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Abstract 

Supply chain management (SCM) addresses the management of materials and information across the entire chain from suppliers to 
producers,  distributors,  retailers,  and customers. The theory of supply chain management suggests that lead time reduction is the 
pioneer of using market mediation to reduce transaction uncertainty in the chain, which can be conceptualized as the primary goal of supply 
chain management. In the past few decades, scholars have had to place attention on the impact of inventory on SCM. This paper is related 
to the development of a lot-sizing model for a single-component multiple-delivery system with variable demand and lead time of a 
multinational transformer company. Two models were developed. For the first model, distribution of demand is considered as normal, 
distribution of procurement lead time is exponential, and the quantity is coming in a single lot. For the second model, distribution of 
demand is normal, and procurement and administrative delay lead time is exponential, and the quantity is coming in a single lot.  
Modification of the first model has been incorporated by taking the effect of multiple deliveries on the models and correcting the Re-order 
point as obtained from the previous models. The results and analysis by the second model have been done for different parametric 
conditions. The effect of multiple deliveries is also taken into account. The optimum re-order point and economic ordering quantity with 
various different inputs have been discussed.  

Keywords: Supply chain management, Lot size, Economic order quality, Lead time,  Re-order point. 

1. Introduction 

A lot size is a measure, or quantity addition, acceptable to 
or specified by a party offering to buy or sell it. It is also 
used as an alternative term for lot quantity of goods 
purchased or produced in expectation of the use or sale in 
the future. Four types of lot-sizing techniques are 
available: (1) the EOQ, followed by some assumptions for 
reducing inventory in smaller lots; (2) dynamic lot-sizing, 
considering the problem of determining production lot 
sizes when demand is deterministic, but varies with the 
time; (3) fixed order quantity, a policy is to produce a 
fixed amount each time by performing a setup; (4) part-
period balancing, an idea to balance the inventory-
carrying and setup costs. 
Traditionally, any manufacturing or service organization 
performs purchasing, producing, and marketing activities 
independently, so that it is difficult to make an optimal 
plan for the supply chain. Research pieces in supply chain 
management have pre-focused on three major  issues:  
(1) complexity in information flow; (2) mode in 
management; (3) planning of operation management for 
processing. In this research, this study puts emphasis on 

the cost factors, and the effect of the cost factor on supply 
chain is studied.  
It is mentioned here that effective lot size is expected to 
optimize the supply chain and unwanted cash flow and 
reduce the possibility of occurrence on inventory shortage 
caused by variable orders.  
A reciprocal cause and effect relationship exists between 
production planning and control and inventory levels at 
various stages during processing, and this affects the 
system. 
Eltogral et al. (2007) introduced the complete solution of 
the problem in an explicit and extended manner. The 
authors incorporated transportation cost explicitly into the 
model and developed optimal solution procedures for 
solving the integrated models. In this paper, they have 
also developed two new models that integrate the 
transportation cost explicitly in the single-vendor single-
buyer problem. The transportation cost is considered to be 
in an all-unit-discount format for the first model. The 
option of over declaring a shipment to exploit the 
transportation unit cost structure is explored in the second 
model. The objective in both models is to view the system 
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as an integrated the system and determine the production 
and shipments schedule to minimize the average total cost 
per unit time. 
Moghadam et al. (2008) presented a hybrid intelligent 
algorithm based on the push SCM, which uses a fuzzy 
neural network and a genetic algorithm to (i) predict the 
rate of demand; (ii) determine the material planning; (iii) 
select the optimal supplier. They also tested the proposed 
enumerative search algorithm and a heuristic algorithm in 
a case study conducted in Iran. They claimed that their 
model is one of the most useful ones for supplier selection 
in a single-stage category presented in literature. 
Inventories make rational system possible for production 
and distribution. At each stage, in the flow of goods, 
inventories serve as the vital function of decoupling the 
various operations in the sequence beginning with raw 
materials, extending through all the manufacturing 
operations to finished goods storage, and further to 
warehouses, distribution points leading to the ultimate 
consumers, as shown in Fig. 1. The basis of supply chain 
and inventory management is integration, control, 
strategic focus, supportive structure, empowerment, 
physical support, consistency, skill test, and coordination 
in any organization. Christina et al. (2015) analyzed data 
from 188 firms and illustrated how the contextual factors 
pertain to product, market complexity, and factors of 
SCM.  Yaghin et al. (2013) formulated a fuzzy non-linear 
multi-objective model, where some parameters are not 
precisely known. In this paper, a hybrid probabilistic-
flexible programming approach is proposed to handle 
imprecise data and soft constraints concurrently. They 
transformed the original model into an equivalent multi-
objective crisp model; it is then converted to a classical 
mono-objective one by a fuzzy goal programming 
method. Also, they provided an efficient solution 
procedure using particle swarm optimization (PSO) to 
solve the resulting non-linear problem. 
Abdesalam and Elassal (2014) considered the joint 
economic lot-sizing problem (JELP) for multi-layer 
supply chain with multi-retailers and single manufacturer 
and supplier. They proposed modifying four 
computational intelligent algorithms (particle swarm 
optimization, gravitational search algorithm, cuckoo 
search, and charged system search) to solve mixed integer 
problems. The paper, further, tested the effect of adopting 
a centralized vs. decentralized safety stocks, and the 
model can be validated with literature favoring a 
centralized policy for the cost-perspective aspect. 
Almender et al. (2015) presented two models: one 
considering batch production and the other one allowing 
lot-streaming. They compared their models with 
traditional models and demonstrated more realistic 
results. Also, they claimed that generated production 
plans are always feasible in cost savings as compared to 
classical models. 
Cárdenas-Barrón et al. (2015) proposed a new algorithm 
based on a reduce-and-optimize approach (ROA), and a 
new valid inequality is to solve the multi-product multi-

