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Type 2 diabetes (T2D) is a complex and heterogeneous disease which affects millions
of people worldwide. The classification of diabetes is at an interesting turning point
and there have been several recent reports on sub-classification of T2D based
on phenotypical and metabolic characteristics. An important, and perhaps so far
underestimated, factor in the pathophysiology of T2D is the role of oxidative stress
and reactive oxygen species (ROS). There are multiple pathways for excessive ROS
formation in T2D and in addition, beta-cells have an inherent deficit in the capacity to
cope with oxidative stress. ROS formation could be causal, but also contribute to a
large number of the metabolic defects in T2D, including beta-cell dysfunction and loss.
Currently, our knowledge on beta-cell mass is limited to autopsy studies and based
on comparisons with healthy controls. The combined evidence suggests that beta-
cell mass is unaltered at onset of T2D but that it declines progressively. In order to
better understand the pathophysiology of T2D, to identify and evaluate novel treatments,
there is a need for in vivo techniques able to quantify beta-cell mass. Positron emission
tomography holds great potential for this purpose and can in addition map metabolic
defects, including ROS activity, in specific tissue compartments. In this review, we
highlight the different phenotypical features of T2D and how metabolic defects impact
oxidative stress and ROS formation. In addition, we review the literature on alterations
of beta-cell mass in T2D and discuss potential techniques to assess beta-cell mass and
metabolic defects in vivo.

Keywords: type 2 diabetes, diabetes classification, oxygen stress, reactive oxygen species, beta-cell, beta-cell
mass, imaging, positron emission tomography

INTRODUCTION

In the year 2030, it is estimated that 439 million people will be affected by diabetes (American
Diabetes Association, 2009) and that the number will rise to 642 million by 2040 (Zimmet et al.,
2016). Type 2 diabetes (T2D) accounts for 90–95% of all diabetes cases and is a global disease with
major health- and financial implications for both the affected and the society. Already, in the 19th
century, it was recognized by Lancereaux that there were at least two forms of diabetes which he
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divided into diabetes maigre and diabetes gras meaning diabetes
of the “thin” and “fat” (National Diabetes Data Group, 1979).
With increasing knowledge, the classifications of diabetes have
become more detailed and complex, but these early observations
still play an important role since they reflect different aspects
of pathophysiology. Indeed, diet and body weight have a major
impact on the risk of developing T2D which at least in part
can explain the dramatic increase in prevalence. Over the
last 10 years, there has also been a substantial addition of
drugs approved for the treatment of T2D. Despite that, a large
number of those affected by T2D fail to reach an acceptable
metabolic control (Safai et al., 2018). This can be explained by a
number of factors including physical inactivity, diet, adherence to
medications but also the underlying pathophysiological process
and stage of disease is of importance for the effect of glucose
lowering drugs. Over the last years, it has become increasingly
recognized that T2D is a heterogeneous disease which requires
an individualized treatment with adaptive changes over time as
the disease progresses. In addition, hyperglycemia and coupled
metabolic defects in diabetes increase the production of oxidative
stress and reactive oxygen species (ROS) which can have
vast deleterious effects and contribute to beta-cell dysfunction,
failure, and loss. As T2D progresses, the initial hyperinsulinemia
declines and a large number of patients are rendered insulin
deficient due to the loss of beta-cells. In this review, we will
highlight the different phenotypical features of T2D and how
metabolic defects impact oxidative stress and ROS formation
in different tissues. In addition, we review the literature on
alterations of beta-cell mass in T2D and discuss potential imaging
techniques in order to assess beta-cell mass and metabolic
defects in vivo.

THE RATIONALE OF DIABETES
CLASSIFICATION AND PHENOTYPICAL
PRESENTATIONS OF TYPE 2 DIABETES

The diagnostic criteria for diabetes mellitus (DM) should
preferably be based on parameters and laboratory tests which
can be assessed in primary care facilities and broad enough
to encompass all afflicted individuals. The more common
the disease, the more phenotypically heterogeneous is the
affected population. Classification criteria are used to divide the
heterogeneous population to more homogeneous subpopulations
for research and treatment guidelines (Aggarwal et al., 2015).
The current diabetes classification into type 1 diabetes (T1D) and
T2D is based on the ability to secrete insulin and the presence
or absence of autoantibodies. Patients with T1D must be treated
with insulin already at diagnosis whereas patients with T2D
initially should be treated with dietary regimes, biguanides, or
sulfonylureas. In clinical practice, 90–95% of people that fulfill
the DM diagnostic criteria are classified as T2D.

In 1993, Tuomi et al. (1993) identified diabetes patients with
a phenotype of both T1D and T2D. Typically, these patients
are indistinguishable from T2D at diagnosis but over time they
develop a more T1D like phenotype. The subgroup, coined latent
autoimmune diabetes in the adult (Brophy et al., 2008), is defined

as patients older than 35 years, with glutamate decarboxylase
antibodies (GADA) 65 reactive against pancreatic beta-cells and
remaining endogenous insulin secretion at least 6 months after
diagnosis (Tuomi et al., 1993). The prevalence of LADA ranges
from 4–6% in Eastern Asia (Takeda et al., 2002; Zhou et al., 2013)
to 10–12% in Northern Europe (Turner et al., 1997; Laugesen
et al., 2015), leaving 90% of the heterogeneous T2D population
undifferentiated. LADA patients also share genetic characteristics
of both T1D and T2D and the rate of beta-cell loss and thereby
time to exogenous insulin dependence correlates to the levels of
GADA 65 (Niskanen et al., 1995; Fourlanos et al., 2005; Brophy
et al., 2008; Cervin et al., 2008). In addition, patients with a
classical T1D can develop insulin-resistance despite the lack of
endogenous insulin production, often referred to as double-
diabetes (Cleland et al., 2013). Thus, the categorization of DM
into T1D and T2D is not clear-cut but rather a mix of etiology
resulting in a phenotypic continuum (Niskanen et al., 1995;
Fourlanos et al., 2005; Buzzetti et al., 2007; Laugesen et al., 2015).

