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During viral infection, virus-specific follicular helper T cells provide important help to

cognate B cells for their survival, consecutive proliferation and mutation and eventual

differentiation into memory B cells and antibody-secreting plasma cells. Similar to Tfh

cells generated in other conditions, the differentiation of virus-specific Tfh cells can also

be characterized as a process involved multiple factors and stages, however, which also

exhibits distinct features. Here, we mainly focus on the current understanding of Tfh

fate commitment, functional maturation, lineage maintenance and memory transition and

formation in the context of viral infection.
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INTRODUCTION

Based on the biological process, viral infections can be divided into two groups: acute viral
infection and chronic viral infection. During acute infections, virus is thoroughly eliminated by the
orchestration between both innate and adaptive immune cells; whereas, certain types of viruses can
effectively evade immune system and persist at a certain level in the host for long time in chronic
infections (1). Numbers of specific immune effector mechanisms, coordinating with non-specific
defense mechanisms, prevent or eliminate most viral infections. In terms of adaptive immune cells,
CD8+ T cell- and CD4+ T cell-mediated immune responses play a critical role in the control of
viral infection. During acute viral infection, virus-specific CD8+T cells differentiate into cytotoxic
T lymphocytes (CTL) to efficiently eliminate virus-infected target cells and progressively transit
into memory CD8+ T cells after viral eradication. Memory CD8+ T cells are maintained for a
long time in the absence of antigen and can exert rapid effector functions in response to previously
encountered antigens.

After a transit time in the blood, the majority of mature naïve CD4+ T cells produced by
the thymus migrate to secondary lymphoid tissues, continually patrolling, and browsing for
antigens they can recognize. After entering a lymph node, T cells scan the processed peptide-MHC
complexes on the surface of DCs in the paracortex or T-cell zone. DCs that have processed antigen
at the sites of infection arrive in the paracortex soon after infection. Upon viral infection, virus-
specific CD4+T cells mainly differentiate into Th1 and Tfh (follicular helper T cell) cells, but not
other helper subsets, such as Th2, Th17, and Th9 due to the strong type-I inflammation. And the
divergence of Tfh and Th1 differentiation fates begin immediately after activation and are faithfully
maintained through the life cycle (2). Through interactions between S1P1 receptors and S1P, the
Th1 subset leaves the lymph node and travel to sites of infection. And they predominantly function
through secreting IL-2, IFN-γ and TNFα and are responsible for many typical cell-mediated effects,
including activation of CTL and macrophages. In contrast, virus-specific Tfh cells, characterized by
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high expression of chemokine receptor CXCR5, are endowed
with the ability of migrating into B cell follicles in response to
chemokine CXCL13 (3, 4), where they facilitate the maturation
of GC B cells by interacting with cognate virus-specific B cells
and providing “help” signals such as interleukin 21 (IL-21), IL-4,
CD40L and inducible costimulatory molecules (ICOS) (5).

Tfh differentiation is generally characterized as a multistage,
multifactorial process (Figure 1) (6). Upon recognition of virus
peptide-MHC complex (p-MHC) presented by dendritic cells
(DCs), CD4+ T cells adopting Tfh fate upregulate the “master
regulator” Bcl-6 (7–9) within 2 or 3 days (10, 11). After
engagement with DCs, Tfh cells move to the T-B border
by upregulating CXCR5 and down-regulating CCR7 (10, 12).
Here, they interact with cognate B cells and get sufficient
signals that further support them migrating into B cell follicles
and initiating GC reactions (13). During this process, the
expression of Bcl-6 is enhanced, propelling the maturation of
fully functional Tfh cells (14). Contrarily, Blimp1 (B lymphocyte-
induced maturation protein-1), mainly expressed by non-Tfh
effector cells, inhibits the expression of Bcl-6 and negatively
regulates Tfh cell differentiation (7). Although the majority of
Tfh cells originated from precursors in lymphoid tissues, several
groups confirmed the existence of circulating CXCR5+ CD4+ T
cells in mice or humans with ongoing immune responses, which
were termed as peripheral Tfh (pTfh) (15–19). For instance,
He et al. (18) demonstrated that pTfh consist of two parts:
“effector” pTfh and “resting” pTfh cells, identified as CCR7loPD-
1hi and CCR7hiPD-1lo, respectively. They found that CCR7loPD-
1hiCXCR5+ CD4+ T cells express large amounts of IL-21, a key
cytokine secreted by Tfh cells to support GC responses. And
this population is able to further differentiate into mature Tfh
cells and initiate GC formation. They believed that CCR7loPD-
1hi Tfh precursor cells can circulate to non-draining secondary
lymphoid organs and rapidly differentiate intomature Tfh cells to
support fast GC formation upon antigen reencounter. However,
the underlying mechanisms of the ontology and differentiation of
this population remain unsolved.