period inventory lot-sizing with supplier selection 
problem. In this paper, the authors have used first -time 
first-serve to solve the multi-product multi-period 
inventory lot-sizing with supplier selection problem. They 
also claimed that this problem is a new variant of the lot-
sizing inventory problem. It was observed that the 
concept of inequality is the set of constrains that has a 
beneficial impact on both solution and time issues. 
Mazdeh et al. (2015) investigated the single-item dynamic 
lot-sizing problem with supplier selection in their study. 
The problem is decomposed into two different cases. In 
the first case, quantity discounts are not taken into 
account; in the second case, incremental and all-unit 
quantity discounts are considered. Due to the complexity 
of the problems, a new heuristic is developed to generate 
the best ordering policy.  
Industries have always focused on the role of inventory in 
the supply chain due to expanding market and global 
competition. In order to determine the appropriate 
ordering quantity in the chain, it is important to find the 
suitable mechanism for coordinating the inventory 
processes that are controlled by independent partners as 
mentioned in Prasertwattana and Chiadamrong (2004a) 
and Prasertwattana, N. Chiadamrong (2004b). 

 
Fig. 1. Inventory Positions in the Supply Chain 

The inventory control in supply chain is usually modeled 
as multi-echelon inventory decision problems. The 
echelons may consist of two or more of the following 
characters; supplier(s), manufacturer(s), warehouse(s), 
and retailer(s). Through inventory control mechanisms, 
namely centralized, decentralized, and hybrid systems, 
with different degrees of information sharing are usually 
used for making inventory-related decisions. In a 
centralized system, the inventory replenishment decisions 
are made by a central decision-maker (Abdul-Jalbar et al., 
2003). In a decentralized system, inventory replenishment 
decisions are made by departmental decision-makers. 
Axsater (2001) and Axsater (2003) derived the exact 
optimal solutions mathematically on the first two systems 
under various assumptions. However, some of these 
models need to be fitted into practical environments. 
The two mathematical models of lot-sizing developed by 
the authors of this paper are based on the application of 
probability theory. Convolution and marginal distribution 
techniques are applied in developing the models. The 
marginal distribution of lead-time demand is established 
for normal demand and exponential procurement and 
administrative delay lead time. Forsberg (1996) utilized a 
similar but simple theoretical model. 
It is noted that for any practical situation, sub-lots of 
materials arrive at an interval, and not the whole lot at a 
time. Different permissible service levels can be 
considered, and in each case, the optimum lot-sizing can 

Jitendra Kumar et al./ Development of a Novel...

26



 

be calculated with various parameters. Results from the 
model can be analyzed to investigate the sensitivity of the 
system in different parametric conditions. Ganeshan 
(1999) considered low-level inventory to start with and 
optimized the cost parameter. 
In this present paper, a case study has been considered for 
a power transformer manufacturing unit located in India. 
The case of a single-item multiple-delivery system with 
variable demand and lead time has been investigated. In 
this case, the demand is distributed normally, lead time is 
distributed exponentially, and the quantity arrives in sub-
lots. For manufacturing different ranges of products, the 
company has to purchase and stock the inputs required for 
production. Some items may bring into price advantage 
for larger purchases as suggested by Seo et al. (2002). 
When the input materials have longer varying lead time, 
the company has to keep a large amount of inventories as 
suggested by Tee and Rossetti (2002). In certain cases 
where input materials have shorter and constant lead time, 
the company may keep a lower level of inventories. The 
company has a centralized purchasing procedure for A 
and some of the B items of its A.B.C. list. Some B items 
and all C items are purchased independently by the 
different units of the company. 
At the beginning of every month, in this case study, with 
the production plan in hand, each production unit starts 
issuing materials and components for A items from 
central stores and the remaining B and C items from the 
stores. A summary of issuing materials is recorded 
according to the types of materials that have been issued. 
As the consumption date of the items from stores was not 
available, the monthly production data of the transformers 
is collected for one year for one of the production unit of 
the company for analysis. Though the company has two 
production units producing the power transformers, the 
case investigated here is limited only for one production 
unit. Here, it is assumed that the production rate is equal 
to the demand rate for A items.  
The budgeted production schedule of the product (in this 
case study, the products are  power transformers of  50 

MvA to 350 MvA) for a year was available and is shown 
in the Table 1, and the variation is shown in Fig. 2. 