Before 1995, there were only two classes of anti-diabetic
agents apart from insulin, sulfonylurea (1946), and biguanide
(1959). The identification of LADA implied the need for a
tighter glucose monitoring compared to T2D and avoidance of
sulfonylurea, but apart from this the classification contributed
little to improve the clinical management of diabetes. Since
then six pharmacodynamically different drug classes have
been approved for clinical use, α-glucosidase inhibitors (1995),
thiazolidinediones (1996), metglitinides (1997), glucagon-like
peptide-1 (GLP-1) analogs (2005), dipepidylpepidase-4 (DPP-4)
inhibitors (2006), and sodium glucose co-transporter 2 (SGLT2)
inhibitors (2013) (White, 2014). Aside from providing new
treatment possibilities, they elucidate the need for a revised
diabetes classification.

From being a rational DM classification in 1979, the
classification into T1D and T2D is now obsolete both for
research and for clinical guidance. This realization has spurred
efforts to find new classifications of diabetes. With a data-driven
topologic analysis on electronic medical records data using 73
clinical features associated to variations in single nucleotide
polymorphisms, Li et al. (2015) identified three subgroups of T2D
that differ both in phenotype and genotype. Subtype 1 (31%)
was characterized by obesity, kidney disease, and hyperglycemia
whereas subtype 2 (25%) and 3 (44%) were associated with
cancer and neurological disease, respectively. The study did
not include disease duration and did not reveal if individuals
switched subtype over time. However, this study is of interest
since it links real-life data to genome-wide association studies.

By using latent class trajectory analysis on a five-time point
oral glucose tolerance test (OGTT), Hulman et al. (2018)
identified five sub-classes of metabolic control even among
non-diabetic individuals that differed in regard to insulin
sensitivity and acute insulin response, obesity, lipid levels,
and inflammatory markers. The classes were also correlated
to different pathophysiological processes. The strongest
determinant of time to glucose peak during the OGTT was
insulin sensitivity and those patients who shifted sub-class over
time could mainly be explained by life-style changes that affect
insulin sensitivity.
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Ahlqvist et al. (2018) presented a novel diabetes classification
by cluster analysis of five phenotypically diabetogenic risk factors.
Cluster 1 (severe autoimmune diabetes, SAID) includes all
patients with positive GADA 65 antibody titer. Cluster 2 (severe
insulin deficient diabetes, SIDD) with low fasting (f) C-Peptide
and high HbA1c at diagnosis. Cluster 3 (severe insulin resistant
diabetes, SIRD) with high fC-Peptide and high HbA1c. Cluster
4 (mild obesity-related diabetes, MOD) with high BMI and
relatively low HbA1c at diagnosis. Cluster 5 (mild age-related
diabetes, MARD) was the largest with 39% of the population
and characterized by higher age at diagnosis and relatively low
HbA1c. During follow-up (median 3.9 years), cluster 2 (SAID)
and 3 (SIRD) were more prone to complications than cluster 4
(MOD) and 5 (Abdo et al., 2010).

Udler et al. (2018) aimed to find pathophysiological clusters
by takeoff from publically available genome-wide assay study
(GWAS). Ninety-four genetic variants and 47 diabetes-related
metabolic traits were included to a Bayesian non-negative
factorization clustering, which yielded five clusters. The clinical
impact of the clusters was then assessed in four separate cohorts
(N = 17 874). Cluster 1 (beta-cell) and 2 (proinsulin) were
associated with beta cell dysfunction, cluster 1 had increased
proinsulin levels whereas cluster 2 had decreased proinsulin
levels. Clusters 3 (obesity), 4 (lipodystrophy), and 5 (liver/lipid)
were associated with mechanisms of insulin resistance. The
obesity-liked loci FTO and MC4R were more common in cluster
3, concordantly also waist and hip circumference. Individuals
in cluster had decreased adiponectin, low insulin sensitivity
index and HDL levels, and increased triglycerides. Cluster 5
was associated with loci related to non-alcoholic liver disease
(NAFLD) and these individuals had increased levels of urate and
fatty acids related to NAFLD (serum triglycerides, palmitoleic
acid, and linolenic acid).

These ambitious attempts to reform diabetes classification,
summarized in Figure 1 and Supplementary Table S1, take
on the long time insight that diabetes is not a single
disease of hyperglycemia, but rather a syndrome of multiple
metabolic disturbances. If the addition of genetic and phenotypic
parameters actually identifies novel diabetes subgroups, we may
well stand in front of a shift of paradigm in both treatment and
monitoring diabetes.

