical position and is moved from left to
right. Complete details about the stimuli generation are given in
the Methods section.

During the training, each moving bar sequence (Figure 2B)
was drawn randomly and presented to the network frame after
the frame. Training was carried out as described earlier. Next
we examined the response properties of the neurons by plotting
the network activity (Figure 2C) to the bar sequence moved
in 8 directions: 0, 45, 90, 135, 180, 225, 270, and 315◦ The

activity patch under “NF-Resp” column denotes the population
of neurons fired to a given drifting bar. Eight different population
bubbles were seen, each specifying its preference to a specific
direction of motion. Some populations were overlapped (for
example 135 and 315◦, 225 and 45◦), indicating that some
neurons have a preference for more than one direction of motion.
Such multiple preferences can be seen in the case of stimuli
having different directions of motion with the same orientation.

Direction selectivity map with the neuron’s best preferences
is plotted in Figure 2D. The color patches indicate a different
population of neurons has different direction preferences.
The arrows indicate the neuron preferred directions and the
magnitude indicate the neuron activity. Almost all adjacent color
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patches have opposite direction preferences. For instance neuron
patches preferential to 135 and 315◦ are adjacent. Similarly,
patches preferential to 45 and 225◦ are adjacent.

Figure 2E shows the developed afferent weights for the
selective neurons. Initial afferent weight values were random and
were bounded between 0 and 1. During training, these random
weights were self-organized in such a way that the neurons that
have the same orientation and opposite direction preferences
were pruned as a continuous patch and seen as four big patches
in response to 8 moving stimuli. In each patch, neurons were
clustered into two subgroups with opposite direction preferences.
As shown in Figure 2E some neurons afferent weights are tuned
to the specific direction of bar motion, others, particularly
neurons present at the boundaries of the patches, showed tuned
weight preferences to more than one motion direction. These
results were inconsistent with experimental studies (explained in
the Discussion section).

Component and Pattern Motion
In case of a moving 2D object, parts of its boundary seen
through narrow apertures seem to move in various directions,
quite different from the direction of motion of the entire object.
This problem is referred to as the aperture problem (Figure 3;
Fennema and Thompson, 1979; Wuerger et al., 1996; Pack
et al., 2001, 2003). The motion of the boundary segments is
called component motion while that of the whole object is called
pattern motion. Electrophysiological studies suggest that while
V1 neurons respond to the component motion, neurons of MT
respond to pattern motion (Rodman and Albright, 1989; Priebe
et al., 2003; Bradley and Goyal, 2008). The problem of computing
pattern motion from local component cues has been studied
extensively using computational modeling (Rust et al., 2006),
Psychophysics (Adelson and Movshon, 1982; Movshon and
Newsome, 1996), functional Magnetic resonance imaging (Huk
and Heeger, 2002), and single unit Electrophysiology (Movshon
and Newsome, 1996).

Two-NF Network Simulated Using Moving
Two-Dimensional Object (Plaids, Solid
Square) Sequences Show Pattern Selective
Responses
We now propose an expanded version of the direction sensitive
architecture to model component and pattern selectivity. The
proposed hierarchical pattern selectivity model has 3 stages:
input layer followed by two NFs (as shown in Figure 1A),
corresponding to V1 and MT. We simulated the network
with two types of input stimuli: (i) moving the solid square,
and (ii) moving plaids, and showed that the neurons in NF1
respond to the direction of component motion (edges, gratings)
while those in NF2 respond to the direction of pattern motion
(square, plaids).

The training set consists of 2D patterns (square, plaid)
moving in 8 directions: 0, 45, 90, 135, 180, 225, 270, and 315◦.
Complete details about stimuli generation and the parameters
used in the simulations are given in the Methods section and
Table 1 respectively.

FIGURE 3 | Aperture Problem. (A) A grating pattern consisting of alternating

black and white bars. The grating is allowed to move in different directions.

Thin arrows in (A) represent the set of physical motions of the grating pattern

in various directions. The motion of all these grating patterns is indifferent

when viewed through a small window, and this motion direction is

perpendicular to the orientation of the grating (as a thick arrow shown in B).

This ambiguity in determining the direction of motion of the grating is termed

as aperture problem. In case of motion of a two-dimensional object (e.g.,

square or diamond), local motion cues (dotted arrows show in C) are divergent

and are very different from the actual object motion. In (D) thin arrows

represent the local motion of each edge seen through RF. An intersection of

two constraint lines from both the edges represents the true motion of an

object (thick arrow in D).

