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The interactions between drugs and their target proteins induce altered expression of
genes involved in complex intracellular networks. The properties of these functional
network modules are critical for the identification of drug targets, for drug repurposing,
and for understanding the underlying mode of action of the drug. The topological
modules generated by a computational approach are defined as functional clusters.
However, the functions inferred for these topological modules extracted from a large-
scale molecular interaction network, such as a protein–protein interaction (PPI) network,
could differ depending on different cluster detection algorithms. Moreover, the dynamic
gene expression profiles among tissues or cell types causes differential functional
interaction patterns between the molecular components. Thus, the connections in
the PPI network should be modified by the transcriptomic landscape of specific cell
lines before producing topological clusters. Here, we systematically investigated the
clusters of a cell-based PPI network by using four cluster detection algorithms. We
subsequently compared the performance of these algorithms for target gene prediction,
which integrates gene perturbation data with the cell-based PPI network using two
drug target prioritization methods, shortest path and diffusion correlation. In addition,
we validated the proportion of perturbed genes in clusters by finding candidate anti-
breast cancer drugs and confirming our predictions using literature evidence and cases
in the ClinicalTrials.gov. Our results indicate that the Walktrap (CW) clustering algorithm
achieved the best performance overall in our comparative study.

Keywords: breast cancer, PPI network, target gene, drug repositioning, drug action, CMap, cell proliferation

INTRODUCTION

Drugs physically bind specific target proteins and activate downstream effectors to ultimately
change the gene expression profiles of tumor cells, which are highly modular in the context of
molecular interaction networks (Hartwell et al., 1999; Berger and Iyengar, 2009; Sah et al., 2014).
Investigation of the modular properties of interactomes, such as protein–protein interaction (PPI)
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networks, can facilitate further discovery of the underlying
molecular interaction mechanisms that drive cell response under
specific conditions, such as drug treatment (Isik et al., 2015).
Previous studies have used interaction networks to predict gene
function, identify novel disease-related genes and to understand
the overlapping association across disease phenotypes (Sharan
et al., 2007; Lee et al., 2008; Menche et al., 2015). Recently,
computational approaches have been used to build topological
clusters as functional modules in PPI networks. For example,
Spirin and Mirny identified modules in the PPI network through
three methods and subsequently demonstrated the association
between topological clusters and functional modules (Spirin
and Mirny, 2003). Additionally, Kenley and Cho proposed a
graph entropy algorithm to identify functional clusters from PPI
networks (Kenley and Cho, 2011). These efforts have led to more
effective modeling of PPIs and the drug targeting thereof with
respect to specific diseases.

In the last decades, cancer cell lines have been widely used as
models for understanding cancer biology and cellular response
to anticancer drugs (Goodspeed et al., 2016). These cell lines
have not only been comprehensively profiled at the molecular
level, but they have also been used in large pharmacogenomic
studies. The Connectivity Map (CMap) contains to date more
than 7,000 expression profiles in five cancer cell lines (MCF7
and ssMCF7, human breast adenocarcinoma cell line; HL-60,
human promyelocytic leukemia cell line; PC-3, human prostate
cancer cell line; SK-MEL-5, melanoma cell line), screened
for transcriptional responses induced by 1,309 small molecule
compounds at varying concentrations from 6,100 microarray
experiments conducted using the Affymetrix HT_HG_U133A
array with 22,283 probesets (Lamb et al., 2006). Previous studies
have also reported that the CMap data can be used to link
transcriptional biomarkers to known mechanisms of drug action,
such as the thioridazine inhibition of the phosphatidylinositol-
3′-kinase (PI3K)/AKT pathway in ovarian cancer cells (Bae et al.,
2011), allowing the identification of drug target proteins and
facilitating the process of drug repurposing (Babcock et al., 2013;
Iskar et al., 2013; Wu et al., 2013; Musa et al., 2017). In this study,
we extensively used the transcriptomic and pharmacogenomic
data pertaining to the cell lines found in the CMap to further
understand the topological clustering in PPI networks from a
comparative computational approach. We focused our interest
on the MCF7 cell line, as it is the most commonly used cell
line in human breast carcinoma, established in 1973 at the
Michigan Cancer Foundation (Holliday and Speirs, 2011). Due to
the hormone sensitivity found in MCF7 through the expression
of the estrogen receptor (ER), this cell line has been reported
as an ideal model to study hormone response in breast cancer
(Levenson and Jordan, 1997).

Over the past few years, systems biology has made significant
progress in addressing fundamental biological questions by
making use of PPIs, leading to practical applications in drug
target identification and drug discovery (Iskar et al., 2013; Wu
et al., 2013; Ivliev et al., 2016). The STRING database (version
10.0) provides critical assessment and integrates all possible
direct and indirect PPIs for more than 2,000 species, including
19,247 proteins with 8,548,002 interactions for Homo sapiens

(Szklarczyk et al., 2015). Furthermore, various drug targeting
measures have been developed, including a method called local
radiality (LR) by Isik et al. (2015), integrating perturbed gene
expression with PPI network information to prioritize drug
target identification through different essential protein detection
algorithms. The STRING database assigns a confidence score
to each predicted protein–protein association calculated based
on several sources, including published literature, experimental
interaction data, and data concerning co-regulation of genes.
However, despite these ongoing efforts that investigate cellular
PPIs, due to the varying gene expression profiles in different
cell lines, proteins exhibit dynamic behavior in interaction
that current cell-agnostic PPI assignment methods do not fully
recapitulate (Holliday and Speirs, 2011; Liang et al., 2014).
As such, accuracy is poor for functional cluster prediction in
individual cancer cell lines using existing clustering algorithms,
and there remains a lack of convergence between the algorithms
due to their diverse module detection theories and methods (Liu
et al., 2017). Inspired by this, we developed a cell-based PPI
network using the MCF7 cell line as an alternative to current
cell-agnostic models. In this study, we compared the properties
of functional clusters elucidated from a cell-based PPI network
in the MCF-7 cell line produced by four module detection
algorithms. We subsequently extract drug-induced functionally
perturbed genes from the big clusters (defined as clusters with a
size of greater than or equal to 10) detected by the algorithms
and integrate them with MCF7 cell-based network information
to improve the prioritization of target genes. Finally, we illustrate
the potential association between perturbed genes and clusters
in the MCF7 cell-based PPI network through investigations
in drug repurposing. Our results highlight the validity of this
comparative approach to identify novel anti-breast cancer drugs,
which were further validated using literature and data from
ClinicalTrials.gov (Figure 1). Furthermore, our results indicate
that the Walktrap (CW) algorithm yields the best performance
for detecting functional clusters in the PPI network.

