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Parkinson’s disease (PD) is a neurodegenerative disease characterized by dysfunction in
distributed functional brain networks. Previous studies have reported abnormal changes
in static functional connectivity using resting-state functional magnetic resonance
imaging (fMRI). However, the dynamic characteristics of brain networks in PD is
still poorly understood. This study aimed to quantify the characteristics of dynamic
functional connectivity in PD patients at nodal, intra- and inter-subnetwork levels.
Resting-state fMRI data of a total of 42 PD patients and 40 normal controls (NCs)
were investigated from the perspective of the temporal variability on the connectivity
profiles across sliding windows. The results revealed that PD patients had greater nodal
variability in precentral and postcentral area (in sensorimotor network, SMN), middle
occipital gyrus (in visual network), putamen (in subcortical network) and cerebellum,
compared with NCs. Furthermore, at the subnetwork level, PD patients had greater
intra-network variability for the subcortical network, salience network and visual network,
and distributed changes of inter-network variability across several subnetwork pairs.
Specifically, the temporal variability within and between subcortical network and other
cortical subnetworks involving SMN, visual, ventral and dorsal attention networks as
well as cerebellum was positively associated with the severity of clinical symptoms in
PD patients. Additionally, the increased inter-network variability of cerebellum-auditory
pair was also correlated with clinical severity of symptoms in PD patients. These
observations indicate that temporal variability can detect the distributed abnormalities of
dynamic functional network of PD patients at nodal, intra- and inter-subnetwork scales,
and may provide new insights into understanding PD.

Keywords: Parkinson’s disease, dynamic functional connectivity, resting-state fMRI, subcortical networks,
temporal variability
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INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative
disease that affects millions of people around the world. The
prominent symptoms in PD are the motor deficits including
tremor, rigidity, and bradykinesia, which are mainly due to the
loss of dopaminergic neurons in the substantia nigra (Kalia and
Lang, 2015; Ma et al., 2016). Previous studies had proposed that
the dysfunction of corticostriatal network pathways and neural
circuits is related to the impairments in PD (Hacker et al., 2012;
Agosta et al., 2013; Luo et al., 2014; Amboni et al., 2015; Alia
et al., 2016). Despite being extensively investigated, mechanisms
underlying disturbances in PD are still poorly understood.

The past decade has seen remarkable growth of network
neuroscience and neuroimaging techniques and their
applications to abnormal brain connectivity in psychiatric
and neurological disorders. Several previous studies highlighted
that PD could be considered as a disease related to the
disruptions in several networks using diffusion tensor imaging
(DTI) (Melzer et al., 2013; Lopes et al., 2017), resting-state
functional magnetic resonance imaging (fMRI) (Luo et al.,
2014), task fMRI (Shine et al., 2013b) and other imaging
techniques (Brooks and Pavese, 2011). Functional network
analysis based on resting-state fMRI data, accounting for the
intrinsic blood oxygen level-dependent (BOLD) fluctuations,
offers an effective tool for characterizing interactions between
brain regions and quantifying abnormal organization of brain
network in disorders (Bullmore and Sporns, 2009; Smith
et al., 2009, 2011). Previous studies on large-scale network of
PD patients by graph theoretic analysis revealed disruptions
in the topological properties of brain networks and these
network measures have been demonstrated to serve as potential
biomarkers of PD for clinical diagnosis (Amboni et al., 2015).
Furthermore, altered modular organization of functional brain
networks in PD patients has also been reported (Ma et al.,
2016; Peraza et al., 2017), implying an abnormal functional
integration of PD.

However, the majority of earlier studies have adopted a “static”
point of view, whereas functional connectivity (FC) between
regions are actually associated with dynamic brain activity
over time (Hutchison et al., 2013; An et al., 2017). Dynamic
functional connectivity (dFC) analysis has been directed to
assess relevant FC fluctuations and examine how functional
organization evolves over time. It sheds new insights on the
dynamic spatiotemporal organization of resting brain activity
and captures FC alterations induced by disease pathologies (Preti
et al., 2016; Khambhati et al., 2017). For example, previous studies
have found that Schizophrenia (SZ) patients displayed within-
network disruptions of the DMN (Du et al., 2016) as well as
weaker across-network connectivity between DMN and other
resting-state networks (RSNs) (Rashid et al., 2014; Su et al., 2016).
In addition, the dynamic connectivity patterns have served as
features to gain better identification output in the classification
of MCI subjects (Wee et al., 2016) and of autism patients (Price
et al., 2014) than the standard static approaches. These results
suggest that the abnormal network characteristics of PD may
emerge from dynamic functional connections that cannot be

completely captured by static approaches and may help deepen
our understanding of this disease.

