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Abstract 

 In modern production systems, finding a way to improve the product and system reliability in design is very important. The 
reliability of the products and systems may improve using different methods. One of these methods is redundancy allocation 
problem. In this problem, by adding redundant components to sub-systems under some constraints, the reliability would improve. In 
this paper, we worked on a three-objective redundancy allocation problem. The objectives are maximizing system reliability and 
minimizing the system cost and weight. The structure of sub-systems are k-out-of-n and the components have constant failure rate. 
Because this problem belongs to “Np. Hard problems”, we used NSGA II multi-objective Meta-heuristic algorithm to solve the 
presented problem. 
Keywords: Reliability, Redundancy allocation problem, Multi-objectives problem, k-out-of-n, NSGA II algorithm. 

 
1. Introduction 

Optimizing the system reliability is one of the methods 
considered by many companies to use their resources 
more efficiently. The reliability of the system may 
improve using many different techniques. One of these 
techniques is RAP1. Fyffe et al. (1968) presented the 
mathematical model of RAP with active redundancy 
strategy for the first time. In their model, the objective 
function was maximizing system reliability under 
system cost and weight constraints and they solved the 
presented problem using dynamic programing. 
Nakagawa and Miyazaki (1981) worked on Fyffe’s 
model and solved 33 different problems using 
Surrogate constraints algorithm and demonstrated that 
this algorithm has better performance versus dynamic 
programing for multi-constraints RAP. These 33 
problems were the ones presented by Fyffe with 
different upper limits for system weight (from 159 to 
191). Bulfin and Liu (1985) presented 3 different 
approaches for solving RAP. One of these approaches 
is a heuristic method and the others are the exact 
approaches based on branch and bound method. Misra 
and sharma (1991) considered the RAP for series-
parallel structures and k-out-of-n sub-systems. In their 
model the sub-systems had active redundancy strategy 
and the components in each sub-system were identical. 
They solved the presented problem using zero-one 
programing. Pham (1992) solved the RAP for only one  
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k-out-of-n sub-system with identical components and 
active redundancy strategy. The objective function of  
the presented model considered minimizing system 
total cost. Bai et al. (1991) presented a RAP with k-
out-of-n sub-systems and CCF2. She and Pecht (1992) 
calculated the reliability of a k-out-of-n sub-system 
with warm-standby redundancy strategy in a closed 
form. In their model, the components were identical, 
the failure rate of components was constant and the 
switch performed correctly.  The objective of the 
model was finding the optimal number of components 
to minimize the average system cost rate. Pham and 
Malon (1994) presented RAP for a system with k-out-
of-n subsystems and identical components and active 
redundancy strategy with more than one failure rate. 
The objectives of their model were to find the optimal 
number of components (n) and minimum required 
number of components for sub-system working (k) due 
to minimizing system cost. They once got ‘k’ fixed and 
found the optimal number of n, then got ‘n’ fixed and 
found the optimal number of k. Coit and Smith (1995) 
worked on a series-parallel RAP and k-out-of-n active 
redundancy strategy sub-systems with the choice of 
allocating non-identical components to each sub-
system. This model is known as RAPMC3. Coit and 
Smith (1996a) considered a series-parallel RAP and k-
out-of-n active redundancy strategy sub-systems with 
assuming uncertainty on components reliability. 