MATERIALS AND METHODS

Establishment of Cell-Based PPI
Network Using MCF7
We downloaded the human PPIs from the STRING database
(version 10) (Szklarczyk et al., 2015) to serve as the unfiltered
PPIs for our cell-based PPI network. The ENSP IDs of the
proteins found in STRING human PPI network were matched
to their corresponding ENSG gene IDs using the R package
biomaRt (version 2.34.2) (Badalà et al., 2009). To create the
cell-based PPI network, we used as filtering criteria the gene
expression data of the MCF7 cell line obtained from the Broad-
Novartis Cancer Cell Line Encyclopedia (CCLE). The CCLE
project provides public access to genomic data (Supplementary
Table S1), as well as the analysis and visualization thereof for
approximately 1,000 cancer cell lines (Barretina et al., 2012;
Smirnov et al., 2018), with MCF7 being one of them. The gene
expression data of the MCF7 cell line in CCLE were obtained
using the R package PharmacoGx (version 1.12.0) (Smirnov et al.,
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FIGURE 1 | Framework for application of functional clusters. (A) The interactions in the human protein–protein interaction (PPI) network were removed if the
corresponding proteins were not expressed in the MCF-7 cell lines. The clusters were built by four module detection algorithms. (B) The target genes were ranked
based on the score produced by combining the perturbed genes of big size clusters with network information. (C) Cancer drugs by similarity analysis based on the
fraction of perturbed genes in clusters.

2016), which contains the pharmacological profiles of several
hundred cell lines generated by CCLE, the Genentech Cell Line
Screening Initiative (gCSI) (Klijn et al., 2014), the Genomics
of Drug Sensitivity in Cancer (GDSC) (Garnett et al., 2012)
and the GRAY dataset, generated in Dr. Joe Gray’s lab at the
Oregon Health and Science University (Daemen et al., 2013).
To calculate the expression value of genes found in the MCF7
cell line, we converted the number of fragments per kilobase
per million (FPKM) mapped reads units were converted to
log2(FPKM+1) as the expression value of genes. We defined
expressed genes is defined as those with a log2(FPKM+1) value
of greater than or equal to 1 [log2(FPKM+1) ≥ 1] (Gonzalez-
Porta et al., 2013). Using this definition, the MCF7 cell line
expresses 13,096 genes. We then developed the cell-based PPI
network subsetting the human PPI network to only include these
expressed genes MCF7.

To limit non-existent and false-positive interactions between
proteins in the MCF7 cell-based PPI network, we further filtered
this network based on PPI confidence scores. The STRING
repository has a confidence score for each PPI according to
sources including existing literature, as well as co-expression and
experimental data. A PPI has a high confidence score if there
is supporting evidence for the interaction from a wide range of

these sources. We selected PPIs with a confidence score of greater
than 800 to be included in our final MCF7 cell-based network,
which was also used in all downstream analysis. The MCF cell-
based PPI network contains 7,904 protein members projecting
2,13,422 interactions, which represent the nodes and edges of the
network, respectively.

Functional Cluster Identification
Algorithms
To date, a number of different criteria have been proposed
for defining clusters in networks (Gao et al., 2009). A cluster
is defined as a group of nodes in a network that are densely
interconnected to each other, while sparsely connected to
other the nodes of the same network. In this study, four
widely used clustering algorithms were evaluated, compared,
and categorized based on the methods applied for cluster
identification (Orman et al., 2012) (Supplementary Table S2):
These algorithms were selected due to their short runtimes
determined in preliminary tests using the R package igraph
(version 1.2.1) (Csardi and Nepusz, 2006).

The leading eigenvector (CLE) algorithm detects densely
connected clusters in a network graph by calculating the
leading non-negative eigenvector of the modularity matrix of
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the graph (Newman, 2006). Pons and Latapy have proposed
a module detection hierarchical structure algorithm called the
Walktrap (CW) for module detection, which is a hierarchical
structure algorithm. They argued that short random walks tend
to stay in the same cluster (Pons and Latapy, 2005). In the
label propagation (CLP) algorithm, each node is initialized
with a unique numeric label and chooses the label that is
dominated by its neighbors during an iterative process. The
CLP algorithm tends to gather densely connected nodes with
the same label that comprise a cluster (Raghavan et al.,
2007). Lastly, we also obtained topological gene clusters
by implementing the infomap (CI) algorithm, proposed by
Rosvall and Bergstrom (2008), to decompose the cell-based
PPI network into clusters by employing random walks to
analyze the information flow through a network. The igraph
R package igraph (version 1.2.1 number) (Csardi and Nepusz,
2006) was used to identify clusters in the cell-based PPI
network using the four cluster detection algorithms with on
default arguments. Afterwards, we extracted the big clusters
produced by the four algorithms, defined as those with a size
of greater than or equal to 10 members. We also defined
small clusters as those with less than 10 members. The big
clusters detected by each algorithm were considered as functional
clusters and subsequently used for target gene prediction and
drug repurposing.