Case 1: Moving Solid Square
NF1(13 × 13 units) was trained using moving square stimuli
whose frame size is 64 × 64 pixels and square size is 24 × 24
pixels. The RF of NF1 neuron is of size 12 × 12 pixel. Hence at
every instance, NF1 neurons either look at part of a square or
no square at all. The parts of a square are horizontal and vertical
edges which are also called its components. Due to the smaller
receptive fields, NF1 neurons encode only that local motion
direction that is orthogonal to edge orientation. As result, NF1
neurons become selective to 4 directions of an edge motion (0,
90, 180, 270◦) even though the square moved in 8 directions. To
verify that the NF1 neurons respond to the component motion
in the input sequence, we created moving edge stimuli that move
in four directions (left to right, right to left, top to bottom, and
bottom to top). Each moving edge stimulus is made up of 64
frames with frame size 64 × 64 pixels (i.e., for each time step
the edge moves one pixel ahead). Eight sample frames of edge
moving from left to right are shown in Figure 4A. The responses
of NF1 neurons (that was earlier trained using moving square
stimuli), to the 4 moving edge stimuli are displayed in Figure 4B.
The figure shows four independent neuronal populations, each
is selective to the specific edge motion. Figure 4D depicts the
direction selectivity map to the edge moving in four directions.
Figure 4C represents tuned afferent weights of NF1 selected
neurons. We observed that the afferent weights of NF1 neurons
were tuned to the direction of motion of an edge.
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FIGURE 4 | NF1 neuron preferences to moving edge stimuli. NF1 of the

two-NFs network is trained using moving square stimuli. 24 × 24 pixel white

square is moved on 64 × 64 pixel black background. As neurons in NF1 has

small receptive fields (12 × 12 pixels), at any instance, it can see a part of a

square and become selective to local motion cues also called component

motion which is an edge motion in this case. (A) Sample input of an edge (64

× 64 pixels) moving from left to right. An edge can be moved in four possible

directions [left to right (L to R), right to left (R to L), top to bottom (T to B) and

bottom to top (B to T)] and the response of NF1 to an edge motion is

displayed in (B). Even though NF1 is trained using moving square objects,

most of the NF1 neurons tuned to local edge motion (i.e., component motion).

(C) Depicts the trained afferent weights (12 × 12 pixel each) for the selected

neurons. (D) Topographic map formed out of NF1 response to edge motion:

The arrows indicate the neuron preferences in the direction of edge motion.

Next, we train NF2 keeping NF1 weights fixed. The moving
square stimulus was presented to the network frame by frame.
The NF1 neuron responses (the local component cues) were
presented as input to NF2 neurons. Training was carried out for
500 epochs. We observed that the NF2 neurons are selective to a
specific direction of square motion.

We inspected the development of pattern selective properties
of the NF2 neurons by computing the network response to a
two-dimensional moving object (square). Figures 5A–D displays
the network responses to four moving square stimuli. Each
cluster depicts the firing patterns of neurons in NF1 and NF2,
in response to the presentation of a moving square sequence. The
square pattern was translated spatially from one end to another
across the frames. Accordingly, NF1 firing pattern (as shown
under NF1 column in Figures 5A–D) also displaces, since the
neurons here encode the edge motion seen within the RF. In NF2
(as shown under the NF2 column in Figures 5A–D), the activity
pattern is stabilized across the frames and the corresponding
neuron population is found to be encoded uniquely the true
direction of stimulus motion. The pattern selective properties
of NF2 neurons are abstracted as a map in Figure 5E. Like
neurons in the direction selectivity map of Figure 2D, here also

NF2 neurons preserve topography. That is, the patch of neurons
responding to a certain direction of motion often have adjacent
neuron patch with firing preferences to the opposite direction.
Trained afferent weights for the sample of NF2 neurons are
plotted in Figure 5F.

Case 2: Moving Plaids
Moving gratings and moving plaids are created as described in
the Methods section. NF1 was trained with sinusoidal gratings
moving in 8 directions. The trained network response is shown
in Figure 6B. Eight different firing responses are shown, each
corresponding to a specific direction of motion grating. Also,
overlapped populations are noticed in case of drifting stimuli
with similar orientations and opposite motion directions. The
component selectivity map to moving gratings is depicted
in Figure 6C.

Now the question is: Does NF1, trained using moving
grating stimuli, respond to the direction of plaid components by
extracting them from the moving plaid stimulus? To this end,
we examined NF1 responses to moving plaid stimuli, which is
constructed by superimposing two orthogonal moving gratings
(chosen from the training set used to train NF1) separated by
90◦ (Figure 6A). As shown in Figure 7A (under column NF1-
Resp) two distinct activity bubbles are observed in response to the
moving plaid stimuli. To verify whether these response profiles
derived exactly from the same two gratings used to construct the
plaid, we compared it to Figure 6B. We were able to ascertain
that the NF1 neurons that were trained using moving grating
stimuli will produce two distinct population responses; each is
corresponding to the moving gratings using which the moving
plaid was made of.