METABOLIC DEFECTS AND REACTIVE
OXYGEN SPECIES IN TYPE 2 DIABETES

Type 2 diabetes, though primarily a disease characterized by
decreased insulin sensitivity, also involves the destruction of
insulin producing beta-cells during the later stages of the disease
(Sakuraba et al., 2002; Butler et al., 2003). An ever-increasing
demand for insulin production to overcome progressing insulin
resistance becomes harmful to the beta-cells and hyperglycemia
and increased free fatty acids, cause oxidative stress (Donath
et al., 2005). Albeit the assessment of beta-cell mass in humans
has been rather challenging, most current research suggests that
beta-cell mass declines with the progression of T2D. While the
mechanisms behind beta-cell failure and death in T2D are not

fully understood, increasing interest has been directed toward the
role of oxidative stress. Increased production of ROS, driven by
chronic hyperglycemia and hyperlipidemia, is thought to be a
major cause of the beta-cell dysfunction in diabetes (Robertson
et al., 2007; Graciano et al., 2013). ROS are known to damage
components of the cellular machinery, including DNA, proteins,
and lipids which leads to a vast array of deleterious effects
(Schieber and Chandel, 2014). In fact, signs of increased ROS
activity have been observed in pancreatic islets of deceased
T2D patients (Sakuraba et al., 2002). Moreover, oxidative stress
likely contributes to the development of peripheral insulin
resistance and many of the long-term micro- and macrovascular
complications of diabetes (Styskal et al., 2012).

Reactive oxygen species are inevitable byproducts of aerobic
metabolism, produced primarily from “leakage” of electrons
in the mitochondrial electron transport chain. Under basal
conditions, ROS serve in various pathways regulating biological
and physiological processes involving mainly stress response
signaling (Schieber and Chandel, 2014). Antioxidant enzymes
and low molecular ROS-scavengers balance ROS activity in
the physiological redox biology. An overexpression of ROS, or
overwhelming of the antioxidant responses, results in oxidative
stress. Accumulating evidence suggests that oxidative stress is
involved both in the early events surrounding the development
of T2D, as well as the later hyperglycemia induced tissue
damage (Nowotny et al., 2015). Moreover, pancreatic islets
and particularly beta-cells express less antioxidant enzymes
compared to other tissues, making them more susceptible to the
damaging effects of oxidative stress and ROS (Lenzen et al., 1996;
Miki et al., 2018).

While excessive ROS levels have long been viewed as
responsible for many undesirable effects (Stadtman, 1992, 2001),
it is becoming more evident that moderate levels of ROS are
often not only inevitable but also necessary and beneficial
for many normal cellular functions (Cai and Yan, 2013), this
is the case also in beta-cells. In the production of insulin,
ROS are unavoidable byproducts of enzyme driven (Sevier and
Kaiser, 2002; Tu and Weissman, 2004) folding of proinsulin
in the endoplasmic reticulum (ER). With each formation of a
disulphide bond, one molecule of ROS is produced. With the
insulin molecule having three disulphide bonds important for
its function (Chang et al., 2003), production of one molecule
of insulin would be associated with the production of three
molecules of ROS. Hyperglycemic conditions can cause a 50-
fold increase in insulin biosynthesis (Goodge and Hutton, 2000).
Under these conditions, beta-cells each produce up to 1 million
molecules of insulin per minute (Scheuner and Kaufman, 2008),
this could possibly signify production of 3 million molecules of
ROS per minute in every beta-cell (Gross et al., 2006; Shimizu
and Hendershot, 2009). Regulation of insulin translation and the
unfolded protein response (UPR) play an important role, but the
exact mechanisms by which beta-cells cope with this amount of
ROS production are still not fully understood, particularly as they
express relatively low levels of antioxidant enzymes. Autophagy
also protects against oxidative stress and ER-stress (Kroemer
et al., 2010), and failure of this system may worsen beta-cell
function in diabetic conditions (Watada and Fujitani, 2015).
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FIGURE 1 | Proportions of diabetes subtypes by (A) the current classification, (B) subtyping of type 2 diabetes by Li et al. (2015) and (C) cluster classification by
Ahlqvist et al. (2018) SAID (severe auto-immune diabetes), SIDD (severe insulin deficient diabetes), SIRD (severe insulin resistant diabetes), MOD (mild
obestity-related diabetes) and MARD (mild age-related diabetes).

Shimizu and Hendershot (2009) elegantly summarize possible
molecular mechanisms coping with oxidative stress in secretory
tissues. Common for the protective mechanisms, such as the
UPR, is that prolonged activation often results in diversion to
cytodestructive effects, giving us a possible explanation of how
ROS might take part in the beta cell loss observed particularly
in T1D. If conditions of ER-stress are not resolved, Ca2+
leaks from the ER, further increase ROS production by causing
mitochondrial dysfunction (Deniaud et al., 2008), thus leading
to an increased oxidative stress load in the already struggling
cells, and subsequently apoptosis. This ties the role of ER-
stress and oxidative stress in with the notion that mitochondrial
apoptotic pathway plays a central role in cytokine induced
beta-cell failure in T1D (Grunnet et al., 2009). Furthermore,
ER-stress in beta-cells has also been suggested to be in part
responsible for sustaining the autoimmune response observed in
T1D (Marré et al., 2015).

It is also conceivable that during diabetic conditions, when
demand for insulin production is increased, and beta-cell ROS
production remains high for prolonged time periods, further
insulin production is inhibited as a cytoprotective measure.
Indeed, Ire1, which is one of the effector branches of the
UPR, when continuously activated has been shown to cause
suppression of insulin gene expression (Lipson et al., 2006),
possibly explaining why prolonged hyperglycemia in T2D
patients leads to diminished insulin production also in the
absence of apoptosis (Shimizu and Hendershot, 2009). Thus, the
subject of ROS is both complex and rather paradoxical, being
both an integral part of the islets basic functioning, and perhaps
even necessary for their proliferation, but left uncontrolled part
of their demise.

