

Modeling and Scheduling No-idle Hybrid Flow Shop Problems

Mehdi Yazdania,*, Bahman Naderib

a Assistant Professor, Department of Industrial Engineering, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University,
Qazvin, Iran

b Assistant Professor, Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran
Received 29 December 2015; Revised 03 November 2016; Accepted 08 November 2016

Abstract

Although several papers have studied no-idle scheduling problems, they all focused on flow shops, assuming one processor at
each working stage. But, companies commonly extend to hybrid flow shops by duplicating machines in parallel in stages.
This paper considers the problem of scheduling no-idle hybrid flow shops. A mixed integer linear programming model is first
developed to mathematically formulate the problem. Using commercial software, the model can solve small instances to
optimality. Then, two metaheuristics, based on variable neighborhood search and genetic algorithms, are developed to solve
larger instances. Using numerical experiments, the performance of the model and algorithms are evaluated.
Keywords: Scheduling, No-idle hybrid flow shops, Mixed integer linear programming, Variable neighborhood search,
Genetic algorithm.

1. Introduction

In flow shop scheduling problems, we have a set of jobs
and a set of working stage. To complete each job, some
operations have to be performed. Each operation is
carried out at one working stage, where in each stage,
there is only one processor, say machine. The processing
routes of all jobs are the same, starting from stage 1 to
stage m. The objective is to sequence jobs so as to
complete all jobs as soon as possible.

One criticism to scheduling problems is the gap
between academic and practical problems. To bridge this
gap, it is always interesting to extend scheduling
problems by assumptions taken form realistic industries.
One restrictive assumption in flow shop is to consider one
machine at each working stage, while companies employ
more than one machine at stages with more workload. In
this case, they can reduce the impact of bottleneck stages,
or even balance their production capacity more. The
problem with more than one machine at each stage is
called hybrid flow shops.

This extension of flow shop is a very active field of
research. Ebrahimi et al. (2014) studied hybrid flow shop
scheduling with sequence-dependent family setup time
and uncertain due dates. Fattahi et al. (2014) considered
hybrid flow shop scheduling problem with setup time and
assembly operations. Lahimer et al. (2013) investigated

hybrid flow shop scheduling with multiprocessor tasks.
Luo et al. (2013) studied hybrid flow shop scheduling
with machine electricity consumption cost. Elmi and
Topaloglu, (2013) considered blocking hybrid flow
shop robotic cells with multiple robots.

In some productions, it is completely uneconomical
to maintain such machines idle, especially industries with
highly expensive machines. Moreover, in industries with
less expensive machines, it might not be desirable to stop
machines between jobs. An example of such an industry
is the furnace of the fiberglass industry. Heating the
furnace up to the necessary temperature is both time-
consuming and expensive. Thus, it is always kept on
when it starts working. These practical situations raise a
scheduling environment, called no-idle scheduling. In a
no-idle scheduling, idle time on a machine is not allowed.
In other words, each machine must continuously process
jobs from the start of processing the first job to the end of
the last job. To fulfill this restriction, the start of
processing the first job on a given machine might be
delayed. Other applications of no-idle scheduling (i.e., as
it might be technically infeasible or uneconomical to stop
a machine in between jobs) are foundries, production of
integrated circuits, and the steel-making industry (Pan and
Ruiz, 2014).

Although there are several papers considering no-idle
scheduling, they all study flow shop problems.
Kalczynski and Kamburowski (2005) considered no-idle
flow shops and proposed a heuristic for this problem.
Deng and Gu (2012) developed a hybrid discrete

* Corresponding author Email address: mehdi_yazdani2007@yahoo.com

Journal of Optimization in Industrial Engineering 21 (2017) 59-66

59

differential evolution algorithm for the no-idle
permutation flowshop scheduling problem to minimize
make-span. Tasgetiren et al. (2013a) investigated the no-
idle permutation flowshop scheduling problem to
minimize the total tardiness. They developed a discrete
artificial bee colony algorithm for this problem.
Tasgetiren et al. (2013b) investigated the same problem
with Tasgetiren et al., (2013a) and proposed a variable
iterated greedy algorithm with differential evolution.
Moreover, the classical iterated greedy and a variable
iterated greedy from the literature are reimplemented. Pan
and Wang (2008) studied the no-idle permutation flow
shop scheduling problems to minimize makespan. They
developed two straightforward methods to calculate the
makespan: a speed-up method and a discrete particle
swarm optimization algorithm. This algorithm
outperformed two heuristics of Tasgetiren et al. (2013a)
and Kalczynski and Kamburowski (2005).