Despite these applications, alterations in the dynamic
properties of PD individuals still remain largely unknown. Kim
et al. (2017) first investigated the temporal states of dFC and
variability of network topology in PD patients using k-means
clustering, and found that PD patients showed a decrease in
the sparsely connected State I, paralleled by an increase in the
stronger interconnected State II, suggesting the altered functional
segregation and abnormal global integration in brain networks.
Sourty et al. (2016) employed Product Hidden Markov Models
(PHMM) to assess the connectivity state changes between a
set of RSNs in dementia with Lewy bodies, a disease sharing
similar features to PD, and figured out networks (i.e., occipito-
parieto-frontal network, the medial occipital network and the
right fronto-parietal network) related to impairment of cognitive
function in patients. However, these studies mainly focused on
the connectivity state changes of the whole brain, ignoring the
dynamic connectivity profile of particular brain regions. A recent
work (Zhang et al., 2016) investigated the temporal properties
of dFC by defining the temporal variability of FCs associated
with a specific brain region, and the temporal variability reveled
a strong correlation with BOLD/EEG activity. This approach
allows localization of regions showing significant variability
between groups, thus helping to reveal the abnormality of
regional dynamics of functional brain networks in various brain
diseases. Another work (Jie et al., 2018) integrated both temporal
and spatial variabilities of dynamic functional networks for
automatic diagnosis of Alzheimer’s Disease and boosted the
diagnosis performance, demonstrating that the spatio-temporal
interaction patterns can provide important information on the
underlying nature of neurodegenerative disease. Actually, PD
is a disease associated with a disruption across diffuse areas of
brain and interactions of multiscale organization. However, the
temporal properties of subnetworks (e.g., the intra- and inter-
network variability) have not been investigated yet. Temporal
variability may help elucidate the aberrant changes underlying
PD patients from the perspective of regional dynamics of
functional brain networks. A systematic examination of dFC
patterns and temporal variability in aspects of nodal, intra- and
inter- subnetworks may further deepen our understanding of PD.

In this study, we performed dFC analysis built on non-
overlapping networks to investigate the aberrant dFC patterns
in PD patients. With a focus on temporal variability of
FC profiles, we systematically examined the dFC changes at
nodal, intra- and inter- subnetwork levels. Our major goal
was to demonstrate whether: (1) the temporal variability could
characterize the underlying alterations in the PD cohort and/or
(2) the changes in temporal variability could account for some
clinical symptoms of PD.

MATERIALS AND METHODS

Participants and Assessment
Forty-four PD subjects were recruited from Ruijin Hospital
affiliated to Shanghai Jiao Tong University. The inclusion criteria
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included: (i) a diagnosis of PD without any record of other
neurological or psychiatric disorders; (ii) age≥ 45 years; (iii) Mini
Mental State Examination [MMSE (Folstein et al., 1975)] ≥ 24;
(iii) no depressive symptoms [evaluated by Beck Depression
Inventory (BDI) (Beck et al., 1961)]. Clinical evaluation was
assessed with Hoehn and Yahr (H-Y) score (Hoehn and Yahr,
1998) for the disease stage and the Unified Parkinson’s Disease
Rating Scale-Part III (UPDRS-III) (Chai et al., 2017) for severity
of motor symptoms. Forty-three normal controls (NCs) were
also included for the study. Three normal participants with
head motion >2 mm of translation or >2 degree of rotation
and two PD patients with poor co-registration in cerebellum
were excluded in the following analysis (see section “Data
Preprocessing” for details), leaving 42 patients and 40 normal
controls for analysis. The relevant demographic and clinical
information are summarized in Table 1. This study was carried
out in accordance with the recommendations of the “ethics
committee of Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China” with written informed
consent from all subjects.

MRI Acquisition
Data acquisition was carried out on a GE 3.0 T HDxt MRI scanner
with an 8-channel phased-array head coil. High-resolution T1-
weighted MRI scans were acquired using a fast, spoiled gradient
echo sequence (FSPGR) with the following parameters: repetition
time (TR) = 5.528 ms, echo time (TE) = 1.74 ms, matrix
size = 256 × 256, flip angle = 12◦, slice thickness = 1 mm,
196 sagittal slices. A total of 210 volumes of resting-state fMRI
data were acquired using an EPI sequence with the following
parameters: TR = 2000 ms, TE = 30 ms, matrix size = 64 × 64,
flip angle = 90◦, voxel size = 3.75 × 3.75 × 4 mm3. Subjects
were required to remain still and awake with eyes closed
during the scan.