In addition to ROS production from increased metabolism
and insulin production, hyperactivity in the NADPH oxidases
(NOX) also leads to excessive ROS production. Seven membrane
bound isoforms of the NOX enzymes (NOX1-5 and DUOX1-2)
have been identified. These perform normal cellular functions
at physiological conditions, but excessive activation produces
harmful levels of ROS. Increased activity of some NOX isoforms
has been shown to play an important role in metabolic defects and
diabetes through mitochondrial dysregulation in the beta-cells
(Guichard et al., 2008; Syed et al., 2011). Increased NOX activity

has also been linked to lipid induced ROS production and
fatty acid promoted amplification of glucose-stimulated insulin
secretion (Graciano et al., 2013). Some NOX isoforms seem to be
activated by glucose stimulation, and in the short term potentiate
insulin release (Morgan et al., 2009); however, excessive long-
term activation is detrimental to beta-cell function (Syed et al.,
2011). The NOX4 isoform has been suggested to function as
a mitochondrial energy sensor, being negatively regulated by
ATP (Shanmugasundaram et al., 2017), and might thus be a
source of ROS in both islets and other tissues experiencing
metabolic stress in diabetes. Of great interest, we have recently
demonstrated that selective NOX4 inhibitors protect human
islets and reduce beta-cell death under in vitro conditions
mimicking the T2D environment (Wang et al., 2018a), making
it a potential drug target.

Advanced glycation end products (AGEs) are modified
proteins and lipids formed under conditions of oxidative stress.
AGEs can, however, also sustain oxidative stress by increasing
ROS formation and negatively impact antioxidant systems
(Nowotny et al., 2015). Moreover, AGEs such as methylglyoxal
are highly abundant in the standard western diet (Uribarri
et al., 2007), rendering them as both endogenous and exogenous
contributors to oxidative stress. While the full role of AGEs in
T2D is not yet completely understood, it is generally accepted
that they play an important role by contributing to the oxidative
stress, causing both beta-cell damage and peripheral insulin
resistance (Vlassara and Uribarri, 2014).

Besides oxidative stress related to glucolipotoxicity, AGEs,
and dietary factors, there are many other environmental factors
associated with deterioration of beta-cell function that are less
well understood. One such factor is disruption of the islets
circadian rhythm, which has also recently been suggested to cause
increased ROS production and a decreased production of anti-
oxidant genes in beta-cells, leading to beta-cell dysfunction and
diabetes (Lee et al., 2018).

Numerous studies have attempted to delineate the potential
antioxidant effects of current oral antidiabetic treatments as well
as for exogenous insulin substitution, with biguanides being the
most studied substance. The Biguanide Metformin has been
evaluated as a potential treatment for many diseases apart
from T2D with promising results. Its potential use in various
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forms of cancer (Cheng and Lanza-Jacoby, 2015; Vancura et al.,
2018), infectious diseases (Kajiwara et al., 2018), cardiovascular
disease (Diaz-Morales et al., 2017; Nesti and Natali, 2017), skin
disorders (Wang et al., 2018b), and much more is continuously
being investigated. In many cases, alterations in redox status are
suggested as a main mechanism of action. While Metformin is
suggested to ameliorate many disorders by decreasing oxidative
stress (Cheng and Lanza-Jacoby, 2015; Diaz-Morales et al.,
2017), others suggest the opposite, that Metformin acts by
increasing ROS production (Kajiwara et al., 2018; Wang et al.,
2018b). While at first glance these conflicting reports seem
discerning, it is not unexpected that cells and tissues with
vastly differing physiological processes respond differently to
Metformin and oxidative stress. In general, research concerning
the effects of Metformin on oxidative stress in diabetes suggests
that it decreases peripheral ROS production and thereby
protects against diabetic atherosclerosis and other complications
(Esteghamati et al., 2013; Singh et al., 2016; Diaz-Morales et al.,
2017). A recent study implies that aberrant complex I activation
in the pancreas of diabetic patients causes an overflow of
NADH that is diverted into ROS production leading to beta-cell
dysfunction and death (Wu et al., 2017), and Metformin being a
mitochondrial complex I inhibitor effectively counteracts this. So,
while Metformin’s main mechanism of action in reducing hepatic
gluconeogenesis and increasing peripheral insulin sensitivity has
been known for years, many of its functions are yet to be
fully understood (Rena et al., 2017), including its effect on
oxidative stress.

Multiple studies also suggest that GLP-1 analogs may
positively influence redox homeostasis, summarized in Petersen
et al. (2016). When it comes to other oral antidiabetics, some
research suggests effects on ROS production in various tissues
by sulfonylureas (Sawada et al., 2008), α-glucosidase inhibitors
(Aoki et al., 2012), thiazolidinediones (Singh et al., 2016), and
DPP4 inhibitors (Rizzo et al., 2012), but it must be noted that
research on these matters are limited.

In a study where exogenous insulin analogs were administered
to T2D patients who failed to achieve satisfactory glycemic
control on Metformin and sulfonylurea alone, showed a
significant decrease in oxidative stress markers (Tuzcu et al.,
2013). Interestingly, this was not related to changes in mean
glucose levels, suggesting instead some direct inhibitory effects
on ROS formation. While insulin in high levels may promote
oxidative stress (Rains and Jain, 2011), this study and others
(Monnier et al., 2011) suggest that insulin has a rather complex
relationship with oxidative stress in T2D.

The relationship between glucose variability and oxidative
stress in T2D has also been examined and has yielded somewhat
conflicting results. Monnier et al. (2011) reported a significant
correlation between glucose variability and oxidative stress
whereas a repeating study failed to find a relationship (Siegelaar
et al., 2011). A possible explanation for this, as the authors
mention in their discussion, is that the latter study mainly
examined patients with significantly better glycemic control. This
hypothesis is strengthened by results from another study by
Monnier et al. (2010) where the relationship between glucose
variability and oxidative stress was also associated with HbA1c.