Table 1 
Budgeted production plan for transformers 

Month Monthly production (No.) 
Jan 2 
Feb 12 

March 7 
April 5 
May 5 
June 2 
July 5 
Aug 20 
Sept 13 
Oct 12 
Nov 25 
Dec 7 
Total 115 

Considering the discussion with the Head of Purchasing 
Department, the authors have taken carrying cost of 
inventory equal to 30% per year. It is the same with the 
company’s norm. 
The Company has ordered 1200 purchase orders for 
transformer components. The accounting department has 
taken costs incurred for these 646 orders to be Rs. 
16818000/; so, cost per order is Rs. 16818000/1200 = Rs. 
14013/- approximately 
 The ordering cost is divided into the following parts, as 
shown in the Table 2. 
The unit cost of one A item (for this case study, it is 
“Cold Rolled Grain Oriented” steel) supplied by the 
vendors in a year is given in the Table 3 followed by Fig. 
3.  
For the CRGO, the frequency diagram for usage is shown 
in Fig. 4, and 2 test has been carried out in Table 4. 2χ  
value from the Table 4 with degrees of freedom 3 and at 
5% level is 7.815. So, the fit is not very good, because the 
materials are supplied according to the received order of 
the transformers.  
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Fig. 2. Monthly production plan for transformers 
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Table 2 
Division of cost per order 
SI. NO. Description of the cost component % of cost per order 
1. Salary of staffs and overheads 45.66 
2. Stationary and postage charges 5.95 
3. Receiving, unpacking, and counting in stores 12.71 
4. Inward inspection 23.78 
5. Invoice processing for payment in account section 4.76 
6. Handling and temporary storage 5.35 
7. E-mails and temporary calls 1.78 
 Total 100 

 
Table 3 
Unit cost of CRGO 

Vendor Unit cost (Rs/T) CRGO (T) 
V1 185000 15 
V2 268000 432 
V3 231000 500 
V4 255000 600 
V5 201000 450 
V6 271000 1800 
V7 285000 150 

Total  3947 
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Fig. 3. CRGO supplied by vendors 

Table 4 
Quantity distribution at plant for CRGO 

S.No. Particulars Quantity (T) 
(ai) 

Observed 
frequency 

(fo) 

Expected 
frequency 

(fe) 
(fo -  fe )2 /  fe 

1 
2 
3 
4 
5 
6 

Mean of quantity 

 2

i

4315
287.67

15

Standard deviation

f 1438943.33
95929.56

100

309.72

i i

i

i

i

f a
a

f

a a

f



  



 
  





 

15 
100 
150 
450 
600 
1200 

 

1 
7 
2 
2 
2 
1 

17.22 
8.56 
5.45 
40.65 
13.65 
0.13 

15.28 
0.28 
2.18 
36.75 
9.94 
5.82 

 

Total    15  70.26 
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Fig. 4. Frequency distribution of quantity (T) CRGO  

Received and used Quantities are shown in Table 5 followed by Fig. 5. 
 

Table 5 
Quantity of CRGO received. 

Month  Quantity received (T) Balanced Quantity (T) Quantity used (T) No. 

Jan 69 69 8 1 

  61 8 1 

Feb 291 344 63 1 

  281 64 1 

  217 200 10 

March  137 154 100 5 

March  54 40 2 

April 100 114 100 5 

May 150 164 100 5 

June 100 164 156 2 

July 100 108 90 5 

August 600 618 100 4 

  518 286 13 

  232 28 2 

  204 19 1 

Sep 450 635 455 7 

  180 108 6 

Oct 600 672 218 4 

  454 157 2 

  297 88 3 

  209 159 3 

Nov 1200 1250 265 5 

  985 122 6 

  863 93 2 

  770 33 2 

  737 554 10 

Dec 150 333 46 1 

  287 57 1 

  230 123 3 

  107 51 1 

  56 56 1 

Total 3947  3947 115 
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Fig. 5. Chart between quantities received, used, and balanced 

2. Model Development 

In this case study, the authors have collected the relevant 
problem data that include detailed data of all materials 
listed in ABC list. Once the procedure is developed and 
established, the results can be readily extended to similar 
types of A item.  
Pujawan (2004) compared two popular lot-sizing 
techniques: the Silver Meal (SM) and the Least Unit Cost 
(LUC) and observed several properties of two traditional 
lot-sizing rules on the variability of orders created by a 
supply chain channel receiving demand with variability. 
Although the two rules appear to be very similar, they 
exhibit interestingly different behaviours; the SM rule is 
shown to produce a series of orders with more stable 
interval between orders, but with more variable order 
quantities. Conversely, the LUC rule results in more 
stable order quantities, but more variable order intervals. 
The study also reveals that the addition of an appropriate 
amount of extra quantity to an order could significantly 
reduce order variability. An economic lot size model has 
been developed with four-echelon inventory as suggested 
by Rahman and Sarker (2006).  Raw-material assembly 
lines, process raw material, ready raw material, and  
 