To elucidate the effect of network size for the clustering by CI
and CW, we calculated the ratio of proteins in the big clusters to
the total number of proteins in both the cell-agnostic PPI and the
MCF7 cell-based PPI networks. The formula for this calculation
is shown below:

r =
Pb

Pt
(1)

where Pb represents number of proteins in the big clusters, and
Pt stands for the total number of proteins in each PPI network.

Evaluation of Biological Processes
The biological processes in Gene Ontology (GO), which provide
functions of genes and gene products determined by biological
process (BP), molecular function (MF), and cellular component
(CC), were downloaded from Molecular Signatures Database1.
We enriched connected protein members of each big cluster
in the cell-based PPI network to the GO terms to annotate
protein function as well as to confirm the mechanisms of action
of candidate anti-breast cancer drugs through hypergeometric
tests using the R package piano (version 1.18.1) (Väremo et al.,
2013). The biological process GO terms with false discovery rate
(FDR) ≤ 0.05 were considered.

Drug Perturbation Signatures in Cancer
Cell Lines
To curate drug perturbation data, we first accessed the
normalized gene expression in the MCF7 cell line from CMap via
PharmacoGx (version 1.12.0) (Smirnov et al., 2016). We used the
drugPerturbationSig function to identify genes whose expression

1http://software.broadinstitute.org/gsea/msigdb/index.jsp

is differentially expressed upon drug treatment, creating a
signature representing gene expression changes induced by each
drug. The algorithm of this function uses a linear regression
model for the effect of drug concentration on gene expression in
cell lines, while adding a term controlling for the batch effect in
the CMap dataset:

G = β0 + βiCi + βtT + βdD+ βbB (2)

where G stands for gene expression, Ci indicates the
concentration of a given compound, T denotes the type of
cell line, D represents the duration of the experiment, and B
represents the experimental batch, while βs are the regression
coefficients. The significance of the association between a
drug and a gene was estimated by the statistical significance
of βi, which was calculated using an F-test to determine the
improvement in fit after inclusion of the term. The function
returns four values including the estimated coefficient for
concentration, the t-statistic, the p-value and the FDR associated
with that coefficient in a 3D array with genes and drugs. The
t-statistic, carries information regarding the direction (up or
down) of regulation of a given gene to identify perturbation in
microarray experiments (Guo et al., 2006; Jeffery et al., 2006).
The t-statistic returned by the lm function in R was calculated by
following equation:

t =
βi

SE
(3)

where βi is the regression coefficient of the sample regression
line, and SE is the standard error of the slope. After pre-
processing, genes whose p-value was less than 0.01 were
considered perturbed and their absolute t-statistic values were
used as differential expression data. In CMap, the MFC7 cell
line was treated with 1,255 drugs. Using the drugPerturbationSig
function, we discovered in this cell line 11,833 distinct perturbed
genes whose expression profiles were subsequently analyzed
downstream this study.

Integration of Gene Perturbation Data
With Cell-Based PPI Network
We argue that perturbed genes participate in one of the big
clusters generated by the clustering algorithms, and will be highly
related to the mechanism of action of the drug that induced said
perturbation. To integrate gene perturbation data into the MCF7
cell-based PPI network, we further filtered the network so that the
perturbed genes were included only if they participate in the big
clusters of each algorithm.

Drug Target Prioritization in MCF7
Cell-Based PPI Network With Gene
Perturbation Data
To date, several methods have been used to combine gene
perturbation data with network information to find the target
genes of compounds. Laenen et al. (2013) proposed a local
measure called correlation diffusion (CD) that stands for a
random walk-based algorithm to predict drug target genes. They
first filtered out all connectivity correlation coefficients based on

Frontiers in Pharmacology | www.frontiersin.org 4 February 2019 | Volume 10 | Article 109

http://software.broadinstitute.org/gsea/msigdb/index.jsp
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00109 February 16, 2019 Time: 17:34 # 5

Ma et al. Application of Clusters

a certain t-threshold and normalized the coefficient value for
each retaining correlation of its corresponding gene. Afterwards,
they only considered single genes and their directly connected
perturbed neighbors in the filtered network to compute the
score for target gene prioritization. In contrast, a global measure
using a shortest path (SP) approach combines the entire network
topology propriety and perturbation data to calculate the gene
score (Isik et al., 2015). The hypothesis for SP is that perturbed
genes should have the shortest path to the target genes in the
network. For this study, we used CD and SP to prioritize drug
targets produced by the four clustering algorithms to compare
the accuracy of each. We first revised the CD and SP methods
to prioritize drug targets in the MCF7 cell-based network (CCD
and CSP, respectively) with the perturbed genes, and the outcome
of the evaluation of the four algorithms by the two methods
are assigned new acronyms (CCD_CLE, CCD_CLP, CCD_CW,
and CCD_CI; CSP_CLE, CSP_CLP, CSP_CW, and CSP_CI,
respectively). Here, we show the revised formulations as follows
for the two algorithms:

For CCD:

Mij =

{ Pij∑
j Pij

, i, j ∈ Ecell & Pij > 800

0
(4)

where Pij is the confidence value score of genes i and j expressed
in the MCF7 cell-based PPI network. Normalizing the confidence
scores based on the remaining connections per protein, the
elements of a normalized interaction matrix M can be defined as
formula 4. Multiplication of the Tpr with this matrix results in a
ranking score for each gene:

S = TPr M, Pr ∈ Csize≥10 (5)

where Tpr is a t-statistic value of each perturbed gene. The
perturbed genes in CCD_CLE, CCD_CLP, CCD_CW, and
CCD_CI are filtered as those found in the big clusters of each
clustering algorithm. The ranking score of each gene in CCD
is computed by integrating the MCF-7 cell-based PPI network
with all Prs perturbed genes. The control group (CD_C) combine
the PPI network (confidence score > 800) with all Prs perturbed
genes induced by each drug.