Tfh cells are essential for antibody-mediated humoral
immunity against various pathogens. This review primarily
focuses on the current understanding of the fate commitment,
functional maturation, andmemory formation of Tfh cells during
acute viral infection. Moreover, we also focus on the role of Tfh
cells during chronic viral infection, especially in HIV infection.
Finally, we discuss the potential in boosting viral-specific Tfh cells
for improving efficacies of anti-viral vaccines.

THE FATE COMMITMENT OF
VIRUS-SPECIFIC Tfh CELLS VS. Th1
CELLS

The fine-tuned cooperation of cognate p-MHCII molecular
interactions, co-stimulation, together with polarizing cytokine
signals initiate the differentiation of functionally divergent CD4+

T helper (Th) cell subsets from their precursors (20). Of note,
during acute viral infection, commitment to the Tfh lineage vs.
Th1 lineage emerges as early as 24 to 48 h after infection. The

dichotomous commitment of Tfh cells vs. Th1 cells is largely
linked to reciprocal regulation between key transcription factors
Bcl6 and T-bet, and Bcl6 and Blimp-1 (21, 22).

At the priming stage, DCs regulate Tfh cell differentiation by
controlling Clec9A expression, which facilitates the formation
of a long-term immune synapse between DCs and T cells to
promote Tfh differentiation (23, 24). Indeed, publishedwork (25–
27) has found that 24 h after T cell activation, T cells carrying
high affinity TCRs can form long dynamic immune synapses with
DC and are more inclined to differentiate into Tfh but not Th1
cells. In addition to interactions between membrane proteins of
APC and Tfh precursors, secreted cytokines interleukin-6 (IL-6)
and IL-21 also contribute to Tfh differentiation. Several groups
confirmed that IL-6 and IL-21 signaling via the transcription
factor STAT3 enhances the upregulated expression of Bcl6, which
is the master regulator of Tfh differentiation. Nonetheless, IL-2
suppresses Tfh fates by activating STAT5 and restricting STAT3
binding to the Bcl6 locus and also by promoting the expression of
Blimp-1, which divert differentiation away from the Tfh pathway
(20, 28–31). Propelled by the antagonism of Bcl6 and Blimp-1,
activated CD4+ T cells undergo a bimodal fate decision during
acute viral infection: becoming either Tfh (Bcl6+Blimp1−) cells
or Th1 (Bcl6−Blimp1+) cells. Notably, the transcription factor
TCF-1 (t cell factor 1, coded by gene Tcf-7) has been confirmed to
promote the early fate commitment to the Tfh lineage over Th1
lineage during acute viral infection (32–34). Using the LCMV-
Armstrong and influenza virus infection model, we (32) found
that the expression level of TCF-1 was significantly enhanced
in Tfh cells while greatly diminished in Th1 cells. And such
divergent expression mode occurred as early as 2 days post
infection. TCF-1 potently induced the expression of Bcl-6 but
suppressed Blimp1 concomitantly, by directly binding to the Bcl6
promoter region and Prdm1 5’ regulatory region, respectively.
Accordingly, virus-specific CD4+ T cells deficient in TCF-1
expression almost failed in Tfh differentiation. Notably, TCF-
1 seems to specifically regulate Tfh cell differentiation in the
context of viral infection, but dispensable for regulating Tfh
differentiation during protein immunization (32, 33).

Apart from the master regulator Bcl-6, a network of several
other transcription factors also participates in controlling the
differentiation of Tfh cells during acute viral infection. For
example, it has been confirmed that through two different
but complementary mechanisms, the transcription factor KLF2
(Krüppel-like factor 2) functions to restrain Tfh cell generation.
Lee et al. (35) found that KLF2 promotes the expression of
the trafficking receptor S1PR1, the downregulation of which is
essential for efficient Tfh cell differentiation. On the other hand,
KLF2 favors the expression of several transcription factors that
inhibit Tfh differentiation, such as Blimp1, Tbet, and GATA3.
And KLF2 was also reported to suppress the transcription of
Cxcr5 by directly binding to its genomic region (36). Importantly,
although Tbet is the master transcriptional regulator of Th1
cells, which were thought to inhibit Tfh cell differentiation, Tfh
cells do exhibit medium to high levels of Tbet expression in
the LCMV infection model (2). Recently, it has been reported
that T-bet is virtually essential for the optimal expansion,
proliferation, and maintenance of Tfh cells during acute viral
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FIGURE 1 | The fate commitment of Tfh cells during viral infection. Upon viral infection, virus-specific CD4+T cells mainly differentiate into Th1 and Tfh cells. Th1