 
finished product inventory are the types in the model as 
suggested by Rahman and Sarker. An integrated inventory 
model between supplier, manufacturer, and buyer can be 
found in (Lee, 2005; Lee and Wu, 2006).  Both of the 
works explained integrated inventory, but did not consider 
remanufacturing as an option for recovery of the product. 
Nurshanti and Suparno (2010) developed the Pull System 
Inventory Model (Fig. 6) in which finished goods are used 
to fulfill demand due to serviceable inventory. 
Manufacturing process is run with constant rate, where 
the production rate (p) is higher than customer demand 
rate (λ); n and x are the number of manufacturing delivery 
lot sizes for every production setup and number of 
manufacturing lot sizes needs for production of every raw 
material order, respectively. Remanufacturing process is 
run in the return product rate (γ) with assumption that all 
of return product can be remanufactured. Both demand 
and return rates have assumptions following a Poisson 
process. In this system, remanufactured and manufactured 
products are delivered to the warehouse as serviceable 
inventory when they reach optimal quantity of 
remanufactured products (Qr) and manufactured product 
will deliver with Qm. 

 

  
Fig 6. (a,b). Pull system inventory model 
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Fig 6. (c,d). Pull system inventory model 

3. Model Formulation 

The two models are based on the application of 
probability theory. Convolution and joint distribution 
techniques have been used to derive the distribution of 
lead time and marginal distribution of demand in lead 
time. 
In the first model, the delay in placing the order has been 
neglected, while in second model, this delay has been 
considered and is taken to be distributed exponentially. 
The concepts of convolution and marginal distribution 
have been widely discussed in (Hadley and Whitin, 1963; 
Cramer, 1946). The marginal distribution concept is now 
widely used in analyzing the inventory system, where any 
one or both of lead time and demand follow probability 
distribution pattern.  
The following notation will be used to develop the model: 
 

A 

square of the mean of demand rate (montihly in)

million)  2 x square of standard deviation of

demand rate x reciprocal of mean of

administrative delay lead time.

  

 = 2 22 K   
a Sub lot quantity in million 
an Net accumulation quantity in million  
BST Extra buffer stock required to eliminate stock out 

between inter-arrival time of sub lots 
i index of time period 

B  square of the mean of demand rate + 2x 
square of standard deviation of demand rate x 
reciprocal of mean of procurement lead time = 

2 22    
cu Unit cost of time  
cc Cost of carrying inventory in percentage per year 
cs  Ordering cost in Rupees per order 
c(t) Cumulated generating function of lead time 
demand 
D Demand in lead time 
Do Optimum Re-order point 

d Demand in any time period 
 
di  Number of stock units demanded in time period i 
f(D) Distribution of demand in lead time 
F(D) Cumulative  distribution  of demand in lead time 
g^(x) Probability density function of administrative 
delay lead time 
g(L) Probability  density function of procurement lead 
time 
h Number of standard deviation 
h(T) Probability density function of the total lead 
time. 
H(T) Cumulative  Probability density function of h (T) 
K Reciprocal of mean of administrative delay lead 
time. 
L Procurement lead time 
M Minimum stock in any time period 
M(t) Moment-generating function of lead time 
demand 
N(t) Moment-generating function of demand  
n Number of order per year 
P(s) Probability of shortage inter-arrival time of sub 
lots 
Q Order quantity 
Qo Economic order quantity 
R.O.P Re-order point 
T Total lead time 
Ti Inter-arrival time between sub lots in time period 

i 
TC Total variable cost of carrying inventory 
x Administrative delay lead time 
U Loss per unit inventory if there is no demand 
V Salvage value of one unit of inventory 
 Probability of stock out in a cycle (order) 
 Permissible number of stock outs per year 
 Reciprocal of mean of procurement lead time  
 Mean of demand rate of the item  
a Mean of arrival quantity of the item in Ti 
n Net accumulation of inventory in Ti  
 Standard deviation of demand rate 
a Standard deviation of arrival quantity 
n Standard deviation of net accumulation of 
Inventory  
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 Mean of lead time demand 
 
 
3.1.  Model I (Demand normal and procurement lead 

time exponential) 

This model was formulated by considering procurement 
lead times to be distributed exponentially and demand 
pattern distributed normally. In this model, the 
administrative delay lead time is neglected and is taken 
zero. When stock reaches the R.O.P., the order can be 
sent to the supplier for replenishment.  
The probability density function of demand in lead time 
was found by the method of joint probability distribution. 
In this model, the optimal ordering quantity and the re-
order level have been derived and are given in equations 
(8) and (13), respectively.  
 

3.1.1. Probability density function of demand in 
procurement lead time 

The density function of procurement lead time is 
g(L) =  exp(-L),  where L > 0                          (1) 

and 1/ is the mean of the lead time. 
 The probability density function of demand is: 

2

2

1 (d Δ)
N(d, Δ, σ) exp

2 σ2 π σ

 


 
  

                 (2) 

 The marginal distribution of demand in 
procurement lead time (L) is: 

o

f(D) N(D,Δ ,σ ) λe dLL L L



   

2 2 2

1/ 2

2 2

o

λ D Δ 2 σ
exp d

2 σ 2 σ2 π

L
L L L

L



 
   

 
 
 


2 2 2

2 2 2

λ exp( / σ ) D 2 σ
2

2σ Δ 2 σ2 π

D




 



 
 
 

 