For CSP:

Gij =

{
Pij , i, j ∈ Ecell & Pij > 800

0
(6)

S =
∑

Pr∈Csize ≥ 10
sp (n, Pr,G) , n ∈ G (7)

where Pij is the confidence score of genes i and j expressed in
the MCF7 cell-based PPI network. Pr is defined as a perturbed
gene of MCF-7 to a drug, and it belongs to a big cluster as
determined by the four algorithms. Lastly, we sort genes based on
the score in increasing order for the CSP algorithm. Prioritized
genes in CSP_CLE, CSP_CLP, CSP_CW, and CSP_CI were
produced by the shortest path algorithm based on the functional
perturbed gene and confidence score in MCF-7 cell-based PPI
network. Gene’s scores in CSP group is calculate by shortest path
between gene in MCF-7 cell-based PPI network and all perturbed

gene induced by drug. We also computed the distance between
genes in PPI network only filtered by confidence scores and all
perturbed genes as control (SP_C).

Drug Target Identification and Selection
of Candidate Drugs
The target genes of the drugs used to treat the cell lines
in the CMap database were downloaded from Drugbank2

(Wishart et al., 2008), a database that comprehensively combines
information about drug targets with that of drug action and that
has been widely used for drug target discovery, drug design, and
drug interaction prediction. We used Drugbank to determine
target genes of drugs in the MCF7 cell-based PPI network. In
the Drugbank database, 3,291 proteins are marked as the targets
of approximately 4,900 drugs, 60% of which are including Food
and Drug Administration (FDA)-approved drugs and tagged 10%
are drugs under investigation (labeled as “experimental drugs”).
The gene symbols were obtained by matching the UniProt
identifier of the target genes in the drug target identifiers file3. The
UniProt database contains structure and function information
of completely sequenced proteins, annotated with unique and
stable identifiers (Consortium, 2017). After the mapping and
filtering steps, 298 drugs with 270 target proteins were identified
for the treated MCF-7 cell lines in CMap. This information
was subsequently used to evaluate the performance of drug
target prediction.

Evaluation of Performance of Drug
Prioritization
We evaluated the performance of the two target prioritization
algorithms using precision-recall curves (PRC). The true positive
(TP), true negative (TN), false positive (FP), and FN (false
negative (FN) predictions were defined as previously described
(Laenen et al., 2013). We divided the predictions into true and
false sets based on each cut-off. TPs are all correctly predicted
known targets above or equal to the rank cut-off. FPs are all
proteins ranked above the cut-off, which are not in the known
target set. FNs are known drug targets that are ranked below the
cut-off and all remaining proteins are defined as TNs. The recall
indicator is defined as

Recall =
TP

TP + FN
(8)

whereas the precision indicator is defined as

Precision =
TP

TP + FP
(9)

The two indicators were calculated using all possible thresholds
from 1 to 13,184 (indicating the number of nodes in the MCF7
cell-based PPI network filtered by confidence scores) for the
ranking list of drug targets. We made a PRC for the precision and
recall of different rank cut-offs and calculated an area under the
curve (AUC) value. Simple expression ranking can be set up as

2www.drugbank.ca/releases/5-0-11/downloads/target-all-uniprot-links
3www.drugbank.ca/releases/5-0-11/downloads/target-all-polypeptide-ids
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a baseline approach for performance assessment of the CCD and
CSP network-based drug target ranking methods.

Characteristic of Drugs in Clusters
Across Four Detection Algorithms
We calculated the proportion of drug-perturbed genes in each big
cluster across the four detection algorithms. The characteristic of
a drug is evaluated by equation (10):

Ratio =
NCi

NP
(10)

Where NCi denotes the number of perturbed genes within the ith
big cluster, and NP is the total number of drug-perturbed genes.

Mechanism of Action of Candidate
Breast Anticancer Drugs
For each drug, we extracted the perturbed genes of the drug
within the biggest clusters to analyze function enrichments using
hypergeometric tests. The biological process GO terms with
an FDR of less than ≤ 0.05 were considered and overlapping
biological processes were identified among candidate anti-breast
cancer drugs. We generated the relationship of GO terms by
Supek et al. (2011), which summarizes and visualizes long lists
of GO terms. The Cytoscape tool (version 3.6.1) was used for GO
term visualization.

RESULTS

Clusters From the MCF7 Cell PPI
Network
To investigate differences in clustering structure produced
by the four clustering algorithms, CLE, CLP, CW, and CI,
we applied them to the MCF-7 cell-based PPI network,
consisting of 7,904 proteins and 213,422 interactions. The
four algorithms displayed a diversity of topological module
sizes. We defined big clusters as those with a size of greater
than or equal to 10 members and small clusters as those
less than 10 members. The number of small clusters was
larger than the number of big clusters in all algorithms
(Figure 2A), which comprise a smaller proportion of the
total number of clusters (15%, CW; 27.6%, CLE; 29%, CLP
and; 0.3%, CI) (Supplementary Table S3), consistent with a
previous report that compared the modular structure of human
cell-agnostic PPI networks generated by seven community
detection methods (Liu et al., 2017). The CW algorithm
identified the largest number of big clusters (n = 55), as
well as 341 small clusters. The CI algorithm detected 14
big clusters and 2,897 small clusters. Moreover, we calculated
the ratio of the number of proteins in the clusters to the
total number of proteins for all algorithms; the number of
nodes was subsequently compared between (≥10 members)
and small clusters (2 ≤ members < 10). Our results show
that although the number of big clusters did not represent
the majority of all clusters, the number of nodes included in
big clusters of each algorithm, except CI, takes up the largest

portion of the proteins in MCF7 cell-based PPI network. The
distribution of cluster sizes is a crucial feature in determining
the cluster structure in the four algorithms. It seems to
follow a power-law distribution indicating that their sizes are
heterogeneous, with many small clusters and only a few large
ones (Figure 2B). For CLE, each cluster with a distinct size
was detected only once, whereas the size distribution of the
clusters detected by the other three algorithms had longer tails
(Supplementary Figure S1).