subset predominantly function through secreting IL-2, IFN-γ, and TNFα and is responsible for many typical cell-mediated effects. In contrast, virus-specific Tfh cells,

characterized by high expression of chemokine receptor CXCR5, are endowed with the ability of migrating into B cell follicles in response to chemokine CXCL13. The

fate commitment and function of Tfh cells require fine-tuned cooperation of cognate p-MHCII molecular interactions, co-stimulation, together with polarizing cytokine

signals and other factors. Moreover, upon viral clearance, a proportion of Tfh cells will differentiation in memory cells, which are more active when encountered with

the same pathogens. Additionally, during chronic viral infections, Tfh cells accumulate gradually and exhibit a distinguished transcriptional profile compared with that in

acute infections. And many factors participate in the unique differentiation pattern during persistent infection, including type I interferon signaling, cytokines from IL-6

family et al.

infection (37). Besides, Fang et al. (38) demonstrated that at the
early stage of CD4+ T cells response, the short-term expression
of Tbet is critical for IFN-γ production in Th1-like Tfh cell
subset. Additionally, transcription factors of the E-protein and Id
families are well-appreciated for their role in T cell development.
Shaw et al. (39) found that Tfh cells exhibited lower expression
of Id2 than that of Th1 cells during acute viral infection and
knockdown of Id2 via shRNA increased the frequency of Tfh
cells. Furthermore, Th1 differentiation was significantly blocked
by the deficiency of gene Id2 during viral infection. Ogbe et
al. (40) found that EGR2 (early growth response gene 2) and
EGR3 play a vital role in directing the expression of Bcl6
in Tfh cells. The differentiation of Tfh cells was impaired in
Egr2 and Egr3 deficient mice post viral infection because of
the defective expression of Bcl-6, resulting in a defective GC
reaction and antibody production. Moreover, the overexpression
of Bcl-6 in EGR2/3- deficient CD4+ T cells partially rescued
the differentiation of Tfh cells and GC formation. Liu et al.
(41) found that during influenza virus infection, the deletion of
Ascl2 in T cells results in impaired Tfh-cell development and
germinal center response. Besides, in protein immunization or
other infection models, several other TFs have been confirmed
to participate in the regulation of the fate commitment of Tfh
cells. For example, c-Maf, IRF4, and Notch signaling pathway
has been confirmed to promote Tfh differentiation while FOXO1
and FOXP1 inhibit Tfh fate commitment (21, 42–47). Besides
networks mediated by transcriptional factors, other different

signaling pathways also control the differentiation and function
of Tfh cells. Tfh cell differentiation are closely associated
with mTOR-mediated signaling pathways, which exert its effect
by sensing and integrating environmental cues. During acute
viral infection, the interleukin-2 (IL-2)-mTORC1 signaling axis
orchestrates the reciprocal balance between Th1 and Tfh cell
fates by promoting Th1 while inhibiting Tfh cell differentiation
(20). In contrast, it is reported that mTORC2 was essential for
Tfh cell differentiation (48, 49); specifically, mTORC2 mainly
functions in the late stage of Tfh differentiation, promoting a
Tfh transcriptional program and migratory ability toward B cell
follicles (50).

Currently, however, our knowledge about Tfh cells is mainly
derived from mouse models, although the gene expression
pattern of mouse Tfh cells shares a high percentage of similarities
with human Tfh, certain differences do exit between the two
species. For instance, in mouse models, the ligand for CXCR5,
CXCL13 is mainly expressed by stromal cells but not Tfh cells
(6, 51). In humans, however, CXCL13 is primarily generated by
Tfh cells, which may promote recruiting GC B cells to the light
zone, where most Tfh cells and FDCs reside (52–54). Hence,
further research is required for carefully profiling the differences
between human and murine Tfh cells, which is critical for
translating findings between the two species. Taken together, like
Tfh cells developed in other scenarios, the fate commitment of
virus-specific Tfh cells also follow a pathway involved a multistep
and multifactorial process. Although we have gained a relatively
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detailed understanding of the ontology and differentiation of
Tfh cells during viral infection, there are still important gaps
in our knowledge of the Tfh cell differentiation and underlying
mechanisms during viral infection both in mouse and humans.
In particular, how extrinsic stimuli from APCs and intrinsic
factors, such as epigenetic modifications, regulate anti-viral Tfh
differentiation await further investigations.

