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The neural mechanisms of altered consciousness that accompanies most epileptic
seizures are not known. We have reported alteration of consciousness resulting from
electrical stimulation of the claustrum via a depth electrode in a woman with refractory
focal epilepsy. Additionally, there are reports that suggest possible claustral involvement
in focal epilepsy, including MRI findings of bilaterally increased T2 signal intensity in
patients with status epilepticus (SE). Although its cytoarchitecture and connectivity
have been studied extensively, the precise role of the claustrum in consciousness
processing, and, thus, its contribution to the semiology of dyscognitive seizures are
still elusive. To investigate the role of the claustrum in rats, we studied the effect
of high-frequency stimulation (HFS) of the claustrum on performance in the operant
chamber. We also studied the inter-claustral and the claustro-hippocampal connectivity
through cerebro-cerebral evoked potentials (CCEPs), and investigated the involvement
of the claustrum in kainate (KA)-induced seizures. We found that HFS of the claustrum
decreased the performance in the operant task in a manner that was proportional
to the current intensity used. In this article, we present previously unpublished data
about the effect of stimulating extra-claustral regions in the operant chamber task as
a control experiment. In these animals, stimulation of the corpus callosum, the largest
interhemispheric commissure, as well as the orbitofrontal cortex in the vicinity of the
claustrum did not produce that same effect as with claustral stimulation. Additionally,
CCEPs established the presence of effective connectivity between both claustra, as well
as between the claustrum and bilateral hippocampi indicating that these connections
may be part of the circuitry involved in alteration of consciousness in limbic seizures.
Lastly, some seizures induced by KA injections showed an early involvement of the
claustrum with later propagation to the hippocampi. Further work is needed to clarify
the exact role of the claustrum in mediating alteration of consciousness during epileptic
seizures.

Keywords: attention, dyscognitive seizures, kainic acid, connectivity, electrical stimulation

Abbreviations: GABA, γ amino butyric acid; TLE, temporal lobe epilepsy; DBS, deep brain stimulation; mPFC, medial
prefrontal cortex; MD, mediodorsal; CCEPs, cerebro-cerebral evoked potentials; LFS, low-frequency stimulation; HFS,
high-frequency stimulation; RSE, refractory status epilepticus; EEG, electroencephalography; SRS, spontaneous recurrent
seizures.
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INTRODUCTION

The neural correlates of consciousness are not fully understood.
Altered consciousness is the hallmark of focal dyscognitive
seizures, which are characterized by loss of perception of external
and internal stimuli during wakefulness (Blumenfeld, 2011).
However, the precise brain structures and mechanisms involved
in the pathophysiology of ictal impairment of consciousness
are yet to be identified (Arthuis et al., 2009; Bartolomei and
Naccache, 2011; Blumenfeld, 2012). Regardless of the seizure
onset zone and variation in semiology, the claustrum (Koubeissi
et al., 2014) as well as the frontoparietal association cortex and
the subcortical arousal system in the brainstem and thalamus
(Blumenfeld, 2012), have been implicated in ictal alteration of
consciousness. While recent work has investigated the role of
the claustrum in certain complex behaviors (Smith and Alloway,
2010; Wang et al., 2017; White et al., 2017), attention (Mathur,
2014; Goll et al., 2015), and salience processing (Remedios et al.,
2010, 2014) the main focus of this review is on the role of the
claustrum in consciousness as seen in epilepsy and electrical
stimulation.

NEUROANATOMICAL ARCHITECTURE OF
THE CLAUSTRUM

A detailed up-to-date description of the anatomy is beyond the
scope of our report, which is mostly concerned with epilepsy
and electrical stimulation of the claustrum. The anatomical
aspects and nomenclature are detailed by others (Johnson and
Fenske, 2014; Mathur, 2014). However, we review specific
neuroanatomical aspects here. The claustrum was originally
termed as ‘‘nucleus taeniaformis’’ by Vicq d’Azyr, and later
renamed as ‘‘claustrum’’ by Burdach (Rae, 1954). The claustrum
(literally, ‘‘hidden away’’) is a highly conserved, thin, irregular
sheet of gray matter, curved and embedded in the white matter of
the cerebral hemispheres beneath the neocortex. The exact shape
of the claustrum varies among different species. In humans, it
occupies only 0.25% of the total volume of the cerebral cortex
(Kowianski et al., 1999), and is situated between the putamen and
the insular cortex, separated from these structures by the extreme
capsule laterally and the external capsule medially. The ventral
claustrum is fragmented by fiber bundles related to the anterior
commissure and the uncinate fasciculus and extends laterally to
the amygdaloid complex.