Data Preprocessing
Preprocessing of fMRI data was performed using the DPARSF
toolbox (Yan and Zang, 2010). The first 10 volumes of each
functional time series were discarded considering instability
of the initial MRI signal and adaptation of participants to
the circumstance, leaving 200 volumes in total for processing
as follows: slice-timing, realignment to the mean image, co-
registration to the T1 image, motion correction, normalized to

TABLE 1 | Demographic data on patients and normal controls.

PD (n = 42 ) NC (n = 40 ) p value

Gender men/women 23M, 19F 21M, 19F 0.837

Age (years) 61.14(7.13) 62.68 (5.73) 0.288

UPDRS-III (motor) 15.50(6.36) – –

Disease duration (years) 2.96(1.80) – –

Hoehn and Yahr (H-Y) score 1.33(0.45) – –

All data are given as mean (standard deviation). Chi-square test was used to test
differences in gender distribution; two sample t-tests were used for other variables.
PD = Parkinson’s disease; NC = Normal controls; UPDRS-III = Unified Parkinson’s
Disease Rating Scale-Part III.

a standard template (Montreal Neurological Institute), reslicing
to 3 × 3 × 3 mm3, spatial smoothing (FWMH = 6 mm) and
band pass filtered (0.01–0.1 Hz). Finally, the nuisance covariates,
including 24 head motion parameters, white matter signal, and
CSF signal were regressed out. The resulting time courses were
used for the following brain network construction and analysis.
In order to limit the impact of head motion, we excluded the
subjects with head motion greater than 2 mm of translation
motion or more than 2 degrees of rotation.

Definition of Functional Brain Networks
We adopted the spherical 264 functional Region of Interests
(ROIs) defined by Power et al. (2011) across cortical, subcortical,
and cerebellar structures, and extracted a representative
BOLD time series by averaging signal in all voxels within
each ROI. These brain regions were defined by resting-
state FC mapping and multiple task fMRI meta-analysis,
ensuring the functional significance of network nodes. In brain
network analysis, each ROI was defined as a node, and the
functional connectivity between ROIs was estimated from the
corresponding representative BOLD time series. Consistent with
previous study (Cole et al., 2013), the whole brain were mapped
into 13 putative functional modules, including sensorimotor
(SMN), default mode (DMN), cingulo-opercular (CON), fronto-
parietal (FPN), subcortical, salience (SAN), auditory, visual,
ventral attention (VAN), dorsal attention (DAN), memory
retrieval, cerebellum, and uncertain networks (Figure 1A).
This parcellation offers a comprehensive view for the study
of functional brain modules, allowing to identify connectivity
patterns and interactions between different modules. In this
study, we would mainly report and discuss the results related to
the 12 main networks but paying no attention to the “Uncertain”
network, as it does not constitute specific cortical networks with
explicable function.

For better interpretation for the anatomical location of
specific regions, the Automated Anatomical Labeling (AAL) atlas
(Tzouriomazoyer et al., 2002) was also used in this study.

Temporal Variability
For each participant, dFC were computed based on sliding
temporal window approach. Following the strategy in Zhang’s
work (Zhang et al., 2016), we used segments of BOLD time series
without overlapping to calculate temporal variability (nodal,
intra- and inter-network variability). Briefly, the entire BOLD
time series for each subject was divided into non-overlapping
windows. Then within each window, connectivity between
each pair of nodes was estimated by the Pearson’s correlation
coefficients of the BOLD time series (Figure 1B).

Nodal Variability
To characterize the dynamic configuration of a specific region
across all time windows, we calculated the temporal variability
of each node (Mueller et al., 2013; Zhang et al., 2016). For a
given region k, the connectivity profile at time window i can be
denoted as Fi,k, which is a vector with M values that describes
the connection map based on the connectivity between region k
with all other regions. Then the connectivity vectors in different
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FIGURE 1 | Schematic overview of the temporal variability calculation. (A) Network partition of 264 putative functional regions defined by Power et al. (2011) L, Left;
R, right. (B) Each regional BOLD signal was segmented into non-overlapping windows, and the whole brain functional connectivity network was constructed using
Pearson correlation of the representation BOLD time series in each window. (C) From the raw functional connectivity matrix in one time window, nodal connectivity
profile is the vector that describes its connectivity with all the other nodes (e.g., the column marked by black line); intra-subnetwork connectivity profile is the upper
triangle (due to symmetry) of the connectivity matrix within one subnetwork (e.g., SMN); inter-network connectivity profile is the connectivity matrix between two
subnetworks (e.g., SMN-visual, as the block marked by a small black rectangular window). (D) Calculation of temporal variability. The nodal, intra- and inter-network
connectivity profile in each window was unfolded into connectivity vectors, respectively, and the temporal variability was calculated as the average correlation
coefficients of the connectivity vectors across different windows with a deduction from 1.