2 2 2

1/ 2 2 2

D Δ 2 σ λ
K 2

2 σ 2 σ


 

 
  
 

                 (3) 

Here, 1/ 2 /x γx / 2

o

e dx 2( / γ) K (2 γ )L   

 


      

(Half basis function) 

and  K1/2
(z) = zπ

e
2 Z

  

So, when D > 0  

  2 2 2

2 2

λexp D/ σ Δ 2 σ λ Δ

Δ 2 σ λ

  



                 (4) 

when  D < 0, let us put D = -z 

 f (D)
  2 2 2

2 2

λexp D/ σ Δ 2 σ λ Δ

Δ 2 σ λ

 



                  (5) 

3.1.2. Cumulative probability density function of lead time 
demand 

D 0 D

0

F(D) f(D) dD f(D) dD f(D) dD
 

      

Lt F(D) = 1 
D   

2 2 2

2

2 2

D
λσ exp Δ 2 σ λ Δ

dF(D) σ f(D)
dD Δ 2σ λ

  
 



 
 
           (6) 

When D > 0. 

3.1.3. Determination of Re-order Point and Economic 
Order Quantity 

3.1.3.1. Determination of R.O.P. 

If  be the probability of stock out per cycle, then  

 

2 2 2

2

2 2 2 2

D
λσ exp Δ 2 σ λ Δ

σ1 1
Δ 2 σ λ Δ Δ 2 σ λ


  

  
  

 
 
                   (7) 

or Re-order Point = 2.3 2 

  2 2 2 2 2

2 2

log /λσ Δ 2σ λ Δ Δ 2σ λ

Δ Δ 2σ λ

   

 
          (8) 

3.1.3.2. Determination of E.O.Q. 

Total Cost (T.C.) = S

u c u c

12 ΔC 1
(D Δ/ K) C C QC C

Q 2
  

                                                (9) 
If we take  = permissible stock out per year, then 
 

 =  x 
12

Q


= (M exp (-LD)) x 

12

Q


                         (10) 

where   
 2 2

2

Δ 2 σ λ Δ
L

σ

 
                            (10.1) 

 

2

2 2 2 2

λσ
M

Δ 2 σ λ Δ Δ 2 σ λ


  
            (10.2) 

So, Total cost, 

S
u c

βCT.C. C C (D Δ/K)
N exp ( LD)

  

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u cC C 12 ΔM exp ( LD)1

2 β

 
                          (11) 

Differentiating with respect to D and equating it to zero 

s u c
u c

LβC C C Δ ML exp ( LD)
C C 6 0

Mexp ( LD) β


  


                                             (12) 

or s
o 2

u c

8C1 2 4
Q x12Δ

2 L L C C
  

 
 
 

 

s

2

u c

24C Δ1 1

L L C C
  

2

s

u c

24C ΔL1
1 1

L C C
  

 
 
  

        (13) 

So, for any particular permissible stock out per year, one 
can get the Economic Order Quantity directly by the 
equation (13). 

3.2. Model II: Demand normal, procurement lead time 
and administrative delay lead time exponential  

This model was formulated by considering administrative 
delay and procurement lead times to be distributed 
exponentially and demand pattern distributed as a normal 
distribution. Resultant distribution of total lead time was 
first derived by applying the method of convolutions. For 
any order level D, to obtain the desired service level of  
(permissible probability of stock outs per year) by 
equation (40), it was found that the order quantity Q and 
total cost TC are dependent on D by equation (38). 
As the object is to minimize the total cost associated with 
holding up the order level D, a trial solution was obtained 
from the equation (4) by increasing D in steps and 
computing the corresponding Q and T.C. 

3.2.1. Distribution of total lead time: 

If   L  =Procurement lead time with mean 1/ and 
exponentially distributed;  
     x =Administrative lead time with mean 1/K and 
exponentially distributed; 
Then, T  =  Total lead time =   L + x               (14) 
The probability density function (p.d.f.) of 1 is  
g(L) =  exp (-L) L > 0                (15) 
The p.d.f. of x is  
g^(x) = K exp (-Kx)  x > 0                (16) 
The p.d.f. of T is obtained by the law of convolution as  

h (T)= 




 dx(x)ĝx)g(T                 (17) 

=
K λ  (exp ( T) -exp(-λT))

λ K
K


                         (18) 

or h(T) = 0 - < T < 0  

= 
Kλ

(exp ( KT) exp ( λT)) 0 T
λ K

     


          (19) 

Cumulative distribution function of T is 
T

o

Kλ
H(T)  (exp ( KT) exp( λT)) dT

λ- K
   

    1 1
1 exp ( KT) (1 exp ( λT)   T 0

K λ

Kλ
λ-K

     

                                                                         (20) 
when T = 0,  H(T) = 0 
when T =   H(T) = 1 

3.2.2. Distribution of demand in lead time 

If f(D) represents distribution of demand in lead time  

f(D) = 
o

N(D, ΔT, σ T ) x h (T) dT


   

and  N(D, T,  T ) represents lead time demand 
distribution, 
h(T) represents distribution of total lead time. 