                                                             
2 Common-Cause Failures 
3 Redundancy allocation problem with mixing components 
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Chern (1992) proved that RAP belongs to “Np. Hard” 
problems due to time of problem solving; therefore, 
heuristic and meta-heuristic algorithms are more 
suitable for solving this problem, especially for the 
large scale problems. Ida et al. (1994) and Yokota et al. 
(1995) used a simple GA4 for solving a RAP without 
choice of allocation non-identical components to each 
sub-systems. Coit and Smith (1996b) solved the 
problem, which was presented by themselves (Coit & 
Smith, 1995) using GA. 
Khalili-Damghani et al. (2013) proposed a new 
dynamic self-adaptive multi-objective particle swarm 
optimization (DSAMOPSO) method to solve binary-
state multi-objective reliability redundancy allocation 
problems (MORAPs).  Soltani et al. (2014) presented a 
model to maximize the reliability of a system by 
gathering various components when there are some 
limitations on budgeting. In their work, two models 
with different assumptions, including all unit discount 
and incremental discount strategies are considered. 
Garg et al. (2014) solved the bi-objective reliability 
redundancy allocation problem for series-parallel 
system where reliability of the system and the 
corresponding designing cost are considered as two 
different objectives. They used Particle swarm 
optimization (PSO) algorithm for solving their model. 
Also Zoulfaghari et al. (2014) provided a new Mixed 
Integer Nonlinear Programming (MINLP) model to 
analyze the availability optimization of a system with a 
given structure, using both repairable and non-
repairable components, simultaneously. In order to 
solve this problem, they suggested an efficient Genetic 
Algorithm to find the solution of the introduced 
MINLP. 
Zaretalab et al. (2015) presented an efficient multi-
objective meta-heuristic algorithm based on simulated 
annealing (SA) in order to solve multi-objective RAP 
(MORAP). 
One of the most important problems in solving RAP 
using GA is producing and selecting infeasible 
solutions. The penalty function was defined to avoid 
this problem by Coit and Smith (1996c). This function 
encouraged GA to select the solutions between 
Feasible and near-Feasible thresholds. In their method, 
the values of each chromosome were equal to the sum 
of the reliability of chromosome and the values of 
penalty function. Coit and Liu (2000) worked on a 
model with predefined active and cold-standby 
redundancy strategy. They considered that the 
components has constant failure rate and transformed 
the non-linear model to a linear one using alter 
variable. Coit (2003) presented a new model with the 
choice of selecting the redundancy strategy of each 
system (between active and cold-standby) and solved 
the problem with integer programing. Tavakkoli-
Moghaddam et al. (2008) solved the model presented 
by Coit (2003) using GA and the most important 
characteristics of the presented algorithm were the 
form of chromosome and mutation operator. Safari and 
Tavakkoli-Moghaddam (2010) solved the model 
presented by Coit (2003) using Memetic algorithm. 

                                                             
4 Genetic Algorithm 

This algorithm added a local search to GA. Amari and 
Dill (2010) considered a series-parallel RAP with k-
out-of-n sub-systems with the choice of selecting 
redundancy strategy (active and standby) of each sub-
system. The standby redundancy strategy contains 
cold, warm and hot standby. They did not present a 
closed form for the standby section. Chambari et al. 
(2012) presented a bi-objective series-parallel RAP. 
They considered a failure rate function for the cold-
standby components in the time of activation. They 
also considered the choice of selecting redundancy 
strategy and solved the presented model using NSGA 
II and MOPSO and compared the results of two 
algorithms together. Khalili Damghani and Amiri 
(2012) solved a binary-state multi-objective reliability 
redundancy allocation series-parallel problem using 
efficient epsilon-constraint, multi-start partial bound 
enumeration algorithm, and DEA. 
In this paper, we work on a three-objective RAP with 
k-out-of-n sub-systems. The objectives of the model 
are maximizing system reliability and minimizing 
system cost and weight. The redundancy strategy of the 
sub-systems is active or cold standby and they are pre-
defined (Coit & Liu, 2000). The presented model was 
solved using NSGA II5. 
The paper is divided into 5 parts. The second part 
provides problem definitions. In the third part, the 
solving algorithm is presented. Part 4 deals with the 
results of problem and part five presents conclusion 
and further studies. 

2. Problem Definition 

This paper deals with a RAP with s sub-systems. The 
structure of each sub-system is k-out-of-n and the 
redundancy strategy of each sub-system is active or 
cold-standby and is pre-defined (Coit & Liu, 2000). 
The objective functions of the problem are: 

 Maximizing system reliability, 
 Minimizing system cost, 
 Minimizing system weight. 