To validate the agreement amongst the big clusters produced
by the four algorithms, we computed the Jaccard index of protein
members in all the big clusters between paired algorithms.
We observed that most protein members in the big clusters
identified by CW, CLP, and CLE are shared, as determined
by high Jaccard indices (Figure 3A). We argue that the
reason for this finding is that PPI networks naturally contain
an underlying cluster structure and these three algorithms
are hierarchical clustering methods. The CI algorithm is an
exception because it identifies clusters based on coding theory
and does not follow a hierarchical approach (Peel, 2010;
Yang et al., 2016). Furthermore, clusters identified by CI
require minimal bandwidth to represent some random walks
in the network. We found that all four algorithms agree on
418 proteins in the big clusters. The CLP, CW, and CLE
algorithms also share 6,487 proteins in their respective big
clusters (Figure 3B). The big clusters generated by CLE contain
a greater number of protein members (7,821 proteins) than
other methods. On the other hand, 428 of 7,904 proteins
are in the big clusters generated by CI. To elucidate the
potential reason of cluster structure difference produced by CI,
we further compared the number of protein members in the
big clusters produced by CI with CW in the unfiltered cell-
based PPI network (containing all connections) and filtered
cell-based PPI network (confidence score > 800). CI is a
compression-based approach, finding the clustering structure
that provides the shortest description length for a random walk
on the graph. Compared with the unfiltered cell-based PPI
network, more proteins are grouped into big clusters in the
filtered cell-based PPI network (Supplementary Figure S4A).
Supplementary Figure S4B shows that the number of proteins
in the filtered cell-based PPI network (confidence score > 800)
plays an important role for clustering using the CI algorithm;
more protein members can share the fixed connections to
increase the median degree of each network (Supplementary
Table S5), thus getting a greater number of nodes for
big clusters. Thus, the CI algorithm considers most protein
members with less degrees in the network as unimportant
details and filters them out during clustering. Orman et al.
(2011) also found that CI algorithm can produce a large
number of small clusters from generated networks. Unlike the
CI algorithm, the number of proteins and the number of
connections has less impact for cluster size by the CW algorithm
(Supplementary Figure S5).

Go Term Analysis for Clusters
Clusters have been considered as function modules in the past
decades (Qin and Gao, 2010). However, different clustering
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FIGURE 2 | Distribution of cluster size and the overlap of the big clusters among the four algorithms. (A) The distribution of cluster size identified by CW, CLP, CLE,
and CI algorithms in MCF-7 cell PPI network. The y-axis shows the number of clusters, and the x-axis gives two groups across four methods, which is classified
based on the threshold of member number in each cluster. (B) Distribution of cluster size. The size of clusters detected by four different community partition
methods (CLE, CLP, CW, and CI) in the MCF-7 cell PPI network. The x-axis represents the size of the cluster, and the y-axis describes the density of clusters.

FIGURE 3 | The similarity among the big clusters that were detected by four community detection methods. (A) The heatmap illustrates the Jaccard value of all big
clusters of two algorithms. (B) The overlap of protein members that are clustered in big cluster among algorithms. All proteins in big clusters of CW and CI are
shared with big clusters produced by CLE and CLP, while CLE and CLP contain its specific proteins in the big clusters.

methods generate different protein clusters with different sizes
and protein members, potentially confounding the function
annotation for each cluster. For each algorithm, we searched
for big clusters with shared biological processes, and we
found that these big clusters were distinct when enriched
to GO terms. This suggests that all proteins in the big
clusters are essential not only in cancer cell growth but
also participate in diverse biological processes, which are

identified by different cluster detection approaches. In the
heatmap shown in Figure 4, the rows represent the top 20
significant biological processes and the columns represent the
clusters from the MCF7 cell-based PPI network. We found
significantly distinct clusters in all of the four algorithms
and highlighted the most significant biological processes in
the biggest cluster in each of the four algorithms. For
example, in the CW heatmap (Figure 4), the annotation
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FIGURE 4 | Functional analysis of big size clusters. This heatmap displays the top 20 significant associations between clusters and biological processes across four
clusters detection algorithms. Color denotes enrichment of a given cluster with a biological process, hypergeometric log p-value after Benjamin–Hochberg
adjustment. Cluster height reflects the number of interrelated processes associated with the given cluster. Cluster weight reflects clusters that shared this significant
function. For major cluster based on each cluster detection algorithm, key biological themes are marked.

“Transcription” denotes the biggest cluster determined by
this algorithm and is associated with the regulation of
transcription through the RNA polymerase II promoter.
In addition, Supplementary Table S4 shows the adjusted
p-values of these processes associated with the clusters.
Approximately 3,000 biological processes of the big clusters
are shared among CW, CLP, and CLE (Supplementary
Figure S2). Furthermore, 51 of the 55 big clusters detected
by CW contain biological processes that map to GO terms
(Supplementary Figure S3), while a smaller number of
big clusters in CLP, CLE, and CI (25, 12, and 5) is
seen containing such processes. These results indicate that
CLE, CLP, and CI can identify more complex functional
clusters than CW.