Saadani et al. (2005) studied no-idle flowshop
problems to minimize the makespan. Since this problem
can be modeled as a travelling salesman problem, an
adaptation of the well-known nearest insertion rule is
proposed to solve the problem. Baraz and Mosheiov
(2008) developed a greedy algorithm for no idle
flowshops to minimize makespan. Goncharov and
Sevastyanov (2009) proposed several polynomial time
heuristics based on a geometrical approach for the general
case and for special cases of 3 and 4 machines. They also
proposed a complete survey of relevant works. Zhou et al.
(2014) also proposed an invasive weed optimization
algorithm. Lu (2016) studied no-idle flow shop with time-
dependent learning effect and deteriorating jobs. Pan and
Ruiz (2014) investigated mixed no-idle flow shops, where
not all machines require no-idle restriction. They first
mathematically formulated the problem and proposed an
iterated greedy algorithm enhanced by a speed-up feature.
After reviewing the literature of no-idle scheduling, we
can conclude that all the papers studied the flow shop
problem.

In this paper, we generalize no-idle flow shop
problems to no-idle hybrid flow shops. Using Grahams’
notation, the problem is 퐹퐹푐/푛표 − 푖푑푙푒/퐶 . We first
formulate the problem by a mixed integer linear
programming model. Using the model, the small instances
of the problem are solved to optimality. Since the problem
under consideration is NP-hard, the best solution method
is metaheuristic. There are two different metaheuristic
types: single-individual and multi-individual (population-
based) ones. To find out what type of metaheuristic
performs well for this problem, we have decided to
develop one single-individual and one multi-individual
metaheuristics. Among different single-individual
alternatives, variable neighborhood search has shown
high performance in different scheduling problems (Xiao
et al., 2014; Kocatürk and Özpeynirci, 2014). Also,

among different multi-individual alternatives, genetic
algorithm seems the best one regarding the literature (Dai
et al., 2013). Thus, two metaheuristics, based on variable
neighborhood search and genetic algorithm, are also
developed to solve large instances. Two numerical
experiments are conducted to evaluate and compare the
models and algorithms.

The rest of the paper is organized as follows. Section
2 formulates the problem by three different mathematical
models. Section 3 develops two metaheuristics. Section 4
evaluates both the models and metaheuristics. Section 5
concludes the paper.

2. Problem Definition and Formulation

This section first describes the problem, then
mathematically formulates the problem. The problem of
scheduling no-idle hybrid flow shops can be defined as
follows. There are 푛 jobs and 푚 working stages. Each
stage has a number of 푚 identical machines. All jobs
visit all stages from the first to the last stage. They are
processed by one machine at each stage. Each job can be
processed by at most one stage at a time and each
machine can process at most one job at a time. The
machines are continuously available. All jobs are
independent and available at time zero. The objective is to
assign jobs to machines at each stage and sequence jobs at
each stage.

To illustrate the problem, we first present a numerical
example. Consider a problem with 4 jobs and 2 stages.
There are two machines at each of the two stages. Table 1
shows the processing times of jobs at different stages.
One solution for this problem is to assign jobs 1 and 3 to
machine 1 (job 3 followed by job 1), and jobs 2 and 4 to
machine 2 at stage 1 (job 2 followed job 4). At stage 2,
jobs 2 and 3 are assigned to machine 1, and jobs 1 and 4
to machine 2. Makespan of this solution becomes 25.