Cell Types
The claustrum has strikingly few neuronal types compared with
those of the cerebral cortex. Two common cell types can be
distinguished. The first are medium to large, spiny stellate, or
fusiform cells (Brand, 1981; LeVay and Sherk, 1981; Braak and
Braak, 1982) which are the common cell types. These spiny cells
possess long, coarse axons, often leaving the claustrum either
laterally or medially. They send and receive projections to and
from the cerebral cortex and their dendrites do not have a
preferred orientation. They have varied soma shapes, including
pyramidal, fusiform, and spherical. The second type of claustral
cells are the small, granular, spine-free cells with axons forming

dense local arborizations. The characteristic feature of these
small cells is that the axons do not leave the claustrum and are
GABAergic. These cells can be subdivided histochemically by the
presence of different neuropeptides or calcium-binding proteins.
The potential implication of the paucity of claustral cell types
in synchronizing the perception of a stimulus across multiple
primary sensory cortices has been discussed elsewhere (Crick and
Koch, 2005).

Claustrum Connectivity
The claustrum is themost densely connected structure by volume
in the human brain (Torgerson et al., 2015). The claustrum
can be divided into three sub-regions according to different
cortical connections: (1) the anterior-dorsal region connected to
the somatosensory and motor cortices; (2) the posterior dorsal
region connected to the visual cortex; and (3) the ventral region
connected to the auditory cortex (Baizer et al., 2014; Mathur,
2014; Milardi et al., 2015). Identification of the anatomical
boundaries of the rodent claustrum, as well as its connectivity
with various brain regions has been methodologically difficult
due to the poor delineation of the extreme capsule resulting
in a continuous structure of the claustrum with neighboring
cortices (Mathur et al., 2009; White et al., 2017). Recent studies
have identified numerous genes that are highly expressed in
the claustrum such as Gng2, parvalbumin (Mathur et al.,
2009), Gnb4 (Wang et al., 2017). Although not exclusively
found in the claustrum, these genes could help delineate its
boundaries.

Anatomic connectivity studies across species, including
mammals ranging from rodents to primates, have revealed
that the claustrum forms extensive reciprocal connections
with the allo- and neo-cortical regions including the frontal,
premotor, ventral anterior cingulate, hippocampus, entorhinal
cortex, temporal, occipital, sensory and motor regions, as well
as sub-cortical structures such as the thalamus, basal ganglia,
caudate nucleus, putamen, globus pallidus, and lateral amygdala
(Pearson et al., 1982; Fernández-Miranda et al., 2008; Milardi
et al., 2015; Torgerson et al., 2015; Arrigo et al., 2017; Atlan
et al., 2017; Reser et al., 2017; Wang et al., 2017; White et al.,
2017). Thus the claustrum might be involved in multimodel
integration of sensory information into single conscious percept
(Crick and Koch, 2005). Bidirectional connections of some
cortical areas with the claustrum have been identified in rats
(White et al., 2017), and mice (Wang et al., 2017). Unlike
primary somatomotor cortices, the anterior cingulate cortex
(ACC; White et al., 2017) and anterior insular cortex (aINS)
in rats (Sinai et al., 2005; Mathur et al., 2009; Menon and
Uddin, 2010; Remedios et al., 2010; Mathur, 2014) are extensively
and bidirectionally connected with the claustrum. Indeed, a
recent study using adeno-associated virus in the mouse found
sparse connections between the claustrum to the aINS, but
extensive reciprocal projections from the aINS to the claustrum
(White et al., 2018). In contrast, no such connections were
observed in cats (Markowitsch et al., 1984). The endopiriform
nucleus, which is implicated in epileptic seizures of temporal
and extratemporal origin (Laufs et al., 2011; Vismer et al.,
2015) is also connected to the dorsal claustrum in both rats
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FIGURE 1 | Cerebro-cerebral evoked potentials (CCEPs) obtained by stimulating the left claustrum at 800 µA (0.1 Hz, 500 µs). (A) The right claustral CCEP with
first negative (N1) peak latency of 12 ms and amplitude of 328 µA. (B) Left hippocampal response with a smaller amplitude of N1 (91 µA), though with same
N1 latency at 12 ms. (C) Right hippocampal response (N1 peak: 85 µA; latency: 16 ms). From Bayat et al. (2018)—with permission.