Cluster Improved Shortest Path
Algorithm Performance
Isik et al. (2015) integrated perturbed genes from drug-treated
cell lines and human PPI networks to identify drug target
genes. However, the expression profiles of genes in different cell
lines are different and may influence the interaction between
proteins (Liang et al., 2014). To improve the performance of
drug target identification, we first selected genes exhibiting
drug-induced perturbation signatures from the big clusters
produced by the four algorithms and considered these genes

as functionally perturbed genes (FPGs) of the drugs. Then, we
focused on integrating the FPGs of each of the 298s mapped
to Drugbank with the MCF-7 cell-based PPI network using
our revised CSP and CCD algorithms to combine perturbed
genes with MCF-7 cell-based PPI networks to prioritize target
genes and calculate the AUC to compare the performance of
several conditions. We prioritized 270 target genes for the
298 drugs using the ranks produced by the two algorithms,
which were subsequently sorted to predict the possible targets
of a given drug. Figure 5A shows the number of perturbed
genes of the drugs in the network after several different
filtering conditions. We observed 11,715 perturbed genes for
the 298 drugs in MCF-7 before the application of any PPI
networks. After integration of the human cell-agnostic PPI
network from STRING, 8,987 perturbed genes were found,
while 5,989 of these genes remained once the human PPI
network was further filtered to control for the MCF7 cell
line (i.e., the MCF7 cell-based network). We found that 5,321
functionally perturbed genes appeared in both MCF-7 cell-
based PPI network and big clusters produced by CW algorithm.
We found that removing non-existing interactions in the
network reduced the number of FPs while elucidating the
shortest distance from the target genes to the perturbed genes
associated with individual drugs. We validate our comparative
and integrative approach as we found that using perturbed
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FIGURE 5 | Cluster improving the performance of target prioritization. (A) The number of perturbed genes in MCF-7 cell lines after filtering by differential conditions.
(B) Differentially expressed genes in clusters of cell PPI network are closer to known targets. The distributions of CW cell PPI are statistically different with PPI and
cell PPI (Mann–Whitney, p-value < 2.2e−16 and p-value = 3.804e−05, respectively). (C) Performance of target gene prioritization using local radiality among
functional genes selection algorithms (CLE, CLP, CW, and CI). (D) Performance of target gene prioritization using correlation diffusion among functional genes
selection algorithms (CLE, CLP, CW, and CI). (E) The predictions are given for the top 200 of the target gene ranking lists. # means the target ranking curve is
significant different with the curve of human network based on Mann–Whitney test; ∗ means the target ranking curve is significant different with the curve of
cell-based network based on Mann–Whitney test.

genes found only in functional clusters for calculating the
shortest distance proves more effective than using all perturbed
genes. For both CD and SP, we integrated the cell-agnostic
PPI network (with confidence score > 800) with all drug-
induced perturbed genes, as opposed to FPGs, as control groups
(SP_C and CD_C) (Figure 5B and Supplementary Figure S6).
We observed in the controls that the data of the target genes
and their corresponding drugs produced by CD are less than
that generated by SP (Table 1). We found that the cell-based
PPI network improved the performance of drug target ranking
by first evaluating all perturbed genes without the integration
of clusters (Figures 5C,D). The AUC value as determined by
CSP for the cell-based group (CSP, 0.30) was higher than that
of the cell-agnostic control (SP_C, 0.29). The CCD method
found similar results: the AUC value of the cell-based group
(CCD, 0.09) was also higher than that of the control group
(CD_C, 0.06). For the CSP approach, perturbed proteins found
in functional clusters (i.e., proteins translated from FPGs) can
further improve target gene ranking; this outcome was not seen
for CCD (Figures 5C,D). For instance, CSP_CLE, CSP_CLP,
and CSP_CW have a higher AUC value compared to CSP
(0.38 AUC). Figure 5D shows the results are similar for the
AUC value across CLE, CLP, CW, and, CCD. The shape

TABLE 1 | The 270 drug target genes extracted from MCF-7 cell-based PPI
network filtered by s > 800.

Number of target genes Number of drugs

Cell_PPI 270 298

Cell_Shortest path 270 298

Cell_Diffusing correlation 163 163

Baseline 245 288

of the baseline curve is significantly different from all other
curves. Collectively, these results indicated that network-based
approaches demonstrate improved performance for drug target
ranking, although the participation of perturbed proteins in
functional clusters contribute less to drug target prioritization
calculated by CCD.

For the cell-based PPI network, the top 200 target genes
rank in CLE, CLP, and CW, including 66 target genes shared
between the three algorithms and corresponding to 127 drugs
with significantly lower than CSP (Wilcoxon signed rank test,
p-value = 0.04604, 0.04989, and 0.0347, respectively) and SP_C
(Wilcoxon signed rank test, p-value = 0.000978, 0.001027,
and 0.0006714, respectively) (Figure 5E). Top 200 target
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TABLE 2 | The top 200 drug target genes in the ranking list.

Target genes Drugs Overlapping target genes with TCSP Overlapping drugs with TCSP

TCSP_CW 65 127 56 110

TCSP_CLP 66 127 57 110

TCSP_CLE 67 127 58 110

TCSP 72 127 72 127

TSP_C 65 123 44 96

TCI 87 119 54 83

Baseline 107 136 36 69

genes in baseline contains 102 unique target genes to
136 unique drugs. Most of the known targets and drugs
in CW, CLP and CLE overlap with the top 200 genes
in the ranking list of the CSP group (TCSP) (Table 2).
These results show that the SP algorithm can further
benefit the target gene ranking by integrating FPGs with
network structure.

Drug Repurposing in Breast Cancer
Based on the Cluster
Comparing Potential Anti-cancer Drugs Identified by
Cluster Detection Algorithms
Understanding the association between drugs and diseases at
the molecular level is critical to unveil disease mechanisms and
treatments (Zhao and Li, 2012). Drugs interact with targets
and off-targets, inducing downstream pathway activity causing
perturbations in the cellular transcriptome (Isik et al., 2015).
The perturbed genes reflect the cellular response after drug
treatment. If the perturbed genes of drugs that bind different
target genes participate in the same functional clusters, these
drugs could share a similar mode of action. Different algorithms
generate different protein clusters with different sizes and protein

FIGURE 6 | The distribution of Pearson value of fractions between drugs and
tamoxifen.