We proceed to train NF2 using moving plaid stimuli, with
NF1 weights kept constant. We illustrate the response properties
of trained NF2 neurons in Figure 7B. We observed that distinct
widely separated clusters of neurons become selective to each
moving plaid stimulus. The neuron preferences to different
directions of moving plaids are displayed as the pattern selectivity
map (Figure 7C).

Three-Layer Network (With Two NFs)
Simulated Using Translated Random Dot
Stimuli Shows Translational Flow Selective
Responses
In this study, we present an extension of the model of the
previous study to respond to translated random dot patterns.
The architecture of the network used for this purpose (shown in
Figure 8A) is similar to the earlier study except that it consists
of a single layer perceptron above NF2, which receives input
from NF2 in fully connected fashion and was trained using
backpropagation. Network properties and the parameters for
NF1 andNF2 are fine-tuned according to the present study.More
details about the size of the NFs, the number of epochs and other
scaling and learning parameters used in the simulation are shown
in Table 1.

The stimulus of this study, a translational flow sequence, was
created by moving randomly placed tiny squares (assumed as
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FIGURE 5 | NF2 response to moving Square stimuli. (A–D) are four clusters. In each cluster first column depicts the frames of moving squares stimuli (64 × 64

pixels), and the corresponding activity on NF1 (13 × 13 units), and NF2 (15 × 15 units) are shown in the next two columns. The label on the first column represents

the direction of motion of a square object (A: 180◦, B: 45◦, C: 0◦, and D: 225◦). Neurons in NF1 respond to local motion cues. At each frame presentation, different

neurons receive afferent input from the square object and become active, according to its preferred direction of motion, thus the activity pattern follows the square

stimulus. In NF2 neurons are selective to the entire object motion (also called pattern motion) by aggregating local motion cues from NF1. Nearly stabilized activity can

be seen over the presentation of the whole moving square sequence. Different patches of neurons uniquely become selective to different directions of square motion.

(E) Shows the pattern selectivity map plotted out of NF2 neuron responses to moving square stimuli. The arrows indicate the neuron preferences to 8 motion

directions: 0, 45, 90, 135, 180, 225, 270, and 315◦. The magnitude of the arrow represents the activity of the neuron. Peak activity is represented by neurons with the

highest magnitude. (F) Represents the NF2 afferent weights (13 × 13 pixels each) of the selected neurons. It shows that the NF2 neurons developed spatiotemporal

receptive fields in the direction of pattern motion.

dots) coherently in 4 directions: 0, 90, 180, and 270◦. Sixteen
tiny squares, each of size 2 × 2 were placed randomly on a
32 × 32 matrix. We assumed it as dot configuration. Twenty
five such random dot configurations were created and each of
those configurations is translated in four directions to create 100
translational flow sequences. Out of these, 80 sequences were
used for training and the remaining 20 for testing. Complete
details about flow stimuli generation were furnished in the
Methods section.

During training, each translational flow sequence from
the training set was drawn randomly and presented to the
network frame after frame. The two NFs in the network
were trained one by one as is described in the previous
sections. A lower NF was first trained to saturation before
the next NF is trained. We fixed afferent weights of NF1
as “1” and maintained them as constant throughout the
simulation. This small variation was adapted to ensure the
NF1 neurons encode position independent motion selective
responses. NF2 afferent weights are random initially and were
adapted during training.

We examined the response properties of the trained neurons
in both the NFs by plotting the network response to the training
set. Figure 8B shows the response of the NF2 neurons to the
selected configurations of the training set. It can be observed
that in NF2 four different neuron clusters were formed each
is selective to the specific direction of translational flow and is
independent of dot configuration. The resulting NF2 response of
the 80 sequence training set is abstracted as a translational flow
selectivity map as shown in Figure 8C. The arrows indicate the
preferred direction motion of the neurons.