THE FUNCTIONAL MATURATION AND
MAINTENANCE OF VIRUS-SPECIFIC Tfh
CELLS

Currently, most licensed anti-viral vaccines protect vaccinated
population by inducing long-lived neutralizing antibodies (55).
Tfh cells play a critical role in helping B cells to differentiate
into neutralizing-antibody-secreting plasma cells. Therefore,
it is essential to understand the mechanisms by which Tfh
cells co-opt B cell responses during viral infection, so as
to effectively facilitate developing a novel vaccine or further
improving the efficacies of licensed vaccines. Previous reviews
have systematically summarized the functions of Tfh cells (6, 56),
we herein mainly focus on the roles of these cells in the case
of viral infection. After viral infection, SLAM-associated protein
(SAP) expressed by Tfh cells is critical for the formation of
germinal centers (57, 58), where Tfh cells facilitate the generation
of long-lived memory B cells and plasma cells that produce virus-
specific antibodies (57, 59). For example, CD4+ T cells have been
confirmed to be essential for the generation of optimal antibody
responses during infections with yellow fever virus (60), vaccinia
virus (61), coronavirus (62), or vesicular stomatitis virus (VSV)
(63). Collectively, Tfh cells play an important role in protective
immunity to most, if not all, viruses.

In antiviral humoral immunity, Tfh cells help B cell activation
and antibody production in the form of receptor ligand
interactions and cytokine signaling. Firstly, Tfh cells highly
express CD40 ligand (CD40L), whose interaction with CD40
expressed on B cells is vital to multiple stages and aspects
of B cell response. Using LCMV, Pichinde virus, and VSV
infection model, Borrow et al. (64) found that CD40L-deficient
mice exhibit severely compromised humoral immune responses,
supported by low antiviral antibody production, absence of
germinal center and memory B cell formation. Consistently,
CD40L/CD40 was also reported to be important for generating
optimal humoral responses against HSV and influenza virus (65,
66). During LCMV, VSV, and influenza virus infection model,
the expression of ICOS (inducible T cell co-stimulator) by Tfh
cells has also been reported to be crucial for germinal center
formation (6) and optimal induction of humoral responses (67).
Other co-stimulatorymolecules that promote the T-B conjugates,
including SAP and SLAM family are also required for Tfh
differentiation as well as Tfh function (6). It is important to
appreciate that both defective Tfh cell number and damaged Tfh
function can lead to impaired GC response. To more precisely
evaluate the effector function of already differentiated Tfh cells
during viral infection in vivo, our group combines ERT2cre

conditional knockout mice with mature Tfh cells adoptive

transfer strategy to determine their “help” ability in promoting
the formation of GC and plasma cells (32, 50). The expression
of these B-cell helping molecules (CD40L and ICOS) in Tfh
cells appears to be coordinated by Bcl-6 (68, 69), TCF-1 (32),
and mTORC2 (50). Further studies are needed to determine the
importance of additional molecular signals between Tfh cells and
B cells in the production of protective antibody responses during
viral infection.

THE MEMORY FORMATION OF
VIRUS-SPECIFIC Tfh CELLS

Most of the virus-specific effector CD4+ T cells will die and only
a small portion of them will survive and further differentiate
into memory T cells after the elimination of a viral infection.
The features of memory lymphocyte generally includes (1)
antigen experienced (these cells have undergone antigen-driven
expansion); (2) can survive for a long time (undergo homeostatic
proliferation) in the absence of antigenic stimulation; (3) self-
renewable by homeostatic proliferation; (4) rapidly recall their
effector functions in response to re-challenge (70). Memory
CD4+ T cells respond much faster than naive T cells, require less
synergistic stimulation to respond to low antigen doses, and are
more active when challenged by pathogens (71). Recent studies
suggest both effector Tfh and Th1 cells can differentiate into
memory cells.