windows were subsequently used to estimate the variability Vk
of brain region k, which is defined as one minus the average
correlation of that region’s connectivity profile across all time
windows (Mueller et al., 2013; Zhang et al., 2016), that is,

Vk = 1−
2

N (N − 1)

N∑
i=1,j=2,i<j

corr
(
Fi,k, Fj,k

)
,

where N denotes the number of windows (Figures 1C,D). The
second part of Vk is the averaged correlation values between any
two connectivity profiles derived from different time windows,
indicating the similarity between connectivity profiles. A small
value of variability Vk indicates a high correlation of a node’s
functional architecture across different time windows.

As for the parameters selection, previous studies suggested
that window size around 30–60 s should be suitable to capture

the resting-state dFC fluctuations and produce robust results
(Keilholz et al., 2012; Li et al., 2014; Deng et al., 2016).
And another study (Li et al., 2014) showed that changes of
brain connectivity are not sensitive to the specific time-window
length (in the range of 10–20 TRs, 20–40 s). We performed
the variability analysis at different window length (l = 10, 11,
12, . . ., 20 volumes, corresponding to 20, 22, 24, . . ., 40 s,
respectively), and found that variability obtained from different
window lengths produced highly correlated results (r > 0.98,
Supplementary Figure S1), indicating that this metric is not
sensitive to the choice of window length. Therefore, in the
following sections, we reported the results obtained with the
window size of 20TRs (40 s).

Intra- and Inter-Network Variability
The connectivity patterns within and between subnetworks also
fluctuate dynamically over a short period of time (Kiviniemi
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et al., 2011; Takamitsu et al., 2013; Ma et al., 2014). In order to
assess the dynamic interactions within and between subnetworks
and identify the system-level dynamic brain organization, we
defined the intra- and inter- network variability in a way similar
to the definition of nodal variability. For a subnetwork, all
the intra-network connectivity in each window were unfolded
into a long connectivity vector, and then the intra-network
variability was estimated as the average correlation coefficients
of the connectivity vectors across different windows with a
deduction from 1 (Figures 1C,D). Intra-network variability
characterizes the changes of connectivity within subnetwork
over time. High value of intra-network variability means the
functional architecture within the network is poorly correlated
across different time windows, implying an unstable state.
Similarly, for two subnetworks, all the connectivity between
the two subnetworks were unfolded into a long connectivity
vector, and then the inter-network variability was estimated as the
average correlation coefficients of the connectivity vectors across
windows with a deduction from 1 (Figures 1C,D). High value
of inter-network variability means that the interactions between
the two networks reconfigure frequently but not maintain a
stable pattern.

Statistical Analysis
Non-parametric permutation tests (Nichols and Holmes, 2002;
Bassett et al., 2011) were applied to test the between-group
differences in nodal, intra- and inter-network variability. In
each permutation, each subject was randomly reassigned to
one of a pair of groups with the same number of subjects as
in the original patient and control groups. Then the nodal,
intra- and inter-network variability were computed for each
randomized group and the between-group difference for all
the metrics was calculated, respectively. This randomization
procedure was repeated 10000 times, resulting in a sampled
null between-group difference permutation distributions for
each metric. Finally, the p-value was then calculated as the
proportion of total entries resulting from the permutation
distribution that were greater than (or smaller than) the observed
group effect.

Statistical analysis for head motion parameters and
demographic measures were performed using two sample
t-test. Spearman correlation analysis was performed between
altered temporal variability and clinical variables of disease
severity (UPDRS-III score and Hoehn and Yahr staging) at
a threshold for statistical significance of p < 0.05. Statistical
analysis of all the metrics were implemented using Matlab
(version 2014a; MathWorks). Visualization of results were
performed using Python.