A major limitation for studies of oxidative stress in vivo is
the difficulty to measure ROS in a reliable way, summarized
by Halliwell and Whiteman (2004). In general, the short half-
life of reactive species limits our possibilities to measure them
directly. Instead, we are limited to measuring the levels of
markers for oxidative damage or trapping the reactive species and
measuring levels of the trapped molecules. This entails a number
of problems, as the marker or trap preferably has to be stable,
specific, quantifiable, present in the studied tissue and in addition
not confounded by diet or alternative activation pathways. As of
now, there are no biomarkers of ROS that are considered to be
ideal, but some are better than others. For instance, isoprostanes
are considered a rather reliable biomarker for lipid peroxidation,
which is a common way to measure the effects of oxidative stress
in vivo (Halliwell and Whiteman, 2004; Kaviarasan et al., 2009).
Indeed, the levels of isoprostanes have been found to be increased
in T2D (Kaviarasan et al., 2009).

In conclusion, there are multiple pathways for excessive
ROS formation in T2D, and a deficit in the beta-cells capacity
to cope with oxidative stress, summarized in Figure 2.
Oxidative stress may not only be caused by a number of
metabolic defects in T2D but can also in itself contribute
to aggravating the defects and the different phenotypes of
diabetes. While there exist some difficulties in studying oxidative
stress in vivo in humans, our current understanding is that
it appears to have a central role in many processes involving
the development and progression T2D and its long-term
complications. Aside from assessing redox properties of currently
available medication, novel treatments targeting ROS production
such as specific NOX inhibitors are also being researched
(Wang et al., 2018a).

ADAPTIVE CHANGES OF BETA-CELL
MASS IN OBESITY AND TYPE 2
DIABETES

Due to the lack of established in vivo techniques, our current
knowledge on beta-cell mass in humans fully relies on autopsy
studies. Although a very valuable source, autopsy material
has a number of drawbacks including technical difficulties
but of outmost importance is the inherent lack of repeated
measurements. The number and volume of islets increase
substantially from fetal life to adulthood and is estimated to
increase fivefold from birth to adulthood, in parallel the exocrine
pancreas increase 15-fold in size (Witte et al., 1984). Therefore,
islets compose 20% of the total pancreas volume in newborns,
7.5% in children but only 1–2% in adults (Witte et al., 1984).
In addition, the proportion of beta-cells within the islets varies
in the different anatomical regions of the pancreas with more
beta-cells in corpus and cauda. In adults, the pancreas weighs in
average around 100 g but can range from 50 to approximately
170 g. Combined with the potential twofold difference in islet
percentage, this gives a ≥fivefold theoretical difference in islet
mass even among healthy individuals. Well in line with this,
a fivefold difference in beta-cell mass is often observed among
healthy individuals in reports based on autopsy material (Rahier
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et al., 2008). This is important to keep in mind since our
knowledge and view on beta-cell mass in T2D is based on
comparisons with healthy controls.

In adulthood there are in particular two physiological
conditions which lead to an increase in beta-cell mass; pregnancy
and obesity (Van Assche et al., 1978; Kloppel et al., 1985;
Butler et al., 2010; Hanley et al., 2010; Saisho et al., 2013).
The alterations of beta-cell mass during pregnancy are elegantly
reviewed by Nielsen (2016). Of importance, beta-cell mass has
been found to be increased by 50% in obese individuals when
compared to lean individuals (Rahier et al., 1983; Kloppel et al.,
1985; Hanley et al., 2010; Saisho et al., 2013). In fact, Saisho
et al. (2013) found that beta-cell mass correlates with BMI.
In patients with T2D, there have been conflicting results on
beta-cell mass which can be explained by the above-mentioned
difficulties regarding comparisons with non-diabetic individuals
and by the disease duration and heterogeneity of T2D. In
patients with recent onset T2D, the beta-cell mass has been
found to be unaltered (Rahier et al., 1983; Hanley et al.,
2010); however, in the report by Hanley et al. (2010) obese
patients with T2D displayed a decreased beta-cell mass. The
unaltered beta-cell mass in recent onset T2D in combination
with the normal or increased C-peptide levels make a strong
argument for that T2D is not primarily developed due to a
loss of beta-cells but rather due to insulin resistance and beta-
cell dysfunction. Others have reported on a moderate (≈25%)
decrease in beta-cell mass (Sakuraba et al., 2002) but there
are also reports on a more pronounced reduction (≈50%) of
beta-cell mass in patients with long-standing T2D (Maclean
and Ogilvie, 1955; Butler et al., 2003; Rahier et al., 2008). The
degree of beta-cell loss in T2D has been found to correlate
to disease duration, with a distinct reduction after 20 years of
disease (Rahier et al., 2008). In addition, there are a number of
reports supporting the deposition of amyloid in islets of patients
with T2D which could contribute to beta-cell dysfunction and
apoptosis (Bell, 1952; Ehrlich and Ratner, 1961; Clark et al.,
1988; Sakuraba et al., 2002; Huang et al., 2007). However, the
role of islet amyloid deposits in the pathogenesis of T2D is
beyond the scope of this review, but for the interested the
comprehensive review on islet amyloid by Westermark et al.
(2011) is warmly recommended.