Generalization capability of NF2 neurons was verified by
presenting a test set to the network. We observed that the
activity pattern appeared in both the NFs is nearly similar to
the activity pattern seen for the training set. To quantify these
observations, we added a single layer perceptron network (acts as
a classifier) as an additional layer aboveNF2 and are trained using
NF2 neuron responses of the training set. Training was carried
out for 300 epochs and the corresponding error bar is shown
in Figure 8D. The trained perceptron network successfully
classified translational flow sequences into 4 directions with an
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FIGURE 6 | NF1 response to moving grating stimuli. Grating stimulus consists of alternating black and white bars. Gratings (64 × 64 pixels) are moved in 8 different

directions such that the direction of motion is orthogonal to the grating orientation. Plaid stimulus moving in 0◦ is created by superimposing two gratings moving in

45◦ and 135◦ as shown in (A). NF1 (20 × 20 units) is trained with moving grating stimuli for 1,500 epochs and the response is plotted as shown in (B). Here the first

and third columns display the frames of moving grating. The label above it indicates the direction of motion of the grating. The second and the fourth columns

represent the neuronal preferences to a given grating. As seen in other simulations, different neuron patches become active to different motion directions. Also,

component selectivity map is shown in (C). The arrows indicate the neuron preferred directions of motion.

accuracy of 100 % on the training set and 90% on the test set with
2 misclassifications.

Model Behavior in Response to Variations
in rexc, rinhb
Neurons in the neural field (NF) receive initial activity as a
weighted sum of input. Each input causes initial activity in many
neurons, and most of this activity is redundant. To achieve
efficient coding this redundant activity must be reduced where
the role of lateral interactions come into the picture. Lateral
inhibition introduces competition among the neurons by de-
correlating activity between distant neurons in the NF and
increasing correlation among nearby neurons. In the simulations,
these effects were controlled by 4 parameters: rexc, rinhb, γexc,

γinhb.

Case 1: If rexc is too small (e.g., <3) small neuron populations
respond to each stimulus. This result in the inefficient
use of available map space and smooth topographic
maps cannot be produced.

Case 2: If rinhb is low (e.g., close to rexc), decorrelation between
distant neurons decreases and the correlation between
nearby neurons increases (due to high excitatory),
results in highly saturated response spreads across
the sheet. Most of the neurons have preferences in
multiple directions. Thus, during training inputs are
transformed into overlapped spatial representations.

Case 3: If rexc is too high (e.g., half of the network
space), a large population of neurons responds
to each stimulus, resulting in redundant coding.

Different input sequences transform to same spatial
representations

Case 4: Too high rinhb (global inhibition) results in the
elimination of excitatory activity during settling. As a
result, none of the weights get updated in response to
the input sequence. Training will not take place.

The same effects can be achieved in small scales by adjusting
overall strength of excitatory and inhibitory effects represented
by γexc, γinhb. In most of the simulations, γinhb is set to 1 and the
only γexc is varied.

Decoding Stimulus Information From the
Neuronal Responses of the Trained
Network
In all the simulations described above, we showed that the
network response and its corresponding map can encode the
direction of the moving stimuli. The proposed hierarchical
feedforward neural field model acts like encoder where the pixel-
based visual representation is transformed into high-level neural
population activity patterns. In data analysis terms, the proposed
model is creating a spatial map of spatiotemporal input patterns.
To quantify the efficiency of this mapping, we used a simple
single layer perceptron network as a decoder. Perceptron is a
supervised learning algorithm to classify only linearly separable
data points (Minsky and Papert, 1969). Here perceptron is not the
part of dorsal motion detection stream which we are modeling;
rather it is a proof of principle to show that the inputs can be
decoded from the abstractmaps of theNFs using a linear classifier
like perceptron.
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FIGURE 7 | Two-NFs network response to moving plaid stimuli. the Plaid (64 × 64 pixels) stimulus is created from its components (two gratings) and is allowed to

move in 8 different directions. NF1 (analogous to V1) is trained with plaid components (i.e., moving gratings) and its response to moving plaid stimuli is plotted in (A).

First, third, fifth, and seventh columns display a frame in moving plaid sequence. The label above it indicates the direction of motion of a plaid. Second, fourth, sixth,

and eighth columns represent the NF1 response to plaids, and two neuron populations are active in response to every moving plaid stimulus. As each plaid is

composed of two gratings, neurons that are preferential to these moving gratings are becoming active. For example, the plaid moving in 315◦ is made from gratings

moving in 270 and 0◦. The activity pattern of these two plaid components (shown in Figure 6B) gets integrated and produces a plaid response as two activity

bubbles. NF2 (analogous to MT) is trained using plaid pattern moving in 8 directions, by keeping NF1 weights constant. The response of NF2 to four sample stimuli is

shown in (B). The first column represents frames of moving plaid stimuli, second and third columns labeled as NF1-Resp (20 × 20 units) and NF2-Resp (13 × 13

units) represents the responses of NF1 and NF2, respectively. We observed that in response to 8 moving plaid stimuli 8 different patches of neurons become selective

to different directions of motion, and the corresponding pattern selectivity map is shown in (C).