o

Kλ
N (D, ΔT, σ T ) (exp ( KT) - exp (- λT)) dT

λ K
(D)F






 

o

K
N (D,ΔT,σ T ) exp ( KT)dT

K







 
 

o

K
N (D,ΔT,σ T ) exp ( T)dT

K








 
   

= I1 – I2                   (21) 
Now,

2
-1/2

1 2
o

Kλ (D-ΔT)
I T  exp -  exp ( KT)dT

2σ T(λ K) 2π



 


 
 
 


 

 1/2 2

2
-1/ 2

2

o
2

- D / 2 σ
Kλ exp (ΔD/ σ )

T  exp dΔ(λ K) 2 π σ -   K T
2 σ

T

T



 

 
 
  
  
  

  

Now, we know that   

 1/ 2

o

x  exp -β/x γx dx


  =

 /22( β γ )  K  2 βγ where β 0, γ 0


   

and z

1/2K  (Z) e
2z

 


  

The integrates have been given by (Gradshteyn and 
Ryzhik, 1965):  

So, I1
 

 
2

2 2

2

K exp(ΔD/ ) D
exp( Δ 2 σ K )

σλ K 2

 


  


   (22) 

when D > 0 
when D < 0 
 putting D = Z when Z > 0 
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from equation (22) 

  2 2 2

1 2 2

K exp / σ 2 σ

(λ K) 2 σ

D K
I

K

     


  
         

(23)when  D <  0. 

So,
  2 2 2

1
2 2

K p D/ σ Δ 2 σ K Δ
I

(λ K) Δ 2 σ K

   


 
,  D > 0.   (23’) 

  2 2 2

2 2

K exp D/ σ Δ 2 σ K Δ

(λ K) Δ 2 σ K

  


 
,  D < 0   (23’’) 

Similarly, 

  2 2 2

2
2 2

K exp D/ σ Δ 2 σ Δ

(λ K) Δ 2 σ
I

 



  


 
,  D > 0     (24) 

  2 2 2

2 2

K exp D/ σ Δ 2 σ Δ

(λ K) Δ 2 σ

 



 


 
,  D < 0     (25) 

 
Distribution of demand in lead time 
The marginal distribution of demand in lead time: 
 

  

  

2 2 2

2 2

2 2 2

2 2

exp D/ σ Δ 2 σ ΔK
( )

( ) Δ 2 σ

exp D/ σ Δ 2 σ Δ

Δ 2 σ

K
f D

K K









  
 

 

  



 

when D > 0.     (26) 

  

  

2 2 2

2 2

2 2 2

2 2

exp D/ σ Δ 2 σ Δ

K Δ 2 σ

( ) exp D/ σ Δ 2 σ Δ

Δ 2 σ

K

K
K



 



 





  



 
 
 
 
 
  
 

 

when D < 0                                (27) 

3.2.3. Continuity 

The lead time demand function f (D) is expected to be 
continuous at every point including D = 0 
Differentiability of f (D) at D = 0 

  

 

2 2 2

2 2 2

2 2

exp D/ σ Δ 2 σ Δ

( ) K
Δ 2 σ . σ

( )
Δ 2 σ Δ

K
df D

K
dD K

K






  


 


 

 
 
 
 
 
 

 

  

 

2 2 2

2 2 2

2 2

exp D/ σ Δ 2 σ Δ

Δ 2 σ . σ

Δ 2 σ Δ







  


 

 

 
 
 
 
 
 

               (28) 

2 2

2 2

2
2 2

0

2 2

Δ 2 σ Δ 

( ) K Δ 2σ

( ) σ Δ 2 σ Δ 

Δ 2σ

D

K

df D K

dD K



 







 


 


  



 
 
 
 
 
 
 

  

2 2 2 2

2 2 2 2 2

K Δ Δ 2 σ Δ 2 σ  

( ) σ Δ 2 σ . Δ 2 σ

K

K K

 

 

   


  

 
  
 

 

                        (29) 

 2 2 2

2 2

2 2

exp( / σ Δ 2 σ Δ  

( ) K Δ 2 σ
( )

Δ 2 σ Δ 

2

D K

df D K
dD K

K






 





 

 
 
 
 
 
 
 

  2 2 2

2 2

2 2

exp / σ Δ 2 σ Δ  

Δ 2 σ

Δ 2 σ Δ 

2

D 





 




 

 
 
 
 
 
 
 

               (30) 

2 2

2 2

2
2 2

0

2 2

 Δ 2 σ Δ

( ) K Δ 2σ

( ) σ Δ 2 σ Δ 

Δ 2 σ

D

K

df D K

dD K



 







 





  



 
 
 
 
 
 
 

 

2 2 2 2

2 2 2 2 2

K  Δ Δ 2 σ Δ 2 σ

( ) σ Δ 2 σ . Δ 2 σ

K

K K

 

 

  


  

 
  
 

     (31) 

Thus 
dD

Ddf
dD

Ddf )()(                                        (32) 

Hence, the function f(D) is differentiable at D = 0. 