In non-diabetic individuals, the beta-cell mass is tightly
regulated during adulthood by a balance between beta-cell
replication and apoptosis (Bonner-Weir, 2000). Interestingly,
ROS is known to increase apoptosis and in high concentrations
induce cell cycle arrest. However, in low to moderate
concentrations, ROS have been found to stimulate cell
proliferation (Boonstra and Post, 2004; Ahmed Alfar et al., 2017).
In addition, experimental studies have shown that mitochondrial
ROS play an important role in beta-cell proliferation (Ahmed
Alfar et al., 2017) and in the establishment of beta-cell mass
during development (Zeng et al., 2017). The loss of beta-cell
mass in T2D can be explained by the increased apoptosis rate
observed in islets from T2D patients (Butler et al., 2003; Rahier
et al., 2008; Hanley et al., 2010) and the lack of increased beta-cell
proliferation (Butler et al., 2003). Of great interest, pancreatic
beta-cells inherently express low levels of antioxidant enzyme

superoxide dismutase (Falk-Delgado et al., 2015) but there is also
support of further decreased levels of SOD in beta-cells of T2D
patients (Sakuraba et al., 2002). This further supports the role of
beta-cell failure and loss due to ROS activity in T2D.

The combined evidence suggests that beta-cell mass is
relatively unaltered at the onset of T2D, but declines progressively
with the disease. It seems as if the loss of beta-cell mass is more
pronounced in obese T2D individuals which could be due to
a loss of stimulatory signals or a lack of beta-cell proliferatory
response to obesity in combination with an increased metabolic
stress under diabetic conditions. In addition, the local milieu
and metabolic challenges of beta-cells in T2D obesity may also
have deleterious effects (Prentki et al., 2002) and increase the
production of ROS (Graciano et al., 2013).

IN VIVO IMAGING OF BETA-CELL MASS

Given the pandemic increase in T2D and the heterogeneous
nature of the disease in combination with large individual
variations in beta-cell mass, it would be of great importance to
establish a technique allowing in vivo monitoring of beta-cell
mass. With such a technique, we would gain valuable insight on
the pathophysiology of the disease and the decline of beta-cell
mass over time in different phenotypical presentations of T2D.
Due to the size and distribution of pancreatic islets, imaging beta-
cell mass is a tough challenge since there are no non-invasive
imaging modalities with a high enough resolution to delineate
single islets in human. However, by using positron emission
tomography (PET) in combination with a beta-cell specific PET-
tracer, it would be possible to monitor the combined signal
from all islets within the pancreas and thereby beta-cell mass.
There have been several attempts to find a beta-cell specific
PET-tracer over the last decade, summarized in a recent review
by Eriksson et al. (2016).

We have focused our attempts on the clinically available PET-
tracer [11C]5-hydroxy-tryptophan ([11C]5-HTP), a serotonin
precursor, which, however, is not completely specific for beta-
cells but is also retained in remaining endocrine cells within the
islets of Langerhans. Using PET in combination with computed
tomography (CT), we have found that the pancreatic uptake of
[11C]5-HTP is reduced by 66% in patients with long-standing
T1D when compared with healthy controls, which is well in
line with a complete beta-cell loss (Eriksson et al., 2014). We
have also evaluated the use of [11C]5-HTP in combination
with magnetic resonance tomography (MRT) in patients with
T2D. Patients were first categorized into four groups based
on BMI (lean or obese) and treatment regime, either oral
antidiabetic drugs (OADs) alone or in combination with insulin
(OAD+insulin). The functional beta-cell mass was determined
based on acute C-peptide response to a bolus of arginine and
C-peptide response to a glucose potentiated arginine test. We
found that the patients, both lean and obese, treated with OAD
had a normal C-peptide response to arginine but a marked
reduction of C-peptide secretion in response to the glucose
potentiated arginine test. Patients treated with OAD+insulin
displayed a marked reduction in C-peptide secretion in both
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FIGURE 2 | Illustration of the possible role of NOX activation in the development of beta-cell failure, hyperglycemia, and diabetes. Metabolic dysregulation leading to
hyperactivity in the NOX-enzymes results in excessive ROS production and oxidative stress. This increased oxidative stress may subsequently be responsible for
beta-cell failure, which in turn contributes to increased metabolic dysregulation. Various other factors may also influence these steps in different ways. For instance,
diet can contribute to increased oxidative stress directly by containing excessive AGEs, or indirectly by contributing to the metabolic dysregulation. Inhibition of the
NOX enzymes seems to be a promising solution for breaking this deleterious cycle.

the acute- and glucose potentiated arginine test. However, the
pancreatic uptake of [11C]5-HTP did not differ between the
groups (Carlbom et al., 2017). Of interest, we observed a twofold
difference of [11C]5-HTP pancreatic uptake in healthy controls
but among the T2D group the difference was close to fivefold.
In fact, among lean T2D patients with OAD+Insulin two thirds
of the patients displayed a pancreatic uptake well below the
absolute levels of healthy controls. In line with this, the pancreatic
volume was quite homogenous in healthy controls but varied in
T2D groups with a significantly increased volume in obese T2D
patients with OAD+insulin.

There could be several contributors to the observed
discrepancy between functional beta-cell mass and [11C]5-
HTP pancreatic uptake. In fact, isolated islets from patients with
T2D contain and secret less insulin when compared to non-
diabetic donors (Deng et al., 2004; Marchetti et al., 2004). Since
[11C]5-HTP is not a beta-cell specific tracer, the result could still
reflect a true finding of islet mass in T2D since the alpha-cell
mass has been found to be unaltered (Henquin and Rahier, 2011)
and there have been reports supporting a de-differentiation of
beta-cells rather than a beta-cell destruction in T2D (Talchai
et al., 2012; Spijker et al., 2015). However, the data should be
interpreted with caution given the small number of individuals in
each group. Given the large variability even in normal physiology,
cross-sectional comparisons will be difficult in order to discern
more discrete alterations of beta-cell mass. However, this could
be overcome by the use of repeated paired measurements.
Indeed, by using a retrospective design of repeated examinations,
we have found that the pancreatic uptake of [11C]5-HTP in T2D
decrease over time as the disease progresses (Eriksson et al.,
2014). In addition, new PET-traces targeting GPR44 that are
specific for beta-cells are currently being developed which could

potentiate future studies of adaptive changes of beta-cell mass
during different stages of T2D (Eriksson et al., 2018).