Series of studies have clearly demonstrated the existence
of memory Tfh cell in both mice and human (Figure 1) (2,
17, 72–75). These studies provide important insights into the
characteristics of Tfh cells that can differentiate into long-lived
memory-type cells which are endowed with capacity to reboost
Tfh-specific effector functions when encountered with the same
antigen (76). Meanwhile, considering the long persistence of
GC reactions and antigen retention by FDC, it is important to
appreciate that GC Tfh cells are not confined to one single GC.
Once GC Tfh cells have differentiated and provided help to GC
B cells, they can continually enter a different GC or exit GC and
emigrate to neighboring follicles (77, 78), where no antigen was
presented and Tfh cells acquires a less activated, less polarized
phenotype. In this situation, by downregulating Bcl6 expression
and upregulating IL-7Ra, Tfh cells gradually transit into a resting
memory state (73, 78). In acute viral infection for instance, after
the clearance of LCMV in mice, virus-specific CD4+ T cells that
survived the contraction phase can be maintained for 60–150
days (2). Among these cells, CXCR5+Ly6clo resting CD4+ T cells
shared similarities with effector Tfh cells, both phenotypically
and transcriptionally, and can rapidly recall a secondary wave of
effector Tfh response even in the absence of B cells, supporting
that CXCR5+ memory cells have been imprinted with a Tfh-
biased cell program (2). Cell markers that can clearly define
memory Tfh cells including high expression of CXCR5, FR4 (79),
CCR7, CD62L, and low expression of Bcl-6, ICOS, PD-1, and
Ly6c (80). Currently, the differentiation pattern of memory Tfh
cell remains controversial. An important question is whether the
fate of memory Tfh cells is determined before or after effector
phase. Meanwhile, given that Th1 vs. Tfh differentiation are
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regulated by strength and/or duration of TCR signaling (81, 82),
which also influences memory CD4+ T cell differentiation (83),
it is possible that Tfh effector population with different TCR
strength varies in degrees of lineage commitment to CXCR5+ Tfh
memory cells.

Besides, previous study indicated that memory Tfh cells are
superior to naive T cells in helping B cells, and they promote
faster B cell proliferation, higher antibody production and earlier
class-switching reactions than naive CD4+ T cells (76). In
many cases, the invasive virus can be quickly recognized and
eradicated by pre-existing antibodies. But for viruses that bear
high mutation rate (such as influenza virus and HIV), the
most important point lies on faster antibody production, as
the timely and efficient production of neutralizing antibodies
targeting against new variants that escape from previously
produced antibodies will be of great significance. Memory Tfh
cells maintain a substantial level of CD40L (84) and are retained
in the draining lymph nodes for more than 6 months (85).
Besides, during several types of viral infections, such as Ebola
virus (86), WNV (87), and influenza virus (88), memory Tfh cells
can generate higher levels of cytokines as compared with those
of naive T cells, which are likely to induce a more-potent B cell
responses and to dictate the isotype of antibodies, which play
key roles in the antibody responses specific for aforementioned
viruses. Nonetheless, we currently know much less as to the
molecular mechanisms underlying memory Tfh differentiation
than those discovered with effector Tfh cells.

THE DIFFERENTIATION OF
VIRUS-SPECIFIC Tfh CELLS DURING
CHRONIC VIRAL INFECTION

We know far less about how chronic viral infections affect CD4+

T cell responses than we do about CD8+ T cell exhaustion.
However, increasing attention has been paid to the impact of
persistent viral infection on the function of CD4+ T cells and
the importance of CD4+ T cells in chronic viral infection.
Compared with acute viral infection, virus-specific CD4+ T cells
in LCMV clone 13 persistent infection model exhibit deficiency
in production of Th1-type effector cytokines and fail to function
optimally following viral re-challenge (89). The loss of CD4+

T cell’s ability to respond to persistent antigens may be due to
high levels of antigens at the priming stage (90) and appears not
to be regulated by the changes in APCs caused by chronic viral
pathogens (89).

Similar to CD8+ T cell exhaustion in chronic infection, the
virus-specific CD4+ T cell response has been altered profoundly
as infection persists. The most significant phenotype of CD4+

T cell response during chronic viral infection is a defect in
Th1, while increasing in Tfh response (Figure 1). And both in
mouse and human chronic viral infections, the frequency of
CXCR5+CD4+ T cells in spleen accumulates gradually, reaching
approximately 60∼70% of the viral-specific CD4+ T cells by day
30, whereas which were relatively lower at a frequency of 40∼50%
during Arm infection (91). The increased Tfh differentiation was
accompanied by a loss in Th1, including decreased proliferative