The variables of the problem are the number on 
allocated components in each sub-system. In k-out-of-n 
configuration, if the system works when at least k 
components are working, the configuration called k-
out-of-n:G, and if the system fails when at least k 
components failed, the configuration called k-out-of-
n:F (Sharifi et al., 2009). This configuration has more 
usage in electric and electronic devices in industrial 
design. For example consider a plane with 4 identical 
engines. If the plane could continue flying with at least 
two engines, the configuration of the plane engines is 
2-out-of-4:G. The k-out-of-n:G configuration is 
illustrated in Figure 1. 
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Fig. 1. System with k-out-of-n subsystems Coit and Liu (2000) 

2.1. Assumptions 

The assumption of the presented model in this paper 
are: 

 The components are non-repairable, 
 The failure of one component does not have any 

effects on system failure, 
 The components have constant failure rates, 
 The components have only two working and 

failed states, 
 The components' failures are independent, 
 The system parameters like the cost and the 

weight of components are pre-defined and 
constant. 

2.2. Nomenclatures 

:i  Sub-systems indexes, si ,,2,1   

:S  Number of sub-systems, 

 :tR  
Reliability of the system at the time t
depends on design vector z  and n , 

 snnnn ,,, 21   

:in  Number of components in i st sub-system, 
si ,,2,1  ,  ii mn ,,2,1   

:,iMaxn  Maximum limit of components in i st sub-
system,  

:ijc  The cost of component type j  in i st sub-
system, 

:ijw  The weight of component type j  in i st sub-
system, 

:iz  
Index of selected components type for 
allocating in i st sub-system, 

 szzzz ,,, 21   

:im  
Number of available component types in 
sub-system i , 

:ik  Minimum required components in i st sub-
system,  skkkk ,,, 21   

:ijT  Failure time of j st standby component in i st 
sub-system, 

:ij  Failure rate of j st  component type in i st 
sub-system, 

:t  Mission time of system. 

  

2.3. Mathematical model 

According to nomenclatures, the mathematical model 
is as follows: 

 tRRMax   (1) 
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i
iicnCMin

1

 (2) 
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i
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 (3) 

sinnktS iMaxii ,,2,1;:. ,   (4) 
  simz ii ,,2,1;,,2,1    (5) 

siWni ,,2,1;   (6) 

Equation 1 deals with maximizing the system 
reliability and is calculated in more detail.  Equations 2 
and 3 calculate the system cost and system weight that 
must be minimized. Equation 4 represents the lower 
and upper bounds for components allocated in each 
sub-system and equations 5 and 6 are the definitions of 
system variables. 
The sub-systems are connected serially, so the 
reliability of the system can be calculated by 
multiplying the reliability of each sub-system (Coit & 
Liu, 2000). The system reliability is calculated in 
equation 7. 
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In Equation 7, the reliability of i st sub-system is 
demonstrated by  iiii knztR ,,, . This reliability can be 
calculated based on the redundancy strategy of the sub-
system. Coit and Liu (2000) calculated the reliability of 
the system as follows: 
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In Equation 8, the set of all sub-systems with active 
redundancy allocation is (A) and the set of all sub-
systems with cold-standby redundancy allocation is 
(S).  

3. Solving Algorithm 

As mentioned earlier, Chern (1992) proved that RAP 
belongs to “Np. Hard” problems so the exact methods 
are not suitable for solving this problem and the 
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heuristic and meta-heuristic algorithms have more 
performance. In this paper, we used NSGA II for 
solving the presented problem. 

3.1. NSGA II 

This algorithm is one of the most effective multi-
objective algorithms presented by Deb et al. (2000). 
The algorithm mechanism was presented by Deb et al. 
(2000) and is shown in Figure 2. 

  
Fig. 2. Mechanism of NSGA II (Deb et Al., 2000) 

The pseudo-code of proposed NSGA II algorithm 
presented in Figure 3. 