Table 1
 Processing times of the example

Jobs Stages
1 2

1 6 5
2 15 10
3 5 9
4 4 5

Scheduling problems are commonly formulated as

mixed integer linear programming models. The problem
under consideration is modeled by a mathematical model.
Before presenting the models, we establish the following
parameters and sets.

Mehdi Yazdani et al./ Modeling and Scheduling No-idle...

60

Fig. 1. Gantt chart of a feasible solution for the example

Parameters:
푛 The number of jobs
푗, 푘 Indices for jobs where {1, 2,…	 , 푛}
푚 Number of stages
푖 Indices for stages where {1, 2,…	 ,푚}
푚 Number of machines in stage 푖
푙 Indices for machines at stage 푖 where

{1, 2,…	 ,푚 }
푝 , Processing time of job j at stage 푖
M A large positive number

Decision variables:
푋 , , Binary variable taking value 1 if job j is

processed after job k at stage i, and 0
otherwise k > j.

푌 , , Binary variable taking value 1 if job j is
processed at stage i on machine l, and 0
otherwise.

퐶 , Continuous variable for the completion
time of job j at stage i

푆 , Continuous variable for the starting time
of machine l at stage i

퐹 , Continuous variable for the finishing
time of machine l at stage i

The model is as follows.

Min 퐶
Subject to:

푌 , , = 1 ∀ , (1)

퐶 , ≥ 퐶 , + 푝 , ∀ , (2)

퐶 , ≥ 퐶 , + 푝 , −푀 ∙ 3 − 푋 , , −
푌 , , − 푌 , ,

∀ , , , (3)

퐶 , ≥ 퐶 , + 푝 , −푀 ∙
2 + 푋 , ,

−푌 , , −푌 , ,
 ∀ , , , (4)

퐶 , ≥ 푆 , + 푝 , −푀 ∙ 1 − 푌 , , ∀ , , (5)

퐹 , ≥ 퐶 , −푀 ∙ 1 − 푌 , , ∀ , , (6)

퐹 , = 푆 , + 푌 , , ∙ 푝 , ∀ , (7)

퐶 ≥ 퐶 , ∀ (8)

퐶 , ≥ 0 ∀ , (9)

푆 , ≥ 0 ∀ , (10)

퐹 , ≥ 0 ∀ , (11)

푋 , , ∈ {0, 1} ∀ , , (12)

푌 , , ∈ {0, 1} ∀ , , (13)

Constraint set (1) assigns each operation to one of

machines of its corresponding stage. Constraint set (2)
ensures that each job can be processed by at most one
machine at a time. Constraint sets (3) and (4) are the pair
of disjunctive constraints (one of them holds at most
depending on which job proceeds the other one) that show
each machine can process at most one job at a time.
Constraint sets (5), (6), and (7) ensure that no-idle
restrictions are met. Constraint set (8) calculates
makespan. Finally, Constraint sets (9) and (13) define the
decision variables.

Job 2

Job 3

Job 4

Job 1

0 3 6 9 12 15 18 21 24 27

Time

St
ag

e
2

 S
ta

ge
 1

Machine 1

Machine 2

Machine 3

Machine 4

Journal of Optimization in Industrial Engineering 21 (2017) 59-66

61

3. Developed Metaheuristics

In this paper, we develop two metaheuristics of variable
neighborhood search and genetic algorithm to solve large
instances of the problem. Later on, the variable
neighborhood search and genetic algorithm are described
in detail.

3.1. Variable neighborhood search

The general timetabling problem is known to be
complex and difficult. In this context, exact solutions
would be only possible for problems of limited sizes.
Instead, solution algorithms based on metaheuristics have
shown to be highly effective. Examples of these
algorithms include genetic algorithm (Wang, 2002; Wang,
2003), Tabu Search (Aladag et al., 2009), simulated
annealing (Zhang et al., 2010), variable neighborhood
search (Burke et al., 2010), and etc.