members, potentially influencing functional annotation of each
cluster. The hypothesis is that the fraction of perturbed genes
of a drug in the clusters can reflect the properties of the drug.
In this study, we used gene perturbation data integrated with
clusters in the MCF7 cell-based network to find promising
anti-breast cancer drugs. For each big cluster, we calculated
the fraction of perturbed genes by each of the 298 drugs out
of the total number of genes in that cluster, resulting in a
matrix that illustrates the effect of each drug on each big
cluster (Figure 1C). We then calculated the Pearson correlation
of the perturbed gene proportions in the big clusters for the
298 drugs and compared it between these drugs and FDA-
approved breast anticancer drugs, such as tamoxifen. Tamoxifen,
an ER-targeting prodrug, is the most commonly administered
chemotherapeutic drug in breast cancer patients. It is also the
drug reported to induce the most gene perturbation in breast
cancer cells. Figure 6 illustrates the distribution of the Pearson’s
correlation between tamoxifen and the perturbed gene fractions.
We found a strong correlation (r > 0.5) across CW, CLE, CLP,
and CI. The reason for this result is that the bigger clusters
of each algorithm usually include the most perturbed genes
of drugs. We further predicted the top nine drugs from the
drug ranking list for the each of the four algorithms as our
candidate anti-breast cancer drugs, sorted based by the Pearson
correlation coefficient. We demonstrated our predictions of each
algorithm using evidence in the Clinical trials4 and literature
(Table 3). All top nine drugs predicted by CW demonstrated
ability to inhibit cell growth or induce apoptosis in breast
cancer cells, while the other three algorithms predicted fewer
candidate anti-breast cancer drugs that fulfilled this aim. We
found fulvestrant, geldanamycin, loperamide, and ouabain (an
endogenous hormone) to be the common promising candidate
anti-cancer drugs identified by both CW and CLP. Fulvestrant,
a known ER antagonist, is recommended as a treatment option
for ER-positive breast cancer (Lamb et al., 2006). Geldanamycin,
a heat shock protein 90 inhibitor, has been evaluated for the
cancer treatment in a phase III clinical trial (Shipp et al., 2011).
Loperamide, a peripheral opiate agonist that induces a dose-
dependent apoptosis and G2/M arrest in human cancer cell
lines (Wen et al., 2012; Regan et al., 2014), is typically used as
an antidiarrheal and was also identified as a promising anti-
cancer drug by CI, in addition to CW and CLP. Furthermore,
Raloxifene (identified by CLE), Fulvestrant (identified by CW and
CLP), Geldanamycin (identified by CW and CLP), Tanespimycin

4www.clinicaltrials.gov
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TABLE 3 | Top nine potential anti-breast cancer drugs generated by the four algorithms.

Drugs Evidence Indication in Drugbank

CW FULVESTRANT ClinicalTrials.gov Anti-estrogen therapy

TANESPIMYCIN ClinicalTrials.gov Treatment of leukemia (myeloid) and solid tumors

GELDANAMYCIN ClinicalTrials.gov Not available

LY294002 Hu et al., 2015 Not available

TRIFLUOPERAZINE Brosius et al., 2014 Anxiety disorders

LOPERAMIDE Gong et al., 2012 Acute non-specific diarrhea

TROGLITAZONE Yin et al., 2001 Antidiabetic and anti-inflammatory drug

OUABAIN Da Silva et al., 2014 Atrial fibrillation and flutter and heart failure

CLOMIFENE Murphy and Sutherland, 1983 Female infertility

CLE HEXESTROL None Not available

TROGLITAZONE Yin et al., 2001 Antidiabetic and anti-inflammatory drug

CHLORPROMAZINE None Schizophrenia

PRENYLAMINE None Not available

PREGNENOLONE None Not available

RALOXIFENE ClinicalTrials.gov Osteoporosis

MESTRANOL None Oral contraceptives

PERPHENAZINE None Psychotic disorders

OXYBENZONE None Sunscreen and other cosmetics

CLP FULVESTRANT ClinicalTrials.gov Hormone receptor positive metastatic breast cancer

LOPERAMIDE Gong et al., 2012 Acute non-specific diarrhea

PERHEXILINE Ren et al., 2015 Severe angina pectoris

OUABAIN Da Silva et al., 2014 Atrial fibrillation and flutter and heart failure

GELDANAMYCIN ClinicalTrials.gov Not available

ALVESPIMYCIN ClinicalTrials.gov An antineoplastic agent for solid tumors

MEFLOQUINE Yan et al., 2013 Moderate acute malaria

PERPHENAZINE None Psychotic disorders

MIANSERIN None Depression

CI PIMOZIDE Zhou et al., 2016 Suppression of motor and phonic tics

SULFASALAZINE None Crohn’s disease

COLCHICINE Sun et al., 2016 Acute gouty arthritis

QUERCETIN Duo et al., 2012 Not available

PREGNENOLONE None Not available

TRETINOIN None Remission in patients with acute promyelocytic leukemia (APL)

MOMETASONE None Asthma

LOPERAMIDE Wen et al., 2012 Acute non-specific diarrhea

FLUPHENAZINE None Psychotic disorders

(identified by CW), and Alvespimycin (identified by CLP) are
currently in the process of being approved by clinical trials.
Then, we performed drug repurposing on raloxifene, an FDA-
approved breast anti-cancer drug, and for paclitaxel, an anti-
mitotic anti-cancer agent, to identify their promising anti-
cancer drugs, respectively. Three drugs chemically analogous
to raloxifene detected by CW and CLP are currently being
validated by clinical trials. Four raloxifene analogs identified
by CW have in vitro evidence, while two discovered by
CLP demonstrate cell experiment evidence (Supplementary
Table S6). Supplementary Table S7 shows that four candidate
drugs associated with paclitaxel detected by CW have been
used on breast cancer patients in the Clinicaltrials database and
two others drugs were proved in vitro. Therefore, integrating
the clusters produced by the Walktrap algorithm with drug-
induced differential gene expression yields the best performance
for drug repurposing.