  
Fig. 3. The pseudo-code of proposed NSGA II algorithm (Deb et Al., 

2000) 

3.1.1. Initialization 

The parameters of NSGA II are: 
 Initial population size  npop , 

 Probability of crossover operator  cp , 

 Probability of mutation operator  mp , 

 Number of algorithm iterations  MaxIt . 
3.1.2. Problem chromosome 

Because the NSGA II is a population-based algorithm, 
each solution of the problem (the algorithm 
chromosome) is considered as a matrix with rank s2  
in which s is the number of sub-systems and the first 
and second rows represent the number and type of 
allocated components to each sub-system, respectively. 
The structure of the problem chromosome is presented 
in Figure 4. 

sn  1sn    2n  1n  

sz  1sz    2z  1Z  

Fig. 4. Structure of presented chromosome 

3.1.3. Crossover operator 

The crossover operator in this paper is uniform 
crossover Gen and Cheng (1997) and Tavakkoli-
Moghaddam et al. (2008). In this type of crossover, 
operator two parents are selected using roulette wheel 
and for each genome of the parents’ chromosome a 
binary random number is generated. If this number is 
equal to 1, the genome of parents will be replaced by 
each other’s and if this number is equal to 0, the 
genome of the parents will not change. This type of 
crossover operator is illustrated in Figure 5. 

3.1.4. Mutation operator 

For mutation operator, after selection of a chromosome 
for each genome of chromosome a random number is 
generated. If this number is less than mutation rate (in 
this paper the mutation rate is considered 0.1), the 
genome will be mutated randomly; otherwise, the 
genome will not change (Gen and Cheng, 1997). This 
type of mutation is illustrated in Figure 6.

 

 
Fig. 5. Crossover operation 

 
Fig. 6. Mutation operator 
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3.2. Numerical example 

For evaluation of the presented NSGA II, a numerical 
example is solved. This example is proposed by Coit 
and Liu (2000). In this example, a system with 14 sub-
systems exists. For each sub-system, 3 or 4 different 
types of components are available to allocate. The cost, 
weight, failure rate of components and minimum 

required components in each sub-system are presented 
in Table 1. In this example, the first 7 sub-systems 
have active redundancy strategy and the second 7 sub-
systems have cold-standby redundancy strategy. The 
mission time considered 100 hours and the maximum 
number of allocated components in each sub-system 

considered 6 ( , 6Max in  ). 

 
Table 1 
Component data for example (Coit & Liu, 2000) 

    subsystem Component 
Choice 

 1 

Component Choice 
 2 

Component 
 Choice 

 3 

Component Choice 
 4 

i  ik
 

type ij  ijc
 

ijw  ij  ijc
 

ijw  ij  ijc  ijw  ij  ijc
 

ijw  

1 1 A 0.001054 1 3 0.000726 1 4 0.000943 2 2 0.000513 2 5 
2 2 A 0.000513 2 8 0.000619 1 10 0.000726 1 9 - - - 
3 1 A 0.001625 2 7 0.001054 3 5 0.001393 1 6 0.000834 4 4 
4 2 A 0. 001863 3 5 0.001393 4 6 0.001625 5 4 - - - 
5 1 A 0.000619 2 4 0.000726 2 3 0.000513 3 5 - - - 
6 2 A 0.000101 3 5 0.000202 3 4 0.000305 2 5 0.000408 2 4 
7 1 A 0.000943 4 7 0.000834 4 8 0.000619 5 9 - - - 
8 2 S 0.002107 3 4 0.001054 5 7 0.000943 6 6 - - - 
9 3 S 0.000305 2 8 0.000101 3 9 0.000408 4 7 0.000943 3 8 
10 3 S 0.001863 4 6 0.001625 4 5 0.001054 5 6 - - - 
11 3 S 0.000619 3 5 0.000513 4 6 0.000408 5 6 - - - 
12 1 S 0.002357 2 4 0.001985 3 5 0.001625 4 6 0.001054 5 7 
13 2 S 0.000202 2 5 0.000101 3 5 0.000305 2 6 - - - 
14 3 S 0.001054 4 6 0.000834 4 7 0.000513 5 6 0.000101 6 9 

Notes: A = active redundancy, S = cold-standby redundancy, units for ij are failures/hour 

 

3.3. The evaluation metrics of multi-objectives meta-
heuristic algorithms 

Generally, in single objective problems, the target is to 
find optimal solution of objective function. Whereas in 
multi-objective problems, the objectives may be in 
conflict and most of the time finding the optimal 
solution is impossible. Some metrics are used to 
compare the solving methods. Five metrics to evaluate 
the performance of multi-objective algorithms are as 
follow. 