Figure 9 represents the sum square error obtained during the
perceptron training for the three tested stimuli. Three different
learning curves represent the nature of information given to the
perceptron network. In case 1: moving bar is a simple stimulus.
This information is encoded by single layer neural field network,
as a topographically ordered map. The perceptron learned this
representation as shown in the error curve and converges at 500
epochs. In case 2: moving square is a two-dimensional object.
A two-layer neural field network encoded it as a topographically
ordered map, but it is less regular than that formed with bar.
Fluctions seen in the error curve before the perceptron converges
at 300 epochs, shows that the map generated is more complex
than in the previous case. In case 3: moving plaids is more
complicated input. A two-layer neural field network encodes this
information in much more of complex map form. Perceptron
trained with this input converged at nearly 500 epochs.

We made small modifications to the model from one
simulation to other. With the simulation using moving square

both NF1, NF2 are trained using moving square stimuli whereas
in simulation using moving plaids, NF1 is trained using moving
gratings and NF2 is trained using moving plaids. In the case of a
square, NF1 encodes the direction of motion of an edge. As the
square is moving on a black background, at any instance edge
motion can be seen through the small receptive field that covers
part of a square. NF1 need not be trained by creating a moving
edge separately. However, NF1 that trained on plaids, cannot
see the direction of motion of gratings from the plaid motion.
Plaid moving in 0◦ was created by a pair of gratings moving in
45 and 315◦. The NF1 trained using moving plaids can neither
encode the direction of motion of gratings nor the direction of
motion of plaids. Also with the simulation using random dots we,
made variation to the afferent weights. All initial afferent weights
are taken as 1 (unlike other simulations where they are random
initially) and keep them constant throughout the simulation to
make network learn only one feature, –that is the direction of
motion, –and ignore the position information of dot. Due to such
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FIGURE 8 | NF2 response to translational random dot stimuli. (A) Proposed 2NFs network: both NFs are trained using unsupervised asymmetric Hebbian rule and

the third single layer perceptron is trained using backpropagation. Random dots stimulus (RDS) is created by placing tiny squares of size 2 × 2 pixel (assumed as

dots) on 32 × 32 pixel size grid randomly with a constraint that each 8 × 8 pixel grid can accommodate only one dot. Thus, 16 dots are placed randomly and moved

dots coherently in 4 directions: 0, 90, 180, 270◦ to create translational flow sequences. Thus, each dot configuration creates 4 sequences for the train set. First, third

and fifth columns in (B) shows three different dot configurations moving in the same direction. Second, fourth and sixth columns show the NF2 activity, when these

configurations moved in 4 directions. Here the neurons encode the coherent motion direction, independent of the precise dot configuration. (C) It represents the

translational flow selectivity map in response to the train set consisting of 80 sequences. The arrow direction indicates the neurons preferred direction of motion to the

translational flow stimuli. (D) Error plot obtained while training single layer perceptron using NF2 responses of the train set. Single layer perceptron has an input layer

and an output layer; the weights (all-to-all connections) between them are trained using regular backpropagation. Perceptron took nearly 300 epochs to learn the input.

spatial homogeneity in the afferent weights, the neuron’s response
in NF1 is insensitive to the position of the dots.

Robustness of the Model
In this section, we present the robustness of the trained network
weights to various noisy stimuli and to the input of varying

RI =
1− Number of neurons deviated from its preferred direction of motion

Total number of neurons on NF
(7)

bar length. Two types of noises are added to the moving
bar stimuli.

Salt and pepper noise is added to the training set with the
initial noise pixel density 0.01. Fifty noisy sets were generated
by increasing the noise pixel density up to 0.99 in steps of
0.02. The density 0.02 indicates 1% (40 pixels approximately)
of the image pixels (64 × 64). To increase the noise density
in the current noisy set, 1% of the non-noisy image pixels
were made noisy by choosing them randomly. All these 50

noisy sets were presented to the network (trained earlier
on non-noisy moving bar stimuli) in the sequence and the
robustness of the trained weights are abstracted as a robustness
index (RI) using the Equation (7). We observed that the
RI value was decreased with the increase of noise pixels in
the stimuli.

Note that each neuron in the network that was trained earlier
on non-noisy moving bar stimuli shows a high response to the
specific direction of bar motion and this direction is considered
as the preferred direction of that neuron.