and rabbits (Lipowska et al., 2000). The claustrum and the
endopiriform nucleus have been considered separate entities in
rodents, they constitute a single continuous structure in primates
(Smith et al., 2018). The extensive connectome of the claustrum
thus supports the possible role of claustrum involvement in
integrating multiple inputs of a single conscious percept (Crick
and Koch, 2005).

FUNCTIONS OF THE CLAUSTRUM

Direct functional analysis by selective lesion or activation
studies has been a challenging to identify the functional aspects
of the claustrum, due to its location and structure. Crick
and Koch suggested a role of the claustrum in binding the
conscious percepts and unifying them in what the individual
perceives as a single experience (Crick and Koch, 2005). Further
studies are required to understand the claustral involvement
in consciousness in synchronizing electrical activity across
these widely-distributed cortical networks (Reardon, 2017).
Additionally, a number of hypotheses have been proposed

that were based on the extensive reciprocal connectivity
of the claustrum with numerous brain regions (Remedios
et al., 2010; Smith and Alloway, 2010; Smythies et al., 2012;
Mathur, 2014; Patru and Reser, 2015). However, the precise
functions of the claustrum, including its role and relevance
in ictal manifestations of dyscognitive seizures are yet to be
explored.

In humans, at least three separate studies that combined
electroencephalography (EEG) with functional MRI (fMRI)
assessing interictal epileptiform discharges in individuals with
focal epilepsy found increased blood-oxygen-level-dependent
(BOLD) signal in the piriform area in association with spikes
(Laufs et al., 2011; Fahoum et al., 2012; Flanagan et al.,
2014; Vaughan and Jackson, 2014). Indeed, based on the
spatial resolution of fMRI, activation of the claustrum may
be indistinguishable from that of the piriform cortex. As part
of an investigation of the possible role of the claustrum in
mediating the semiology of temporal lobe epilepsy, we have
demonstrated the presence of a robust connectivity between
the claustra and the hippocampi using cerebro-cerebral evoked

FIGURE 2 | Electrical stimulation of the left claustrum in a patient with intractable epilepsy. (A) AI4 contact represented as a red circle, when stimulated elicited
impairment of consciousness. (B) Representation of 15 selected bipolar channels. Z-scores are used for estimating the variations of h2 coefficients relative to the
prestimulation period. Blue circle: two randomly chosen AI4 stimulations. One causes disruption of consciousness. Red cross: two randomly chosen AI4 stimulations
that did not interfere with consciousness at lower current intensities. Significant variations are shown in medial parietal (MP) channels and posterior frontal (PF)
channels. AF, anterior frontal; MF, medial frontal. From Koubeissi et al. (2014)—with permission.
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potentials (CCEPs; Bayat et al., 2018; Figure 1). These results
constituted an in vivo evidence of known connections that may
be part of the circuitry involved in alteration of awareness
in limbic seizures. Importantly, seizure-related inhibition of
thalamic and brainstem structures with consequent deactivation
of the cortex has been suggested as the neural basis of altered
consciousness (Blumenfeld, 2012). The claustrum may be an
important node in this process, as suggested by the study by
Smith et al. (2017) that utilized seed-based resting-state fMRI
(RS-fMRI) and neuroanatomical tracing to study the anatomical
connections of the claustrum in relation to its functional
connectivity in quiet-awake vs. isoflurane-induced anesthetized
rats. During wakefulness, strong claustral interhemispheric
functional connections with themedial prefrontal cortex (mPFC)
and mediodorsal (MD) thalamus as well as with other cortical
areas were seen. In anesthetized rats, however, functional
connections with the mPFC and MD-thalamus were attenuated
with no significant changes of connections with the rest of
the cortex. These suggest that claustral connections with the
thalamus and mPFC may be important for arousal.