3.3.1. Diversity 

This metric was presented by Zitzler (1999) and 
calculated the terminal points spatial cube diagonal of 
objectives in non-dominated solutions. Equation 9 
calculates this scale: 
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This scale is equal to Euclidian distance between two 
boundaries solutions in target space. The algorithm 
with greater values of this scale is a better algorithm. 

3.3.2. Spacing 

This scale that was originally presented by Schott 
(1995) calculates the comparative distance of 
consecutive solutions using Equation 10. 
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This metric is equal to the sum of the absolute value of 
objective function between ith solution and the set of 
final non-dominated solutions and is different to 
Euclidian distance between two boundaries solutions in 
the target space. The algorithm with lower values of 
spacing is a better algorithm. 

3.3.3. Number of Pareto solutions (NOS) 

This scale is equal to the number of different Pareto 
optimal solutions of an algorithm. 
 
3.3.4. Mean ideal distance (MID) 

This scale calculates the distance of the fronts and the 
better populations using Equation 11, (Zitzler, 1998). 
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Where ic  is the distance of a population member 
from the best value. 
 
3.3.5. CPU time of the algorithm 

The CPU time of algorithms is one of the most 
important scales for comparison. 
 
3.4. Parameter tuning 

To reach better solutions, RSM is used in the next 
section to calibrate the algorithm parameters. As the 
results of meta-heuristic algorithm highly depends on 
its parameters, these parameters must be tuned to 
achieve the better solutions. If the results of a response 
of process y  is affected by many variables  X , the 
objective function defined as

   nxxxfy ,,, 21   that  is the observation 
error in response y . If the expected value of response 

represented by    
1 2
, , ,

n
E y f x x x    then the 

 
1 2
, , ,

n
f x x x    is a surface that is called response 

surface. The target of RSM is to find an appropriate 
approximation between the response y  and the 
independent variables  X . The NSGA-II has three 
parameters that must be tuned. These parameters are 
population size  npop , crossover probability  cp , 

and mutation probability  mp . Using MINITAB 16 

and considering  MID
Diversity

 as objective function 

 32 2 3 5 19     problem solved and the optimal 
parameters of algorithm calculated. We added 5 central 
points to test any curve in response surface and the 
results are presented in Table 2. 

Table 2 
The optimal values of NSGA-II parameters 

 Optimal values parameter 

100 npop  

0.7 cp  

0.3 mp  

4. Problem results 

Using the optimal parameters of algorithm, an example 
that presented by Coit and Liu (2000) solved to 
analyzing the results of NSGA-II algorithm. In optimal 
solution of this example, the system cost and weight 
are 118 and 177 and the reliability of the system is 
0.4466. The Pareto solutions of NSGA-II algorithm is 
presented in Table 3. In this table, the solution number 
20 (that has red color) is the same result obtained by 
Coit and Liu and the other solutions were not 
dominated by this solution and all results in this table 
are non-dominated solutions. 

The solutions presented in this table are appropriate for 
decision makers. If increasing of the system reliability 
is important for decision makers, the results that are in 
yellow color in Table 1 have the reliability of more 
than 0.4466, if decreasing of the system cost is 
important for decision makers, the results that are green 
color in Table 1 have the cost less than 118 and if 
decreasing of the system weight is important for 
decision makers, the results that are in blue color in 
Table 1 have the cost less than 177. The Pareto front of 
the solutions are presented in Figure 7. At the end, by 
changing the weight of component type one in the first 
sub-system from 1 to 10, the example solved ten times 
and the results of algorithm metrics are presented in 
Table 4. 

4. Conclusion and Suggestions for Further Studies 

In this paper, we presented an NSGA-II algorithm for 
solving MORAP for a series-parallel problem and k-
out-of-n sub-systems with 3 objectives. The objectives 
were reliability, cost, and weight. The components 
were CFR and the sub-system redundancy strategy was 
active and cold-standby. The results of the algorithm 
prepared a wide range of solution for decision makers. 
The further studies divided in to two categories. The 
first category is the solving methodology and the other 
multi-objective meta-heuristic algorithm like NRGA, 
MOPSO, and MOSA that may be used for solving the 
problem. The other category deals with problem 
specification. For example, this algorithm can be used 
for solving the problem with multi-state components, 
time dependent failure rate components, and repairable 
components. 
 