Gaussian noise was added to moving bar stimuli with mean
0 and variance varied from 0.02 to 1 in steps of 0.02. Thus, 50
noisy sets were generated, presented to the trained network in
the sequence and observed the decrease in the RI value with the
increase of the noise variance.
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FIGURE 9 | Error graphs obtained during the perceptron training. (A–C) Represents the error plots obtained for Bar, Square, and Plaids respectively, during the

perceptron training. The NF layer encodes the motion information of moving stimuli as a unique neuronal population response over a network space. Perceptron takes

this population values as input and learns the pattern in the input. The complexity of this response pattern is low to the bar and high to the plaids. The perceptron

trained on less complex bar input converges with smooth error graph and the fluctuations were seen in the error graphs of the other two which were proportional to

the complexity of the input.

FIGURE 10 | Robustness of the trained network: NF1(20 × 20 units) trained using non-noisy moving bar is used to test the robustness of the proposed network.

(A,B) represents the decrease in the robustness index (RI)of the network with an increase in the noise density. The thick black lines in (A,B) indicates the RI average

across 20 trials. In the case of salt and pepper noise, RI reaches zero when 50% of the training set pixels were made noisy. Similar results can be seen with Gaussian

noise with variance = 1. The network shows high tolerance: to the Gaussian noise with a variance of <0.5 and to the salt and pepper noise whose density of <0.3.

(C,D) represents the number of pixels deviated from its preferred direction in relation to the noise density. (E) represents the robustness of the network to the varying

bar length. RI reduced slightly with a change in the bar length. (F) shows the number of neurons deviated from their preferred directions to the change in bar length.

The RI value calculated above indicates that the network is less
tolerant of the highly noisy inputs. To know, the amount of noise
allowed in the training set, to produce clear motion selective
responses, we conducted 20 trials. In each trial Gaussian, salt and
pepper noises are added to the training set as described above

and estimated the network performance: by plotting RI value
(shown in Figures 10A,B) and by visually inspecting the map
generated while presenting the input with varying noise. In the
case of Gaussian noise, network shows high tolerance to the noise
whose variance is <0.5. Eighty percent of the trials indicate the
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TABLE 2 | Network robustness statistics across 20 trials.

Noise Noise

density

% of trials

Gaussian 0.02–0.5 1

0.5–0.8 16

0.8–1 3

Salt and Pepper 0.01–0.3 4

0.3–0.7 14

0.7–1 2

Columns 2 and 3 together indicate the noise range at which network deviates from its

clear motion selective clusters and fails to converge across trials.

network fails to converge when the noise variance lies between
0.5 and 0.8 (Table 2). Similarly, in case of salt and pepper noise,
network displays high tolerance to the input with pixel density
≤0.3 (i.e., 15% percentage of the image pixels were made noisy)
and fails to converge when noise pixels density varies between 0.3
and 0.7 (Table 2). Thus, given network shows high tolerance (i) to
the stimuli with Gaussian noise whose noise variance is <0.5 and
(ii) to the stimuli with salt and pepper noise whose pixel density is
<0.3. Figures 10C,D represents the percentage of pixels deviated
from its preferred direction in relation to the noise density.

Varying the Bar Length
The robustness of the trained network to varying bar lengths
was also investigated. The test set was created by varying bar
length from 15 to 35 pixels in steps of 1 pixel. The bar length
in the training set was 30 pixels. The response of the network was
abstracted as robustness index. Figure 10E shows that network is
highly robust to the changes in the bar length. The slight decrease
in the robustness index is proportional to the difference between
the bar lengths in training and test stimuli. Figure 10F shows
the number of neurons deviated from its preferred direction
of motion.

DISCUSSION

The proposed model can explain the diverse properties of the
neurons present in different regions of the motion pathway.
The model reproduces the motion-selective properties of cells
in V1, MT, and MST. We used a hierarchical architecture
consisting of neural fields to model the direction-selective cells
in V1 and pattern selective cells in MT, and translational flow
selective cells in MST complex. All the simulations carried out
in this study, follow the same training procedure, and used the
same biologically plausible asymmetric Hebb’s rule to adapt the
weights. The difference lies only in network size and parameter
values (Table 1).