Clinical Observations Demonstrating the
Roles of Claustrum
A number of clinical studies have reported seizure-induced
claustral changes. Sperner et al. (1996) described a 12-year-
old girl with a sudden onset of status epilepticus (SE) followed
by recurrent focal dyscognitive and myoclonic seizures and
psychosis. A brain MRI done within 7 days of seizure onset
showed increased T2 signal and decreased T1 signal of
both claustra. These changes disappeared on repeat imaging
5 weeks later. In a case study of fatal SE of unknown
origin, a 35-year old man with no prior medical history
developed seizures 4 days after the onset of a mild flu-like
symptoms, but no evidence of viral encephalitis. A motor seizure
affecting both arms was followed by loss of consciousness
and confusion. On day 9 there was an increase in seizure
frequency with a decrease in consciousness. Radiological and
neuropathological studies suggested acute bilateral lesions in

both the hippocampus and claustrum. While the first scan
was normal, the second scan showed high signal lesions on
T2 weighed images in the medial aspects of both temporal
lobes and right claustrum. Severe neuronal loss was found
in the hippocampus and the claustrum (Nixon et al., 2001).
Similarly, Ishii et al. (2011) described transient bilateral
symmetric claustral changes in the setting of mumps encephalitis
in a 21-year-old man presenting as a generalized tonic-
clonic seizure. Later, a larger series found six patients among
155 refractory SE cases who had reversible bilateral claustral
T2 hyperintensity on MRI, without restricted diffusion. In these
patients, confusion, stupor, and acute repetitive seizures with
focal motor and myoclonic semiology were common (Meletti
et al., 2015).

Electrical Stimulation Studies
Gabor and Peele (1964) reported that electrical stimulation of
the claustrum in non-anesthetized cats resulted, among other
symptoms, in altered awareness manifesting as crouching, eye
closure, and unresponsiveness to external stimulation. Other
studies found that electrical stimulation of the claustrum in cats
showed contradicting results of either excitation or inhibition of
the cortical neurons causing brief neuronal fast burst, typically
followed by a prolonged suppression in both the oculomotor
frontal eye field (Salerno et al., 1984; Cortimiglia et al., 1991)
and primary visual cortex (Ptito and Lassonde, 1981; Tsumoto
and Suda, 1982). These effects could possibly be attributed to the
feedforward inhibitory loop originated in the claustrum (Bruno,
2011).

In a case report (Koubeissi et al., 2014), the left claustrum was
electrically stimulated in a 54-year-old woman with intractable
epilepsy, with resulting impaired consciousness in a reproducible
way. Stimulating the claustrum using biphasic waves at 14 mA
(50 Hz, 0.2-ms pulse width, 3- to 10-s train durations), but
not at lower current intensities, produced consistent findings
(Figure 2). Impairment of consciousness was described as
unresponsiveness to visual and auditory commands, blank
staring, and an arrest of reading. Cessation of stimulation

FIGURE 3 | Claustrum as the seizure onset zone: representative electroencephalography (EEG) indicating the onset of seizure in the right claustrum and
propagating to the bilateral hippocampi. From Connell et al. (2017)—with permission.
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resulted in an immediate return to baseline with no recollection
of the stimulation period; any words given to the patient
during stimulation could not be recalled. The patient resumed
reading from the same sentence and did not suffer any aphasia
or dysarthria. Neither the stereo- nor surface-EEG showed
any abnormal discharges that outlasted the stimulation. The
stimulation was repeated the next day with consistent findings
and stimulation of adjacent electrode contacts did not elicit
similar responses. In contrast, no sensorimotor or cognitive
impairment was reported in patients where surgical removal
of unilateral claustrum for low-grade cerebral glioma (Duffau
et al., 2007) or lesions of the claustrum (Chau et al., 2015)
Also, claustral lesions associated with striatal lesions do not
necessarily cause lack of consciousness (Straussberg et al.,
2002).