3.2.4. Mode of f (D) 

( ) 0df D
dD
   or,  

 
 
 

2

2 2 2 2

2 2 2 2

2 2 2 2

σ

Δ 2 σ Δ 2 σ

Δ 2 σ Δ 2 σ Δ
log

Δ 2 σ Δ 2 σ Δ
e

D
K

K

K








  

  

  

                           (33) 
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Again,  

0)(


dD
Ddf

 

or,
    2 2 2 2 2

2 2

exp D/ σ Δ 2 σ K Δ Δ 2 σ K Δ

2Δ 2 σ K

   



 

or,
 

 
 

2

2 2 2 2

2 2 2 2

2 2 2 2

σ

Δ 2 σ Δ 2 σ

Δ 2 σ Δ 2 σ Δ
log

Δ 2 σ Δ 2 σ Δ
e

D
K

K





 


  

  

  

                     (34) 

So, it can be seen that the above value of D is positive; 
hence, no model value exists in the negative region. So, 
there is only one mode for the distribution of D and mode 
lies in the positive region. 

3.2.5. Distribution function of D 

For D < 0, distribution function of demand in lead time is   
2

2

exp D/ σ ( )
( )

exp (D/ σ ( ))
.

o

o

K A dD
F D

K A

K B
dD

K B













 
 



 






where 

A= K22 σ2Δ    and B= 22 σ2Δ   

or 

 

 

2
2 2

2 2

σ
σ exp D/ σ ( )

( )
( )

σ exp D/ σ ( )

( ) ( )

K
A

KF D
A A

K B

K B B









 
 

 

 

  

 

   2 22 exp D/ σ ( ) exp D/ σ ( )σ

( ) ( )

A BK

K A A B B





   
 

      
D < 0                                                                             (35) 
For D > 0, the distribution function of demand in lead 
time is  

( ) ( ) ( )
o D

o

F D f D dD f D dD 



    

 
 

2

22

σ 1 1

( ) ( )

exp D/ σ ( )σ

( )

K

K A A B B

AK

K A A









  
    

  

  

 

 2exp D/ σ ( )1 1

( ) ( ) ( )

B

A A B B B B

  
  

     
      (36) 

2

1 1

( ) ( )σ
( )

1 1

( ) ( )

A A B BK
F D

K

A A B B





 
   





   

 
 
 
 
 
 

 

 

 

2

2 22

2

2

exp D/ σ ( )1
( )σ σσ

1 exp D/ σ ( )

σ ( )

A

B BK KK
x

K K B

B B

 

 



  


 
 

    

 

                

 

 

 

2

2
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( )σ
1
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( )

A

A AK
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



  


 
 
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 

 
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 
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               (37) 

( )F D

D 
 = 1 – 0 = 1 

3.2.6. Total cost 

The total variable cost can be expressed in mathematical 
form: 

T.C. =  

12 1 1

1

2

S

u c u c

C D
Q K

C C Q C C



 
   

   

  
  
  

               (38) 

3.2.7. Order quantity 

If  be the percentage of stock out per cycle 
then  = 1 - F(D) 
  = 

)(
))(/exp(

)(
)(/exp(

)(

222















 BB

BD
AA

AD
K

K 

            

 (39) 
If we take  = permissible total number of stock outs per 
year them 

12

Q
 


                                                      (40) 

So Q= 

2 2

2

12 exp( / ( )

( ) ( )

exp( / ( )

( )

K D A

K A A

D B

B B

 

 



   
 

  

  

 

 
 
    (41) 

3.3. Modification of the two models when total lot is 
divided in sub lots 

In the two models discussed before it is assumed that the 
total quantity is delivered at one time but in actual case 
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the total quantity comes in lots after the procurement lead 
time. 
Now if the inter-arrival time is taken constant and is equal 
to T1 (month) then the demand during inter-arrival time of 

the item (CRGO) from store will be ( , , , )i iN d T T  . 
If the quantity receipt (a) is normally distributed with a 
mean of  a and standard deviation and denoted by N 
(a, a, ) then the net inventory building up in each inter 
arrival time (T1) will be distributed with a mean (a - , 

Ti) and standard deviation 2 2( )iT   . If the net 

accumulation is denoted by f(an) then: 
 
f (an) = N (an, n, n)                  (42) 
Where n = a - Ti                 (42') 

and 22 ))(( in T               (42’’) 

Now if n - 3n  0                 (43) 
If     n - 3n < 0                                (44) 
 
then at  cyclic probability of stock out and number of 
sub lots the probability of stock out in inter-arrival time, 
P(s) is expressed by: 
 
 = 1 - (1 - p (s))n                                             (45) 
 
So after getting p(s) one can get the value of required 
extra buffer stock that should be kept between the arrival 
of first and last sub lots. 
If this extra buffer is denoted by B then the R.O.P. 
calculated as before by any of the two models should be 
increased by BST. 

 
So New R.O.P. = R.O.P. + BST                (46) 

3.4. Procedural steps to the solution 

In the first model the economic lot size is derived in 
equation (13) in the form of equation (47) 

2

0

241 2
1 1 s

u c

C L
Q

L C C L


   

  
    
  

                              (47) 

Where L = 
2 2 2

2

2 



   
  

The R.O.P. derived from equation (8) can be shown as 
equation (48) 

R.O.P.=
2 2

2

2 2

( 2
2.3 log

2 )


 



 

  

  

  
  
    
    

2

2 22



 


   
    

(48)

 

So one can see that in the first model for a particular 
service level the R.O.P. and the Economic order quantity 
is directly available from the mode. 