We show that the asymmetric intracortical circuitry can
learn motion trajectories. In conventional symmetric Hebbian
learning the pair of weights connecting a given pair of neurons,
converge to the same value since symmetric Hebbian learning
leads to symmetric weights. NF with symmetric weights is
essentially a Hopfield network and therefore has only fixed
point attractors. Such fixed point dynamics are suitable for
storing static patterns as in a Hopfield network, but not for

storage or generation of sequences. Even in his original paper on
associative memories (Hopfield, 1982), Hopfield had suggested
an asymmetric variation of the Hebb’s rule for storing and
generating sequences. However, such simple schemes do not
perform well on large sequences and, due to the emergence
of spurious states; the sequence information is quickly lost.
Buchmann and Schulten (Buhmann and Schulten, 1989) have
proposed a more sophisticated version of the same basic model
but with extra conditions that prevent transitions to states
that are not the immediate next state. Asymmetric Hebbian
learning has been applied even for the problem of sequence
recognition. Schultz and Reggia (Schulz and Reggia, 2004)
have developed an extension of Self-Organizing Map with
lateral connections trained by asymmetric Hebbian learning
for recognizing phonetic sequences of words. The proposed
neural field model is fashioned on similar lines as the models
described above. It uses temporally asymmetric Hebbian learning
to represent moving stimuli. In order to show that the
temporally asymmetric is crucial to our results, we trained
the network on moving oriented stimuli with both symmetric
and asymmetric Hebbian learning (see Supplementary Results).
The results show that the network learns to distinguish the
direction of motion only when asymmetric Hebbian learning
is used. It confuses between two moving bar stimuli of the
same orientation and moving in opposite directions in case of
symmetric Hebbian learning.

Earlier models of direction selectivity (Miikkulainen et al.,
2006) and pattern selectivity by Rust et al. (2006) achievedmotion
sensitivity by either of two scenarios: (i) by giving the entire
sequence as a stack of frames at a single time step, or (ii) a part
of the stimulus is presented to the network via lagged cells. By
contrast, the model proposed here has only access to the current
frame. Information about the history of the stimulus is preserved
in the network dynamics. When the input changes from one
frame to the next the lateral interactions that were adapted to the
previous frame will drive the new afferent activity and the weights
updated with a new settled response will keep the memory of
the history.

The Main Findings of the Study
Simulation-1
The model with a single NF is trained to demonstrate
direction selective properties of V1 cells. Motion selectivity
is demonstrated by showing a tuned neuron response to
a moving stimulus. Each neuron becomes selective to the
inherent motion feature specified through a sequence of frames.
Different neuron populations showed preferences to different
motion directions of moving bar. Direction selectivity maps
illustrated here resemble what has been observed in animals
(Weliky et al., 1996). For instance, a patch of neurons with
preference to a specific direction of motion will usually have a
neighboring patch with preference to an opposite direction of
motion (Shmuel and Grinvald, 1996). We also observed the self-
organized tuned afferent weights. We revealed that the push-
pull effect of lateral interactions in conjunction with weight
asymmetry, develop spatiotemporal receptive fields selective for
the direction of motion as found experimentally in the cortex
(DeAngelis et al., 1995).
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Simulation-2
We modeled the pattern selective responses of MT cells using
the hierarchical feed-forward network, using two types of moving
stimuli: (i) moving square, (ii) moving plaids.

In case-i, both the NFs were trained with moving square
stimuli and showed that neurons in NF1 (analogous to V1)
encode the direction of local edge motion (component motion).
These local motion cues are integrated and passed on to NF2
(analogous to MT) where neurons respond to the true direction
of square motion. Integration of local motion cues by MT
neurons was shown earlier in various experimental andmodeling
studies (Movshon et al., 1985; Movshon and Newsome, 1996;
Simoncelli and Heeger, 1998; Pack et al., 2001; Born and Bradley,
2005). To our knowledge, ours is the first modeling study to
explain the component and pattern motion selectivity using a
two-dimensional object, the square.

In case-ii, the first NF (analogous to V1) was trained with
moving gratings and the second NF (analogous to MT) was
trained with moving plaids (composed with 2 gratings). We
showed that in response to moving plaid stimuli, neurons in
V1 produced two activity bubbles, representing the direction of
motion of plaid components (i.e., gratings). In MT single activity
bubble was observed, representing the true direction of motion
of plaids. These results are in accordance with earlier studies
where they showed bimodal polar plots to depict responses of
V1 cells and unimodal polar plots for MT cells to the moving
plaid stimulus (Albright, 1984; Movshon and Newsome, 1996;
Rust et al., 2006). We also plotted pattern selectivity maps and
spatiotemporal receptive fields that are selective in the direction
of pattern motion.

Simulation-3
In this study we simulated a network with two NFs, using
more complex stimuli: RDS sequences that follow translational
trajectories, to simulate the translational flow selective properties
of the neurons at MST. A set of 25 random dot configurations
were created and each move in 4 directions to create 100
sequences. NF1, NF2, and perceptron were trained one after the
other with sequences created from 20 configurations. Remaining
5 sequences considered as a test set. Now the trained network
was presented with the training set. It showed that the NF2
neurons can encode the coherent motion direction of the dots,
independent of the dot configuration. When the test set was
presented, it showed that the network can extract the direction
of motion of the dots in unseen sequences with an accuracy of
90%. Thus, the proposed network can be generalized to extract
the motion direction in translational flow sequences. Unlike in
earlier simulations in this simulation, we considered RDSmoving
in 4 directions. Also, the image size is reduced to 32 × 32 pixels.
This reduction is done to reduce the computational expense.