Validation Analysis
To evaluate the robustness of our main results, we conducted
some validation analysis. (i) Parcellation scheme: given that the
variability may be affected by the topological spatial constraints
and definition of ROIs, we also constructed functional brain
networks using an additional functional whole-brain parcellation
scheme consisting of 268 ROIs (Shen et al., 2013) (referred to
as Shen268 atlas), in which all the ROIs are assigned to eight

different functional networks. (ii) Window length: to investigate
the potential effects of window length, we performed the
correlation analysis of temporal variability obtained at different
window lengths, and also repeated the analysis with the average
value of variability across different window lengths, following the
strategy used in Zhang et al. (2016).

RESULTS

Nodal Variability
We found significant nodal variability changes in PD patients
across several regions. The nodal variability of precentral and
postcentral gyrus (in SMN), middle occipital gyrus (in visual
network), putamen (in subcortical network) and cerebellum in
patients showed significantly increased variability (p < 0.005,
10000 permutations, uncorrected) compared to NCs (Table 2).
While in this PD cohort, no nodes showed significantly
decreased variability.

Intra-Network Variability
Among the 13 subnetworks, we found that subnetworks
including subcortical network, SAN and visual network tended
to display greater intra-network variability in PD than NCs
(p < 0.05, 10000 permutations, Figure 2A). Only the variability
of intra-subcortical network showed a positive correlation with
UPDRS-III by spearman correlation analysis (Figures 2B,C).

Inter-Network Variability
Distributed Difference of Inter-Network Variability
We explored inter-network variability among all subnetwork
pairs. Figures 3A,B show the mean intra- and inter- network
variability matrices in NCs and PD patients, respectively.
Generally, the intra-network variability of a particular
subnetwork demonstrated a relatively lower value than the inter-
network variability of that subnetwork with other subnetworks,
respectively in both PD and NC groups (Figure 3, NC group:
all p-values no larger than 0.0181, 10000 permutations; PD
group: all p-values no larger than 0.0001, 10000 permutations).
Between group comparisons for the variability matrices
revealed significantly greater inter-network variability in
PD patients compared with NCs in several subnetwork
pairs associated with SMN, visual, subcortical networks
and cerebellum.

Correlation Between Inter-Network Variability and
UPDRS-III
We further identified the subnetwork pairs which showed
significant correlation (p < 0.05, Spearman correlation) to the
clinical status. To ensure correlations are not driven by a
few extreme values, we removed outliers in the data prior to
performing linear regression. We defined an outlier as a value
outside of 3 standard deviation from the group mean. Performing
regression with and without outliers actually did not qualitatively
change the results.

Significant correlation between inter-network variability and
UPDRS-III mainly appeared in subnetwork pairs associated with
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TABLE 2 | Regions showing significant higher nodal variability in PD patients than normal controls.

ROI Index MNI coordinate Nodal Variability p-value (uncorrected) Subnetwork Brain region (AAL atlas)

NC PD

8 –37, –29, –26 0.8033 0.8508 0.0033 Uncertain Fusiform_L

28 20, –29, 60 0.7350 0.8013 0.0005 SMN NA

34 –21, –31, 61 0.7486 0.8042 0.0035 SMN Postcentral_L

41 38, –17, 45 0.7229 0.7980 0.0008 SMN Precentral_R

147 –28, –79, 19 0.7360 0.7817 0.0044 Visual Occipital_Mid_L

227 –22, 7, –5 0.8031 0.8474 0.0026 Subcortical Putamen_L

232 –31, –11, 0 0.8072 0.8565 0.0029 Subcortical Putamen_L

245 22, –58, –23 0.7492 0.8034 0.0046 Cerebellum Cerebellum

FIGURE 2 | (A) The intra-network variability of 13 subnetworks for PD patients and NCs, respectively. Error bars represent mean and standard errors of the two
groups, respectively. ∗p < 0.05. (B) Topographic representation of the nodes and connectivity within subcortical network. (C) Scatter plots of intra-network variability
of subcortical network with respect to the UPDRS-III score in PD patients. Each dot indicates one subject. Linear regression line with 95% confidence interval for
best-fit line (shading area), as well as r and p values (Spearman’s correlation coefficient) are provided.

subcortical network and cerebellum (Supplementary Figure S5).
Compared with NCs, PD group had greater inter-network
variabilities for the subnetwork pairs of subcortical network
with respect to sensorimotor, visual, ventral attention, dorsal
attention, and cerebellum networks, and their variability also had
significant positive correlation with UPDRS-III in PD patients
(Figures 4A–E). In addition, the inter-network variability for
subnetwork pairs of cerebellum and auditory network also
showed group difference as well as significant positive correlation

with UPDRS-III (Figure 4F). We have also evaluated the
correlation between temporal variability and H-Y scores, while
the results showed that the nodal/intra- and inter-network
variability had a weak correlation (all r < 0.23, all p > 0.14)
with H-Y scores.