Common Biological Processes of Candidate Breast
Anti-cancer Drugs
We argue that perturbed genes that participate big functional
clusters are important for studying the mode of action of drugs.
To better understand this association for the candidate anticancer
drugs detected by the top-performing algorithm, we extracted
the perturbed genes of tamoxifen, fulvestrant, geldanamycin,
and clomifene within the biggest cluster of CW to analyze
their functions using a hypergeometric test. We obtained the
overlapping biological processes shared amongst the four drugs
(Figure 7). We found that these drugs, despite their differences in
chemical structure and target genes, share 33 common biological
processes, 3 of which are directly involved in cell growth
and development, including regulation of cell proliferation,
cell death, and cell cycle. Moreover, the biological pathways
associated with these drugs also shared the GO term for estrogen
response (GO: 0043627).

Frontiers in Pharmacology | www.frontiersin.org 11 February 2019 | Volume 10 | Article 109

https://clinicaltrials.gov
https://clinicaltrials.gov
https://clinicaltrials.gov
https://clinicaltrials.gov
https://clinicaltrials.gov
https://clinicaltrials.gov
https://clinicaltrials.gov
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00109 February 16, 2019 Time: 17:34 # 12

Ma et al. Application of Clusters

FIGURE 7 | The common biological process of perturbed genes in the major cluster. The chemical structures of tamoxifen, fulvestrant, geldanamycin, and clomifene
are on the right. The brown circle denotes the functional processes related to cell growth and development.

DISCUSSION

The interactions among molecular components link biological
functions, which are typically involved in functionally related
clusters for their activities (Barabási and Oltvai, 2004; Liu
et al., 2017). It has been reported that genes of similar disease
phenotypes have a significantly higher number of interactions
and highly connect with each other than with random genes
(Goh and Choi, 2012), and the topological modules usually
define disease-associated functional clusters (Ruan et al., 2006).
However, Liu et al. (2017) pointed out the functional diversity
of clusters in human PPI networks and that cluster detection
approaches should be used with caution. Meanwhile, most studies
classify the modules without considering the expression profile
of specific cell lines or tissue types. In this study, we compared
the clusters in the MCF-7 cell-based PPI network produced by
four cluster detection algorithms, leading eigenvector (CLE),
Walktrap [CWlabel propagation (CLP), and Infomap (CI)].

We observed that the big clusters (size ≥ 10) comprised a
smaller fraction of total clusters and the big clusters generated
by CLP, CLE, and CW contained most protein members, except
CI. The distribution of node degrees in the network is a crucial
factor for finding clusters using the CI algorithm. Therefore, we
argue that compression-based clustering approaches should be
used with caution for the identification of function clusters.

Drugs usually target multiple gene products and have the
potential to be used for the treatment of several diseases.
Some gene products may lead to serious side-effects and others
may introduce novel applications to guide drug repurposing.
Moreover, tumors are highly multifactorial at the molecular level,
involving interactions in gene function networks (Zickenrott
et al., 2017). The Connectivity Map (CMap) is a collection of
gene expression profiles of five cancer cell lines before and
after treatment with 1,300 small molecules (Lamb et al., 2006).
In previous studies, integration of gene perturbation data in
CMap with human PPI networks revealed drug targets and
key pathways (Isik et al., 2015). However, most of the current
network-based approaches for identification of essential proteins
neglect significant differences in expression profiles among tissue
types or even cell lines. We found that using a cell-based PPI
network for target gene identification reduced the number of false
positives for determining the shortest path between target and
perturbed genes and improved drug target prediction compared
with the cell-agnostic human PPI network. In this study, we
improved target gene prediction by combining a cell-based PPI
network with gene perturbation involved in big clusters.

Shortest path and correlation diffusion are two target
gene prioritization algorithms. The SP measure assumes that
deregulated genes might be close to drug targets based on
network topology. SP identifies more diverse targets than CD,
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which agrees with previous conclusions (Isik et al., 2015).
Moreover, we observed that integrating functional cluster-related
perturbed genes with the MCF-7 cell-based network by CDhas
little influence on the target gene prediction. The CD ranking, a
random walk-based measure (Isik et al., 2015), sorts the proteins
based on connectivity correlation in the network (Laenen et al.,
2013). Cluster detection algorithms are also used as connection
factor to identify functional clusters. Thus, the perturbed genes
within the small clusters did not change the target gene ranking
based on the this method. Furthermore, we calculated the fraction
of drug-perturbed genes in each cluster as a drug-specific pattern
to reflect cell response after drug treatment. We compared
these patterns across tamoxifen, raloxifene, and paclitaxel, by
computing the Pearson correlation to find promising anti-breast
cancer candidate drugs. We observed that these drugs are highly
similar to tamoxifen as predicted by CW, CLP, CLE, and CI.
We selected the top nine drugs from each similarity ranking
list as promising anti-breast cancer drugs and validated them
through published literature and clinical trial cases. Based on
the validation result, we found that the CW cluster detection
algorithm showed the best ability to extract functional clusters
from the network. To better understand the potential application
of these drugs in breast cancer treatment, we performed a GO
term analysis by extracting deregulated genes for four known
anti-breast cancer drugs from the major cluster and obtained
the overlapping biological processes among these drugs. The
perturbed genes of these drugs not only appeared in big clusters
detected from our cell-based PPI network, but also participated
in common biological processes, such as cell cycle, cell death, and
estrogen response pathways. We also used brinzolamide-induced
gene perturbation data, which weakly correlates with tamoxifen,
as a negative control, only three perturbed genes were found to
overlap with gene members in the main cluster and no significant
GO term enrichment was seen.

In summary, we gained insights into the structure of
interactions by cluster detection algorithms and implemented
the properties of clusters in the identification of target

proteins and drug repurposing. We provide a new
computational pipeline for the identification of drugs.
However, the therapeutic potential of these agents requires
further investigation.
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