ROLE OF THE CLAUSTRUM IN SEIZURES

The claustrum has been implicated in the generation
and maintenance of seizures in kindling models (Wada
and Tsuchimochi, 1997; Mohapel et al., 2001; Zhang
et al., 2001; Sheerin et al., 2004). Furthermore, employing
kindling antagonism of the claustrum blocked amygdala
kindling suggesting its stronger access to the seizure motor
substrates (Mohapel and Corcoran, 1996). Neuropathological
abnormalities have been reported in kainate (KA) model

of mature rats (Nitecka et al., 1984) and epileptic beagles
(Montgomery and Lee, 1983).

In an attempt to identify the extra-hippocampal seizure onset
zones in the intraperitoneal KA model of epilepsy, we have
examined the electrographic seizure onsets during the acute and
pre-SE seizures and later spontaneous recurrent seizures (SRS;
Connell et al., 2017). Preceding and simultaneous ictal activity
was observed in multiple locations, including the claustrum,
which eventually involved the hippocampus (Figure 3). These
findings indicate the early involvement of the claustrum and
possibly suggest a role in the initiation and propagation of
seizures in this model.

In an attempt to investigate whether claustral involvement
by seizure discharges results in alteration of awareness, we
performed an electrical stimulation study of the claustrum
in rats while performing the operant conditioning task
(Bayat et al., 2018). Occasional behavioral changes such as
motor responses, inactivity, and decreased responsiveness
were observed. However, even when such behavioral
alterations were not obvious, a decreased performance in
the operant task, which requires sustained attention, was
observed in a manner that was proportional to the current
intensity used (Figure 4). Furthermore, in the control group
stimulation of the extra-claustral regions such as the corpus
callosum and the orbitofrontal cortices that are close to the
claustra did not elicit significant reduction in the scores

FIGURE 4 | Effects of claustrum stimulation on rat performance in the operant chamber: in the above plot x- and y-axes represent the stimulation current intensity
and percentage points of effect size, respectively. In experimental group the electrodes were installed in bilateral claustra. In control group the electrodes were placed
in corpus callosum, orbital cortex and frontal cortex (unpublished). GEE analysis in experimental group showed that there was significant decline in the performance
score in unilateral and bilateral stimulation at 600–1,000 µA compared with the rest sessions score (p < 0.001). In the control group (unpublished) there was not any
significant decline in performance at these current intensities in comparison to the rest session (p > 0.05). Modified from (Bayat et al., 2018)—with permission.
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compared to those of the claustral stimulation (not published
previously).

CONCLUSIONS AND FUTURE
DIRECTIONS

It is important to note that indirect clinical evidence implicating a
role for the claustrum in consciousness (such as imaging findings
in some patients with SE), and the direct clinical evidence
through electrical stimulation, as well as the animal data we have
collected so far all continue to be insufficient to formulate a
solid hypothesis about the function of the claustrum. Therefore,
more controlled experiments in animals and prospective data in
humans need to be collected before a clearer picture about the
function of the claustrum can be attained.

Also, the KA model focuses on focal epilepsy and thus
studies using a wide-range of animal models as well as a
genetic model for generalized epilepsy are required to extend the
generalizability of the findings. Future studies should also focus

on the selection of different stimulation parameters and assessing
whether low-frequency stimulation of the claustrum can have
anti-seizure effects. With the advancement of direct access to
the claustrum using modern techniques such as optogenetics
(Wang et al., 2017), precise stimulation studies are possible. Thus
the claustrum could be an attractive new target for epilepsy
therapy.
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