Validation Results
We validated our main findings using different analysis strategies,
involving sliding window lengths (Supplementary Table S1
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FIGURE 3 | (A) Mean intra- and inter-network variability matrix of NCs. (B) Mean intra- and inter- network variability matrix of PD patients. Asterisks (∗) labeled on the
PD matrix indicate the subnetwork pairs showing significantly increased intra- or inter-network variability in PD patients compared than control subjects. ∗p < 0.05,
∗∗p < 0.005.

and Supplementary Figures S1–S4), parcellation schemes
(Supplementary Table S2 and Supplementary Figures S6–
S8). We found that the temporal variability including nodal,
intra- and inter- network variability estimated from windows
of different lengths were highly correlated, indicating that these
metrics is not sensitive to the choice of window length. For
further validation of the results, we also used the average
variability across different window lengths for the same analysis
procedures, the main results are highly similar with those at
window length of 20TRs. For the results obtained at Shen268
atlas, we observed similar pattern of variability difference of two
groups, which were mainly located at Subcortical-cerebellum,
Motor, and Visual (Visual I, Visual II, Visual association)
networks. Besides, the significant correlation between temporal
variability and UPDRS-III also mainly appeared in subnetwork
pairs associated with Subcortical-cerebellum network. These
results replicated the main findings obtained with Power-
264 atlas.

DISCUSSION

In the present study, we investigated the variability of the
dynamic functional brain network of PD patients at nodal,
intra- and inter-network levels. Our results demonstrated that
PD patients exhibited increased nodal variability involving
precentral and postcentral areas, occipital area, putamen, and
cerebellum. Moreover, PD patients demonstrated significantly
increased intra-network variability within subcortical, salience

and visual networks, as well as distributed increase in inter-
network variability of several subnetwork pairs. Furthermore, the
intra-network variability of subcortical network and the inter-
network variability of subcortical network with respect to SMN,
visual network, VAN, DAN and cerebellum showed significant
correlation with the clinical score UPDRS-III, suggesting the
special role of subcortical network in functional abnormality
of PD. Besides, the inter-network variability of the cerebellum-
auditory pair also had significant correlation with the clinical
score UPDRS-III. These results suggest that PD patients showed
widespread functional network abnormalities in term of temporal
variability, and the abnormal temporal variability also correlated
with clinical manifestations and thus offering new insights in
understanding PD.

Distributed Variability Changes in PD
Patients
At the nodal and intra-network level, we found a widespread
pattern of increased variability in PD patients, encompassing
sensorimotor (SMN), visual, subcortical networks and
cerebellum. A similar pattern was also observed in ROIs
defined by the Shen268 atlas, that is, the variability difference
was mainly located in Subcortical-cerebellum, Motor, and
Visual (Visual I, Visual II, Visual association) subnetworks
(Supplementary Table S2 and Supplementary Figures S6,S7).
Previous study has reported that the primary sensorimotor area
in normal subjects changed little over time (Power et al., 2011;
Bassett et al., 2013). Conversely, in this study, the precentral
and postcentral areas (in sensorimotor network) revealed higher
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FIGURE 4 | (A–E) Subnetwork pairs associated with subcortical network had increased inter-network variability as well as significant correlation with UPDRS-III.
(F) The cerebellum-auditory subnetwork pair which had increased inter-network variability as well as significant correlation with UPDRS-III in PD patients. For each
row from A to F, the left panel is the topographic representation of the nodes and the inter-network connectivity within the corresponding subnetwork pairs,
respectively; the middle panel is the boxplot of inter-network variability for NC and PD groups, respectively; and the right panel is the scatterplot of the inter-network
variability with respect to the UPDRS-III score for PD patients, with each dot indicating one subject, excluding outliers (outside of 3 standard deviation from the group
mean). Error bars represent mean and standard errors of the two groups, respectively. Linear regression line with 95% confidence interval for best-fit line (shading
area), as well as r and p values (Spearman’s correlation coefficient) are provided. ∗p < 0.05, ∗∗p < 0.005.
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variability in patients, unveiling that nodes in SMN of PD
patients demonstrated a non-stationary functional configuration
with other regions. In fact, several studies have identified
abnormal functional connectivity in SMN which is indicative
of impaired sensorimotor integration occurred in PD (Lewis
and Byblow, 2002; Tessitore et al., 2014). Besides, the increased
variability has also been observed in visual network both at nodal
and intra-network levels. Indeed, visual network is another major
complex sensory domain affected by PD, and PD may lead to
visual hallucinations, perceptual, executive and sleep dysfunction
(Archibald et al., 2011; Wu et al., 2011; Weil et al., 2016). These
results together suggest that the altered dFC patterns observed in
our study may be related to the deficits in these sensory regions.
Moreover, the salience network, mainly comprised of the anterior
insula, is a central hub involved in integrating the somatosensory
and cognitive-affective information to guide behavior (Kurth
et al., 2010). The increased intra-salience network variability
found in our data corroborated previous findings of reduced
hub role (Tinaz et al., 2016) and abnormal activation patterns
in insula in PD patients (Christopher et al., 2014, 2015). In
addition, there were other between-group differences in regional
or inter-subnetwork variability associated with subcortical
network and cerebellum, many of which have been suggested to
be related to structural or functional impairment in PD patients
(Brooks et al., 2010). Taken together, the abnormality of regional
variability identified in our study indicates altered dFC across
distributed nodes and subnetworks, reflecting those regions are
at an unstable state.