 

 
 

Fig. 7: Pareto front solutions of NSGA-II using optimal parameters 
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Table 3 
The Pareto solutions obtained by NSGA-II 

Solution R  C  W  Solution R  C  W  
1 0.1086 78 169 51 0.9993 239 431 
2 0.2030 86 162 52 0.9991 225 409 
3 0.1074 78 168 53 0.9933 192 334 
4 0.9994 267 435 54 0.8540 130 238 
5 0.9994 263 443 55 0.9784 161 296 
6 0.9993 242 488 56 0.9990 227 401 
7 0.9994 249 465 57 0.9767 159 292 
8 0.7642 113 231 58 0.9658 157 289 
9 0.9863 175 312 59 0.5114 95 199 

10 0.9856 169 307 60 0.9994 261 435 
11 0.9948 199 342 61 0.7264 116 224 
12 0.4975 99 192 62 0.2861 88 178 
13 0.9993 242 488 63 0.9991 214 434 
14 0.9929 180 325 64 0.9993 236 419 
15 0.9994 255 450 65 0.8914 134 252 
16 0.5403 104 197 66 0.9641 155 285 
17 0.9792 164 301 67 0.9992 253 414 
18 0.9268 140 262 68 0.9992 245 416 
19 0.9174 142 259 69 0.4226 95 198 
20 0.4466 118 170 70 0.1845 85 172 
21 0.3799 92 185 71 0.9954 189 352 
22 0.8083 119 232 72 0.8713 130 255 
23 0.9984 206 397 73 0.9473 148 281 
24 0.4450 100 182 74 0.2316 83 185 
25 0.9540 149 276 75 0.8883 132 249 
26 0.7429 123 227 76 0.9984 221 383 
27 0.9338 154 270 77 0.2793 97 171 
28 0.9059 136 270 78 0.8360 121 248 
29 0.6751 116 209 79 0.3358 90 190 
30 0.8333 127 241 80 0.2619 94 174 
31 0.3492 92 181 81 0.9993 234 444 
32 0.6605 107 217 82 0.6177 110 204 
33 0.1258 80 166 83 0.9969 208 361 
34 0.9994 257 425 84 0.9986 221 387 
35 0.3125 87 189 85 0.2612 88 177 
36 0.7094 126 223 86 0.9962 198 365 
37 0.6990 118 213 87 0.9972 210 363 
38 0.1716 82 170 88 0.2413 85 173 
39 0.5974 108 206 89 0.6212 105 215 
40 0.9423 147 273 90 0.9950 186 355 
41 0.1450 79 183 91 0.2209 86 166 
42 0.9982 194 391 92 0.6449 117 202 
43 0.9963 185 376 93 0.9938 188 337 
44 0.8093 123 235 94 0.8713 133 246 
45 0.9991 231 405 95 0.9965 190 369 
46 0.4085 96 181 96 0.8495 126 244 
47 0.9899 177 325 97 0.5557 106 203 
48 0.5666 110 195 98 0.3237 90 183 
49 0.9978 218 373 99 0.6428 106 215 
50 0.5866 112 199 100 0.2030 86 162 

Mean 

 R  C  W   
0.7361 150.59 279.56 
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Table 4 
The results of metrics in the ten time problem solving. 

example Diversity Spacing NOS MID Time(s) 
1 370.0954 5.3895 100 155.2505 198.554296 
2 363.4085 4.6697 100 159.5707 199.438622 
3 369.5250 4.2956 100 160.1108 214.988428 
4 342.4774 5.3706 100 144.1408 198.674896 
5 333.3989 4.3993 100 140.6809 197.099027 
6 331.5084 4.7061 100 143.7109 200.728362 
7 386.9094 5.5234 100 153.4909 204.411265 
8 406.9861 4.5990 100 162.2407 202.433352 
9 350.3624 4.8913 100 147.7609 200.919858 

10 368.0907 4.6249 100 151.2407 201.550561 
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