IN VIVO IMAGING OF GLUCOSE- AND
LIPID METABOLISM IN TYPE 2
DIABETES

Apart from the possibilities of imaging and quantifying beta-
cell mass with PET, the technique also opens up for possibilities
of mapping metabolic alterations in specific tissues in vivo.
As discussed above, hyperglycemia and hyperlipidemia increase
ROS activity which contributes to tissue damage and diabetic
complications. Currently, we base most of our clinical decisions
and classifications on the circulating levels of glucose, free fatty
acids, and hormones. We can also detect indirect measurements
of ROS but it has been difficult to establish reliable biomarkers,
in addition the effects and activity of ROS can vary in different
tissue. However, by using PET, we could actually image and
map how these metabolic defects occur in different tissues which
could relate to the risk of complications in T2D. In addition,
these techniques would also provide important insights on the
pathophysiological processes and thereby guide us in which
treatments to use. An important advantage with PET is the
relatively low radiation burden associated with tracers and the
possibility to use MRT for anatomical mapping. In combination
with the short radioactivity half-life of most tracers (<120 min),
it is therefore possible to perform repeated examinations and to
use a multi-tracer approach which makes it possible to examine
several metabolic pathways at the same time.

The most widely used PET-tracer is in fact a glucose analog,
2-deoxy-2-(18F)fluoro-D-glucose ([18F]FDG), which is used in
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different fields of medicine to identify everything from tumors
to inflammation. [18F]FDG is a general biomarker for any
tissue relying on glycolysis, for example, the brain and the
myocardium. Briefly, by relating the uptake rate of [18F]FDG
in different tissues to the glucose levels in plasma, a metabolic
rate of glucose (MRGlu, µmol/g/min) in specific tissue can be
determined (Phelps et al., 1979). By using [18F]FDG PET, it has,
for instance, been demonstrated that the brain glucose utilization
is not affected by insulin-infusion in healthy individuals, i.e.,
the glucose uptake is maximized already at fasting conditions.
However, in individuals with impaired fasting glucose (IGF), the
brain glucose utilization increases in response to insulin infusion
suggesting that the brain glucose metabolism is disturbed even
in IFG (Hirvonen et al., 2011). Using whole-body [18F]FDG
PET and hyperinsulinemic euglycemic clamp, it was recently
demonstrated that the brain glucose utilization is increased in
patients with T2D (Boersma et al., 2018). In contrast, the authors
found that the glucose utilization was decreased in skeletal
muscle, visceral- and adipose tissue, and the liver in patients with
T2D (Boersma et al., 2018).

In addition, several fatty acids have been labeled with positron
emitting nuclides in order to track their fate in the human body
(Mather and DeGrado, 2016). Fatty acid uptake and the rate of
oxidation can be determined by relating the uptake and retention,
respectively, of the labeled fatty acid with the circulating amounts
of non-esterified fatty acids in plasma (p-NEFA). Some of the
clinically more commonly used markers for fatty acid metabolism
are [11C]Palmitate (Weiss et al., 1976) and 14-18F-fluoro-6-
thia-heptadecanoic acid ([18F]FTHA) (DeGrado et al., 1991).
Depending on the design of the PET tracers and the trapping
mechanisms in different cellular compartments, the tracers tend
to reflect either fatty acid uptake or fatty acid oxidation. By using
a multi-tracer approach, it has been demonstrated in patients
with T2D that the myocardial metabolism is shifted toward fatty
acid oxidation instead of glycolysis (Rijzewijk et al., 2009). In
addition, it has been demonstrated by PET imaging that patients
with T2D have an increased myocardial fatty-acid uptake and
fatty-acid oxidation compared to healthy individuals (Mather
et al., 2016). In both of these studies, the patients displayed a
good metabolic control and had not yet established any micro-
or macrovascular complications.

As discussed, metabolic defects increase production of ROS
and by imaging metabolism in different tissue using PET this
could give indirect evidence on ROS formation and activity.
In fact, the uptake of [18F]FDG has been linked to ROS
concentration in tumor cell-lines and tumor-bearing mice (Jung
et al., 2013). Also, increasing oxidative stress has been related to
decreased brain [18F]FDG uptake in neurodegenerative disorders
(Mosconi et al., 2008). However, the volatile nature of ROS
in tissue results in a less than exact assessment using indirect
approaches for measurement. Therefore, it is potentially a major
advancement that PET tracers specific for ROS are now being
developed. In experimental studies, [18F] and [11C] labeled
dihydrophenantridine derivatives have been used which bind to
DNA in their oxidized forms and therefore becomes trapped
within cells. The uptake was found to be ROS specific in both
in vitro and in vivo experimental studies (Chu et al., 2014; Wilson

et al., 2017). In addition, also other imaging techniques are
being developed for measuring free radicals directly in living
organisms by using electron spin resonance and special probes
(Berliner et al., 2001; Elas et al., 2012). However, these probes
are currently only available for preclinical use. Furthermore,
genetically encoded ROS probes such as HyPer-3 (Bilan et al.,
2013) and roGFP2-Orp1 (Gutscher et al., 2009) have been
presented in recent years (Shimizu and Hendershot, 2009;
Meyer and Dick, 2010), and while perhaps not suited for the
clinic, allows visualization of specific ROS detection in vivo in
disease models. PET imaging using tracers targeting ROS will
likely soon be available in the clinical setting, which will be a
valuable contribution in many fields of medicine, not the least in
diabetes research.