For the inter-network variability, we found that the inter-
motor variability was higher than intra-motor variability, which
is consistent with previous studies (Elton and Gao, 2015)
that lower variability within subnetwork may maintain a
more stable configuration. In addition, significant higher inter-
network variability was found across distributed subsystem
pairs. The varying interactions between subsystems may be
tied to functional coordination between subnetworks (Zalesky
et al., 2014), the increased inter-network variability in PD
patients implies an unstable state and more dynamic interactions.
Our observations was consistent with Kim et al. (2017),
which reported an increase in the number of transitions
between states and higher variability in global efficiency of
brain network of PD patients, implying a less efficient and
more unstable information transfer within/between functional
subnetworks. Furthermore, substantial efforts have been made
in previous studies to elucidate the neural basis of PD,
with mounting evidence indicating deficits of distributed
brain networks and wide-spread white matter damage in
PD (Brooks and Pavese, 2011; Canu et al., 2016; Koshimori
et al., 2016). Our results putatively reflect the abnormal
global integration of the brain networks in PD from the
dynamic perspective.

Variability Associated With Subcortical
Network
Despite the distributed alteration of temporal variability in
PD patients, the variability showing significant correlation

with clinical score was particularly associated subcortical
network (Supplementary Figure S5), suggesting its clinical
significance in PD. Results obtained with the Shen268 atlas
showed a similar trend, which were mainly associated with the
Subcortical-cerebellum subnetwork (Supplementary Figure S8).
At nodal and intra-network levels, a higher nodal variability
in putamen and intra-network variability within subcortical
network was observed, which is compatible with previous
study highlighting the severely affected striatal dopamine
depletion in putamen and reduced connectivity between striatal
and thalamus within subcortical network (Hacker et al.,
2012). At the inter-network level, the increased inter-network
variability between subcortical network and cortical networks
(sensorimotor, visual, and attention network) in PD patients
also correlated with worsening motor symptoms in PD. All
these cortical networks are known to play a critical role
in the pathogenesis of PD (Kim et al., 2017), and the
dysfunction of cortico-BG-thalamo-cortical circuit associated
with motor deficits is well documented in PD patients
(Alexander et al., 1986). More specifically, altered functional
connection and integration of subcortical to sensorimotor
and visual networks have been reported in PD (Tremblay
et al., 2010; Hacker et al., 2012; Wymbs et al., 2012).
Connectivity changes and dysfunctional integration in attention
work (including dorsal attention network (DAN) and ventral
attention network (VAN)) have also been reported in PD patients
with mild cognitive impairment and visual hallucinations,
respectively (Shine et al., 2013a; Baggio et al., 2015). Here
the higher level variability of FC profile in subcortical-cortical
coupling may therefore provide further information for the
prediction of disease severity. Furthermore, a significantly
increased variability of cerebellum-subcortical coupling in
PD patients was positive associated with UPDRS-III in our
study. According to Bostan et al. (2013), the reciprocal
connections between basal ganglia and the cerebellum provide
the anatomical substrate for the cerebellar contributions to
a wide range of behaviors. The increased variability pattern
between cerebellum and subcortical network, could also support
the markedly lower striatal connectivity with cerebellum in PD
group reported in Hacker et al. (2012), thus reinforcing the
relevance to parkinsonism of the described circuits connecting
the cerebellum to the basal ganglia (Hoshi et al., 2005;
Bostan et al., 2010).