Future Studies
In the third study, we proposed and explored network for
translational flow selectivity using translational random dot
sequences. There are other variants of optic flow, such as radial
flow (expansion/contraction) and circular flow (clockwise and
anticlockwise rotation). The brain region that is selective to the
translational flow is different from the region that is selective

for radial and rotational flow (Morrone et al., 2000). In future
studies, we would like to explore and simulate the neurons (as
NF3) that are selective for radial and rotational flow. Also, we
would like to simulate the more biologically plausible models
on real-world visual motion inputs. For example, instead of
NFs consisting of sigmoidal neurons, we would like to explore
more realistic neuron models like the FitzHugh-Nagumo neuron
which is likely to present richer dynamics more suitable for
motion processing.

METHODS

Moving Bar Stimuli
Rectangular white bars of length 30 pixels and width 2 pixels
were oriented in the orthogonal direction of motion were made
to move on black background of size 64 × 64 pixels. The bar
moving from one end to other in a specific direction creates a
single sequence. A set of 8 such sequences were created to train
the network by moving the bar in 90, 135, 180, 225, 270, 315, 0,
and 45◦. Each video sequence is made up of 8 frames with bar
displacement (step size) of 7.8 pixels. Single neuron experiments
reported that most of the V1 direction-selective neurons are
highly selective if stimulus motion direction is perpendicular to
its orientation (Albright, 1984).

Moving Gratings and Plaids Stimuli
Moving plaid patterns were generated by superimposing two
orthogonal sinusoidal gratings, having the same spatial frequency
and moving at the same speed. Two orthogonal gratings with
the same spatial frequency have a strong tendency to cohere
(Adelson and Movshon, 1982). So first we generated drifting
gratings that move orthogonally to its spatial orientation. A single
point at which the loci of grating motions intersect will give the
plaid motion (Adelson and Movshon, 1982), so we combined
gratings separated by 90◦ to generate plaids. Gratings and plaids
are allowed to move in 8 directions: 0, 45, 90, 135, 180, 225, 270,
and 315◦. For instance, the plaid moving in 45◦ is generated by
the perceptual coherence of two gratings moving in 0 and 90◦.
The training set was generated with video sequences of moving
gratings and moving plaids. Each moving grating sequence is
composed of 10 frames with a frame size of 64 × 64. The spatial
frequency of the grating is set to 5 pixels.

Moving Square Stimuli
The training set is made up of 8 fixed length sequences with
5 frames each. Each moving stimulus consists of White Square
of size 24 × 24 pixels, moving through the origin over a black
background of size 64 × 64 pixels. The white square was moved
in 8 possible directions: 0, 45, 90, 135, 180, 225, 270, and 315◦

from 8 different starting positions.

RDS-Translation Stimuli
Random dot stimuli were generated by positioning 16 white dots
(actually they are tiny squares and assuming them as dots for
simplicity) of size 2× 2 pixels randomly upon a black square grid
of size 32 × 32 pixels with a constraint that each 8 × 8 window
of black background can accommodate only one dot. A set of 25
such dot configurations were created and each configuration is
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moved (displacing X, Y coordinates one location ahead at a time)
in 4 directions (θ): 0, 90, 180, 270◦. If the dot exceeds the square
boundary of the frame, it was wrapped around to reappear on the
opposite side of the frame; thus the dot density across the frames
was kept constant. Hundred translational random dot sequences
were produced with 5 frames each. Out of 100, 80 sequences were
used as training set, and the remaining 20 sequences were used as
a test set. All the above inputs were programmed in MATLAB.

Perceptron
Single layer multiclass perceptron with input and output layers
were used to classify the response of the neural field network and
assess its performance. The number of units in the perceptron
input layer is equal to a number of neurons in the NF layer from
which perceptron receives input. The number of units in the
output layer is equal to the number of classes. Thus, perceptron
network size is different for different simulations. The equations
that govern learning are:

Oi = g(
∑

j
WjiIj + b)

E = yi − Oi

1Wj = αIjE
1bj = αE

where g = Sigmoid function, yi be the correct output, Oi be the
actual output, E is the error, α is the learning rate whose value is
0.1 in the simulation.
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