DISCUSSION

Given the diverse nature of T2D, it is a challenging and costly
disease to manage, both in perspective of the individual patient,
as well as the society as a whole. Classification and monitoring of
diabetes has until recently relied primarily the on quantification
of circulating glucose and insulin levels in combination with the
presence or absence of autoantibodies. While this is a massive
step up from the characterizations of Lancereauxs classification
based on body weight, it falls short for use in modern research
and drug development. Common for the classifications by Li
et al. (2015), Ahlqvist et al. (2018), and Udler et al. (2018) is
that they see T2D as a result of different pathophysiological
disturbances and that the heterogeneity can be explained by
identifying which disturbance is the dominant. Li et al. (2015) and
Udler et al. (2018) emphasize genetic variance as the underlying
cause and originate their classification from there. They find
expected concordance between genetic and phenotypic traits
in several cohorts. Ahlqvist et al. (2018) and Hulman et al.
(2018) take on a more pragmatic approach by focusing on
phenotype characteristics. By using variables that can be easily
measured in primary care, the classification by Ahlqvist et al.
(2018) has the potential to be widely accepted. However, the
use of phenotype for classification may not be robust over time.
Successful treatment may lead to a switch in cluster belonging,
requiring re-classification on a regular basis.

Type 2 diabetes is associated with a number of metabolic
defects resulting from decreased insulin sensitivity, many of
which likely take part in the development and progression
of the disease. Accumulating evidence points toward oxidative
stress as a culprit, responsible not only for the devastating
consequences of peripheral hyperglycemia and hyperlipidemia,
but also for the dysfunction and loss of beta-cells. Multiple
sources for this oxidative stress have been suggested (Styskal et al.,
2012; Graciano et al., 2013; Nowotny et al., 2015). Much points
to insulin deficiency being correlated with increased oxidative
stress, providing a possible explanation to why the SIDD and
SIRD classes suggested by Ahlqvist et al. (2018) are more prone
to complications than MOD and MARD during follow-up.
As elevated insulin levels promote oxidative stress, the insulin
resistance observed in SIRD may in part be caused by elevated
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peripheral oxidative stress. SIDD in contrast, characterized by
insulin deficiency, while having similar peripheral complications
as SIRD, may initially have its oxidative stress primarily localized
to the pancreatic islets, causing impairment of beta-cell function
and survival. Improved understating of the metabolic defects
that occur, the implications of oxidative stress, and delineation
of mechanisms which are most important for the progression
of the disease, will help us combat T2D as well as provide
potential targets for novel treatment strategies. In order to
succeed in this challenging task, both basic research and clinical
studies are warranted to pinpoint the exact mechanisms. For
the latter, effective and specific monitoring tools are needed.
With the pancreas being a quite inaccessible organ for invasive
in vivo studies, the assessment of inflammation, beta-cell
mass, and metabolism have so far been mostly been limited
to autopsy studies. Furthermore, adversities in studying the
mechanisms behind and processes surrounding beta-cell failure
and death in T2D, especially in vivo, are likely present not
solely due to limitations in methodology, but also because
of de facto differences in mechanisms between phenotypically
different subgroups. The ongoing development of non-invasive
PET imaging techniques targeting beta-cell mass, as well
as glucose and lipid metabolism and ROS, will hopefully
provide us with tools to perform more extensive prospective
studies in order to delineate the pathophysiological changes
in the progression of diabetes. In addition, this will serve
as a valuable tool for evaluating the effects of novel drug
interventions and may also aid in further sub-classification
attempts in order to tailor specific treatment regimes. Much
of our current knowledge support the view that the loss of
beta-cell mass is not the cause of but rather the effect of
T2D. However, a number of important questions regarding
the role of beta-cell loss in T2D remain unanswered. With
the development of in vivo techniques based on PET for the
assessment of beta-cell mass, a number of important questions
can be addressed.

CONCLUSION

Type 2 diabetes is a complex and heterogeneous disease which
affects millions of people in increasing numbers worldwide. T2D
increases the risk of cardiovascular disease and causes a number
of long-term complications with dramatic effects for both the
affected individual and the society. The classification of diabetes
is at an interesting turning point and we will likely have a number
of sub-classifications of T2D within the next few years. Some
of the metabolic defects of T2D are causal for the disease but

many are secondary and can further contribute to an aggravated
metabolic control, beta-cell dysfunction, and even beta-cell loss.
An important, and perhaps so far underestimated, factor is the
role of oxidative stress and ROS in the pathophysiology of T2D.
ROS could be causal but also contribute to a large number
of the metabolic defects observed in T2D including beta-cell
dysfunction and beta-cell loss. Beta-cell mass is unaltered at the
onset of T2D but progressively declines over time. Currently, our
knowledge on beta-cell mass is limited to autopsy studies and
based on comparisons with healthy controls. PET in combination
with novel PET-tracers holds great potential for quantifying beta-
cell mass in vivo. In addition, PET can be used to quantify and
image metabolic defects as well as ROS activity in different tissues.
With the use of these novel techniques, we anticipate that our
understanding on the pathophysiology of T2D will dramatically
increase over the coming years which hopefully will result in the
development of new potent drugs to combat metabolic defects,
ROS activity and beta-cell failure in T2D.
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