potential and cytokine production (89). Thereby, to some
extent, the immune system promotes antibody responses, which
bear less immune-pathological risk compared to cytotoxic and
pro-inflammatory T cell responses. Moreover, transcriptional
profiling of viral-specific CD4+ T cells in LCMV clone 13
infection identified a loss in Th1 transcriptional signatures,
as well as an enrichment of Tfh-associated transcripts (92).
Upregulated CXCR5, Bcl-6, ICOS, OX40, and IL-21 expression
suggest an enhanced Tfh-like CD4+ T cells phenotype (91).
Very importantly, these additional Tfh-like CD4+ T cells are
proven to have the ability to help B cells through in vitro culture,
suggesting that they are equipped with some key signatures of
conceptual Tfh cells and remain suboptimal functions, such as the
ability to facilitate coordinate B cell response and production of
antibody (91, 93). Although we have not yet got a comprehensive
understanding of the biased differentiation of Tfh cells in chronic
viral infection, previous research proved that type I IFN signaling
may be an important mediator involved in the shift from Th1 to
Tfh cells (94–97). Several groups also demonstrated the skewed
differentiation toward Tfh cells during chronic LCMV infection
is firmly related to cytokines (such as IL-6/ IL-27) signaling
through the IL-6 family receptor pathway (98, 99). Recently,
Raju et al. (100) found that the deficiency of the signaling
adaptor CD2AP (CD2-associated protein) promotes CD4+ T
cell differentiation toward Tfh lineage during chronic LCMV
infection, leading to better control of viral infection by enhanced
GC response. They demonstrated that the strengthened Tfh
differentiation is associated with extended duration of TCR
signaling and enhanced cytokine production of CD2AP-deficient
CD4+ T cells specifically under Th1 conditions. To be noted,
the increased CXCR5 level may also contributed by another
CD4+ T cell subpopulation, Tfr cells (101, 102), coincide with
upregulated Foxp3 expression during chronic infection (103).
Although the function of Tfr cells is incompletely understood,
especially in chronic infection, the increased Tfr differentiation
suggest an active follicular program in chronic infection. And
this follicular program may be not only confined to CD4+

T cell lineage, confirmed by newly identified CXCR5+CD8+

T cells described both in mice and human chronic viral
infection (104–106).

Although viral persistence redirects a shift in Tfh
differentiation, it is not clear to what extent the function of
Tfh cells generated during chronic viral infection gets changed.
IL-21, canonical Tfh cytokine important for CD8+ T cell function
in chronic viral infection (107–110), is increased within Tfh
population. However, for humoral immunity, it seems that B cell
could not get optimal help from increased Tfh in chronic LCMV
infection. Firstly, the generation of neutralizing antibodies are
impaired and delayed, whereas, non-neutralizing antibodies to
LCMV increased considerably (111). Secondly, persisting viral
infections can lead to polyclonal hypergammaglobulinemia and
antibody-mediated autoimmunity, results of non-specific B cell
activation by Tfh cells (112, 113). The delayed production of
neutralizing antibodies and high production of poor quality
antibodies indicate that the interaction between Tfh and B cells in
chronic LCMV infection is dysregulated, leading to a suboptimal
ability of Tfh to help B cells producing high-affinity antibodies.
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As has been observed in LCMV, HIV, and SIV infections
also have been reported to have increased frequency of
CXCR5+CD4+ T cells (114, 115). Besides, compared with
uninfected healthy donors, the transcription characteristics of
Tfh cells in the SIV infection model were changed. It has been
confirmed that the transcriptional signature of Tfh cells derived
from SIV-infection models gets remarkably altered compared to
those from healthy donors (116). The underlying mechanisms
initiating and promoting a Tfh-like program inHIV infection still
remain unsolved and the relationship between HIV infection and
Tfh differentiation is complicated. During HIV or SIV infections,
Tfh cells seem to act in a bilateral manner, both immunological
and immunopathogenical: Firstly, Tfh cells are appreciated as an
important cellular reservoir of replication-competent HIV virus,
contributed by its special phenotype and follicular localization.
It is demonstrated that Tfh cells located in B-cell follicles are
preferentially targeted by HIV virus to form both long-term
latent infection and the enduring generation of virulent particles
(110, 117), and the anatomical separation of latently infected
Tfh cells might represent a major barrier for HIV-specific CD8+

T cells, which are normally excluded from B-cell follicles, to
effectively eradicate HIV infection (118–121). Secondly, Tfh is
closely involved in developing antibody-based vaccines for HIV-
1 infection, because functional Tfh-B cell interactions are key
to production of effective antibodies in vaccination (16, 122).
Consistent with mouse chronic infection models, Tfh cells do
not provide adequate help to B cells even though these cells are
expanded in HIV-infected individuals (increased Tfh frequency
dose not result in better B cell response). Instead, similar to
mouse chronic infection of LCMV, abnormal B cell activation and
hyper-gammaglobulinemia were observed in HIV-1 infection
(112, 115, 123), which suggests the dysregulation of Tfh cell-
mediated B cell help and disturbed Tfh-B cell interactions.
Specifically, data from mass cytometry combine with TCR
sequencing confirmed that compared with healthy individuals,
Tfh cells in the lymph nodes of HIV+ individuals secreted
interleukin-21 but were functionally and clonally restricted and
this correlated with impaired isotype switching of B cells in the
lymph nodes (124). Given the close relationship with Tfh from
lymphoid tissues, circulating or peripheral Tfh cells have also
been confirmed to be critical in HIV infection (16, 22, 125).
He et al. (18) demonstrated that circulating CXCR5+CD4+