Variability Associated With Cerebellum
Interestingly, in the present study, the node in the cerebellum
showed significantly increased nodal variability in PD patients.
Studies have shown that the cerebellum is involved in motor
coordination (Thach, 1998) as well as integration of motor and
cognitive networks. Pathological changes in the cerebellum have
been reported in a previous study (Wu and Hallett, 2013).
Considering this, our results revealed an abnormal dynamic
connectivity profile between nodes in the cerebellum with other
regions, which may be related to the dysfunction of cerebellum in
PD patients.

We also found that a significantly increased inter-network
variability between cerebellum and cortical network (auditory
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network) showed positive correlation with UPDRS-III. This
emphasizes that the unstable dynamic interaction between the
cerebellum and auditory network may also relate to the motor
symptom of PD. Similar to basal ganglia in subcortical network,
cerebellum has also shown anatomical loops between cerebellum
and nearly all cortical subnetworks, suggesting its high global
brain connectivity (Middleton and Strick, 1994; Kelly and Strick,
2003; Cole et al., 2010). Combined with the observations that the
inter-network variability between subcortical network and other
cortical subnetworks as well as cerebellum were also correlated
with clinical score (UPDRS-III) noted above, our results uncover
the fact that cerebellum also serve as an important role in
PD pathology.

In fact, the subcortical network in this study (mainly
comprised of basal ganglia and thalamus) and the cerebellum
are densely interconnected at the subcortical level and formed
an integrated network (Bostan and Strick, 2018). These
subcortical systems support the convergence of diverse cortical
and subcortical afferents, as well as neuromodulatory signals
from the brainstem, thus serving as a hub for large-scale
network integration in the human brain (Bell and Shine,
2016). Previous studies revealed that pathological lesions of
most disorders were concentrated in hub regions, especially
in the striatum and thalamus, implying that subcortical
hubs represent key pathological foci across multiple brain
disorders (Crossley et al., 2014). Evidence from previous studies
has shown that cortico-subcortical circuits are linked to a
diverse range of limbic, cognitive and motor control functions
(Chudasama and Robbins, 2006; Pennartz et al., 2009). PD
is a neurodegenerative disorder characterized by severe and
early subcortical pathology as well as clinical impairments
extend across cognitive and motor domains. Our results provide
further evidence of a subcortical hub by capturing the dynamic
variability changes in the subcortical network of PD, suggesting
that the subcortical dysfunction may contribute to pathological
changes in PD.

Limitations
Several limitations of this study should be recognized.
First, motor manifestations of PD subjects are evaluated
only using the motor portion of UPDRS without other
neuropsychological tests for the diagnosis of PD. There are
other substantial non-motor symptoms such as cognitive
impairment, autonomic dysfunction and sleep disorders
experienced by PD patients (Wu et al., 2011). Future work
could investigate variability metrics and their association with
other neuropsychological scores and cognitive performance
to establish the relationship between dynamic analysis and
clinical diagnosis. Second, PD is a heterogeneous disorder
with different symptoms and functional connectivity patterns
(Zhang et al., 2015). Due to the diversity of possible status
of drug use, personality, or genetic factors in our data and a
large number of comparisons, some results didn’t pass a false
discovery rate (FDR) for multiple comparisons correction.
Accordingly, we reported the results by setting a relative low
significance level (p < 0.005) in nodal variability and different

statistic levels (p < 0.05 and p < 0.005) in intra- and inter-
network variability. Actually, a more heterogeneous status in
the patients’ group will most likely lead to higher statistical
variance, rendering it more difficult to detect significant
functional connectivity differences between patients and
controls. Therefore, a larger sample size and more strict inclusion
criteria will be needed in further study to reveal temporal
variability differences.

CONCLUSION

This study reported alterations of temporal variability in
PD patients at nodal, intra- and inter-network levels. Our
analysis showed that PD patients have higher nodal variability
in precentral and postcentral area, middle occipital gyrus,
putamen, cerebellum as well as the increased intra- and inter-
motor variability across several distributed subnetworks
compared with normal controls. Moreover, the higher
intra- and inter-network variability associated with the
subcortical network and cerebellum showed significant
correlation with UPDRS-III motor score, suggesting its clinical
significance. Our results suggest that temporal variability of
functional connectivity profile can detect the aberrant dynamic
connectivity patterns, which were associated with the clinical
deficits in PD and thus may deepen our understanding of
the disease.
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