But in the 2nd model there is scope of taking the effect of 
any administrative delay. Hence the problem is much 
more completed and no direct Economic Order quantity 
can be obtained directly from the equation. 
In this case the author has fixed the permissible stock out 
per year () which is equal to number of cycles (order) 
into the probability of stock out cycle (). 
After fixing the permissible stock out per year one can see 
with different  how the ordering quantity is related with 
re-order point by equation (41). The author also obtained 
the cost of carrying ordering quantity and buffer stock, 
cost of order per year and the total cost per year. So 
minimizing total cost for any re-order point with a fixed  
one is able to find it out the economic order quantity. This 
re-order point is the optimum R.O.P. (R.O.P0) which 
corresponds to economic order quantity (Q0). 
Now the R.O.P0 and (Q0) might have been obtained by the 
computer by finding out the point at which the slope of 
the total cost curve is zero. 
In the second model the relation between ordering point 
and ordering quantity is related by the equation (41). 

2 2 212 exp( / ( ) exp( / ( )
( ) ( ) ( )

K D A D BQ
K A A B B

   
 

   
   
   

      
  

 

and the total cost, TC = Number of orders  ordering cost 
+ (Order Level, R.O.P. - average consumption in the two 
average lead time)  Unit cost  carrying cost + ½  order 
quantity  unit cost  carrying cost.. 
For a particular  (number of stock out per year) with 
different R.O.P. values, the corresponding ordering 
quantities and total variable costs are computed by 
equation (41) and equation (38).  

4. Results and Analysis 

The variation of optimum re-order point and economic 
order quantity are investigated in different parametric 
conditions by the second model. The results are observed 
in different ways to show the effect of each parameter on 
another. So, by analytical model, the results are explained 
in the following steps: 
1. It is seen that for any particular Administrative delay 

lead time, the economic order quantity increases with 
the demand rate. 

2. It may be noted that there is no significant variation of 
E.O.Q. with the variation of administrative lead time. 

3. When procurement lead time increases, the Economic 
Order Quantity also increases.  

4. It may be concluded that with the large variation of 
standard deviation of demand rate, it has little effect 
on designing the R.O.P. and E.O.Q. 

5. It can be concluded that with the increase of demand 
rate, there is also increase in optimal re-order point. 

6. It is seen that as procurement Lead Time is increasing, 
the R.O.Po is also increasing, and there exists a 
relationship between R.O.Po and /1 . So, one may 
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conclude that R.O.Po is dependent on procurement 
lead time. 

7. If there is larger variation of demand rate, the R.O.Po 
and Qo will practically differ on nothing. 

8.  It is seen that as the permissible stock out/ year 
decreases, the R.O.Po increases rapidly. 

9. When Demand rate increases, more inventories are to 
be purchased and R.O.Po and Qo are also increased. 
So, the total variable cost will also increase. 

10. With increase of Administrative delay lead time, the 
total variable cost (T.C) is increased only slightly. 

11. It is seen that with the increase of procurement lead 
time, the total variable cost increases. 

12. There is very little variation of total variable cost with 
the variation of standard deviation of demand rate. 

13. When permissible stock out decreases, the total 
variable cost increases rapidly. This is due to high 
level of R.O.Po and economic order quantity. 

5. Conclusions 

 For probabilities of stock out between inter-arrival of sub 
lots, the modification of the results obtained by the 
models generates a better result. Arrival of sub lots can be 
dictated by the application of model. The demand rate is 
the constant inter-arrival time of one day. 
The net accumulation (an) is dictated by the normal 
distribution with mean inter-arrival time of one day. So, 
there is no probability of stock out between inter-arrival 
of sub lots. Consequently, no correction of the results 
obtained by model 2 is necessary, because the critical 
portion is taken into account by the model. 

5.1. Limitations of the Model  

In an actual situation, in the future period, the demand, 
lead times, and the sub lots quantity may change their 
respective probability distribution patterns. So, in that 
case, the correct prediction of optimum re-order point and 
economic ordering quantity may be wrong by the model. 
In this model, the inter-arrival time between receiving of 
sub lots is taken constant. Actually, if it varies at an 
extended period randomly, the model is not correct to 
produce the results. 
The model does not take the interaction of the other 
production units of the company. It does not distinguish 
between the different suppliers. The model does not take 
the effect of any rejection of sub lots due to bad qualities. 

5.2. Scope of further Work 

It is considered that there is scope for further work in 
relation to the present study with regard to the following 
aspects: 
(i)      To test the effectiveness of the inventory control 

system developed in this study, the actual distribution 
of inter-arrival time of sub lots as well as the sub lots 

quantity distribution can be introduced in Monte Carlo 
simulation model. 

(ii)      Taking different statistical distribution 
systems for demand and different lead times if 
conditions of the distribution change in future.  

(iii)      Other components may be also considered for 
other industries. 
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