T cells are generated in a SAP independent manner (before
they migrate to GC), and CCR7loPD-1hi subset correlated with
Tfh cell activity, providing a biomarker to monitor protective
humoral immune responses during infection or vaccination.
In a related study, combining cytokine production, functional
properties as well as gene expression profile, Locci et al. (17)
identified pTfh cells related to germinal center Tfh cells as
resting CD45RO+PD-1+CXCR5+CXCR3−CD4+ T cells. And
they confirmed that the frequency of this population positively
correlates with the titers of HIV-specific broadly neutralizing
antibodies in a large cohort of HIV-infected patients. Schultz
et al. (15) found that during HIV infection, peripheral IL-21+

CD4+ T cells show similarities with lymphoid tissue-resident Tfh
cells phenotypically, transcriptionally, and functionally. And they
also found that the numbers of HIV-specific IL-21-expressing

pTfh cell increased and their number positively correlated with
antibody production in the ALVAC priming, AIDSVAX boosting
immunization strategy used in the RV144 trial (the only HIV
vaccine to demonstrate some signs of efficacy among human
patients) when compared with the non-protective DNA prime-
Ad5 boosting vaccine trial. Given that the timely development
of high-affinity antibodies is central to the prevention and
eradication of viral infection (126), further work is needed to
understand the detailed mechanism underlying Tfh dysfunction
during persistent viral infections.

The key feature of CD8+ T cell exhaustion is upregulated
expression of co-inhibitory receptors, such as PD-1, Tim3, 2B4.
Although CD4+ T cells sustained the expression of a sets of
co-inhibitors (127), however, the specific inhibitory receptors
upregulated and the degree of expression between CD4+ and
CD8+ T cells differed remarkably (92, 127). For example, the
expression of 2B4 is biased toward exhausted CD8+ T cells,
while PD-1, CTLA4 are preferentially expressed in CD4+ T cells,
particularly in Tfh cells (92). Several groups (128) found that
functionally impaired CD4+ T cells derived from HIV patients
exhibit significant enhancement in proliferative potential after
treatment targeting on CTLA-4 (129, 130), TIM3 (131) or PD-
1 signaling blockade (132) in vitro. And the effector function of
CD8+ T cells can be rescued through enhancement of CD4+ T
cell response during chronic infection with LCMV (133, 134).
These findings and others (135, 136) shed new lights on the
design of vaccines against chronic viral infections. For Tfh cells,
physiologically, PD-1 is assigned to provide inhibitory signals
to GC Tfh cells, preventing excess cell proliferation during GC
reaction (21). Good-Jacobson et al. (137) demonstrated that upon
immunization, the deficiency of PD-1 or PD-1 ligands (PD-
L1/PD-L2) results in higher frequency of Tfh cells. Whereas, they
also found that the quality of Tfh cells is dramatically impaired
by diminishing their capacity to synthesize important cytokines
(such as IL-4/IL-21) while not promoting the development of
an alternatively polarized T cell type. These results suggest a
complex but critical role of PD-1 in Tfh cells. However, despite
the above findings, the role of PD-1 in Tfh cells during chronic
viral infection remains unclear. Whether the expression of PD-
1 on Tfh cells equals exhaustion or whether this is part of
their normal regulation and functional differentiation during
persistent infection have not yet been fully discovered.

Most of the aforementioned knowledge about CD4+ T
cell response during chronic viral infection has been obtained
from studies in which animals are infected with a single
virus. While valuable for identification of basic principles,
this is not reflective of human biology, since human beings
undergo repeated viral infections throughout their life span,
most notably, multiple herpesviruses. The γ-herpesviruses
(Gammaherpesviruses), including EBV (Epstein-Barr virus) and
KSHV (Kaposi’s sarcoma-associated herpesvirus), are associated
with lymphoproliferative diseases and lymphomas and with
the majority establishing latency in B lymphocytes (138). In
mouse models, intranasal infection of mice with the murine γ-
herpesvirus (MHV-68, shares biological and genetic homology
with EBV) results in an acute lytic infection in the lung, followed
by the establishment of lifelong latency in memory B cells,
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dendritic cells, and macrophages (104, 139–141). Barton et al.
(142) demonstrated that both the proportion and total number
of IFNγ

+, TNFα+, and IL-2+ CD4+ T cells was increased in
mice infected with MHV68 followed with LCMV-Armstrong re-
challenge compared to that in mice solely infected with LCMV
on day 8 post infection. This result reminded us that MHV68
latency may provide micro-environment in which effector CD4+

T cell responses get enhanced during subsequent infection.
Another study confirmed that signals from Tfh cell is critical
for B cell latency during MHV68 infection. They found that
the absence of these signals lead to a significant reduction in
the number of MHV68 latently infected B cells (143). However,
whether Tfh cells are selectively up-regulated during MHV68
chronic infection has not yet been fully illustrated. Apart from
its fundamental role in supporting B cell latency in MHV68
infection, CD4+ T cells may also control MHV68 replication in
a CD8+ T cell dependent or independent manner (138, 144).
Recently, several groups (104, 145) identified a specialized group
of cytotoxic T cells that expressed high level of the chemokine
receptor CXCR5 (Tfc, Follicular cytotoxic T cells), which
selectively entered B cell follicles and eradicated infected Tfh
cells and B cells during HIV/SIV or EBV infection, respectively.
Given that Tfh and Tfc cells have a similar histological location, it
will be of interests to determine whether these two subsets have
interaction or crosstalk during chronic viral infection.

Collectively speaking, further dissection of unique molecular
mechanisms underlying differentiation and functionality of
Tfh cells in chronic viral infection will provide opportunities
for harnessing this population to prevent and treat chronic
viral infection.

PERSPECTIVE

Currently, the transcriptional regulation of the ontogeny and
development of Tfh cell has been extensively investigated.
However, the field just starts to dissect the complexities of
cellular metabolism within Tfh cell as well as its epigenetic
signatures, particularly, in the scenario of viral infections.
It is well-acknowledged that the differentiation of Tfh cells
is accompanied by unique metabolic alterations required to
meet their cellular bioenergetic demands. During acute viral
infection, Tfh cells exhibited a relatively quiescent metabolic
state when compared to Th1 lineage, characterized by reduced
glucose uptake and mitochondrial respiration, as well as lowered
maximal respiratory capacity and extracellular acidification.
However, despite Tfh cells showing reduced metabolic capacity,
they still require glycolysis as well as oxidative phosphorylation
to provide sufficient energy and substrates for their specific
function (20). Zeng et al. (49) found that mTOR, combining
metabolic signals and transcriptional activity, plays as a central
control station in Tfh differentiation. Activated by costimulatory
molecule ICOS, mTOR acts to drive glycolysis and lipogenesis
and subsequently promotes Tfh cell responses during acute viral
infection. Given that GC-Tfh cells have a different localization

compared to outside Tfh cells. They may have distinct metabolic
features influenced by unique cellular and nutritional contact

within each microenvironment. Moreover, it is possible that
memory Tfh cells differs from effector Tfh cells in metabolism
as described in effector vs. memory CD8+ T cells. Whether and
how cellular metabolism influence the formation of memory Tfh
cells still need further investigation.

Besides metabolic issues, the differentiation of Tfh cells as
well as other CD4+ T helper (Th) cells are firmly correlated
with specific epigenetic modifications (146, 147). By generating
T cell-specific UTX (ubiquitously transcribed tetratricopeptide
repeat, X chromosome) deficient mice, Cook et al. (148)
found that during chronic but not acute, virus infection, Tfh
differentiation were significantly impaired in UTX deficient
mice, which in turn leads to suboptimal formation of germinal
center and production of virus-specific IgG. Mechanistically,
the absence of UTX leads to the upregulation of H3K27
methylation which further results in decreased expression of
IL-6R alpha and other Tfh lineage-related genes. Nishizawa
et al. (149) demonstrated that Bcl-6 is highly expressed in
angioimmunoblastic T-cell lymphoma (AITL) and peripheral
T-cell lymphomas (PTCL) containing tumor cells with Tfh
features. In their research, hypermethylation of the Bcl6 locus
followed by Bcl-6 upregulation, combined with TET2 mutations,
was thought to be the key event for lymphoma development
which may result in biased Tfh differentiation and eventually
contribute to AITL/PTCL development in patients. Apart from
these achievements, there are still important gaps in our
knowledge of the epigenetic features of Tfh cells. Further
studies will be required to draw a comprehensive epigenetic
landscape of Tfh cells and identify potential candidate chromatin
modifiers that participate in Tfh development. Understanding
these issues and dissecting the underlying regulatorymechanisms
will advance our knowledge of Tfh cells and shed lights on
designing new strategies against those diseases associated with
Tfh abnormalities.
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