Variable neighborhood search (VNS) is a simple but
effective local search-based metaheuristic proposed by
Mladenovic and Hansen (1997). Local search-based
methods have been applied in the optimization literature
with very good results, like simulated annealing (SA),
tabu search (TS), and the iterated local search (ILS).
However, all these methods are based on the exploration
of a single neighborhood structure. Hence, there exists
high probability for them to get trapped in local optima
after a certain number of iterations and the move required
to separate the algorithms from the local optima cannot be
performed. Therefore, they need mechanisms to have
sufficient potentiality to escape from local optima.

Instead of iterating over one constant type of
neighborhood structure and relying on mechanisms such
as random perturbations of ILS or memory structures of
TS or metropolis mechanism of SA, VNS proceeds in this
case by using a different type of neighborhood structure,
which might contain the required improving moves. The
term “VNS” is referred to all local search-based
approaches that are centered on the principle of
systematically exploring more than one type of
neighborhood structure during the search. VNS is based
on two important facts: (1) a local optimum, with respect
to one type of neighborhood, is not necessarily so with
respect to another type; (2) a global optimum is a local
optimum with respect to all types of neighborhoods
(Hansen and Mladenovic, 2001).

The reasons why VNS has obtained its acceptability
and popularity among researcher are due to the utilization
of several neighborhood structures, easy to implement,
and high flexibility, and brilliant adaptability of VNS to
different problems. VNS has been applied with success to
other problems including (Flesza and Hindi 2004; Liao
and Cheng 2007). In the following sections, we provide
the proposed VNS methods with further details.

3.1.1. Solution representation

The proposed algorithms are based on permutation
encoding scheme. The permutation scheme is a sorted list
of all the jobs being processed. By considering the
permutation from left to right, the relative sequence of
jobs is determined. For the sake of simplicity, let us
describe the permutation scheme by an example. Suppose
that we have a problem with 푛 = 5 . In the case of
permutation list, {2,5,1,4,3} is one possible permutation.
This permutation merely shows the relative order of jobs
at the first stage. Jobs are taken one by one from the list
and assigned to the first available machine. The sequence
of jobs at the subsequent stages is determined by the
earliest completion time of jobs at the previous stage. The
first available machine rule is also used for the
assignment.

While decoding the encoded solution, no-idle
restriction has to be fulfilled. Note that no-idle restriction
in the first stage is always held. To meet this restriction
for the rest, the following two-phase decoding scheme is
used. In the first phase, no-idle restriction is ignored; jobs
are sequenced and assigned according to “earliest
completion time” and “first available machine” rules,
respectively. In the second phase, the last job of each
machine is fixed; the preceding jobs are moved left. That
is, the processing of a job is postponed so as to make sure
that the job is completed when the next job can be started.

3.1.2. General structure of the proposed VNS and its
neighborhoods

Generally, VNS iterates over some neighborhood
structures until some stopping criterion is met. Our
proposed VNS algorithm incorporates two different local
search types: one local search for small changes and
another for larger changes. The stopping criterion is set at
a limit CPU time fixed to 푛푚 seconds. This stopping
criterion allows for more time as the number of jobs and
stages increases.

In the first local search, one job is randomly selected
and reinserted into another randomly selected position.
For example, consider a problem with 푛 = 5. Suppose that
the current solution is {2,5,1,4,3}. The randomly selected
job is job 5 and randomly selected position is 4. In this
case, new solution becomes {2,1,4,5,3}. This local search
repeats for 휌 times and each time, a new solution is
generated.

After generating each new solution, it can be either
accepted or rejected by another mechanism. If this new
solution improves the current solution, it is accepted. If
new solution deteriorates the current solution by more
than 10% (called i), it is rejected. Otherwise, it is
probably accepted. The probability of acceptance depends
on the inferiority gap size. The larger the inferiority gap
size is, the lower its chance of being accepted becomes. A
new solution with g% inferiority gap is accepted with

Mehdi Yazdani et al./ Modeling and Scheduling No-idle...

62

probability of 10-g%. Figure 2 shows the outline of the
proposed VNS.

Procedure: The_local_search_type 1

For 푖 = 1 to 휌 do

Reinsert a job into a new position
Accept/reject the new solution

Endfor

Fig. 2. General outline of local search type 1

If the local search type one is implemented and the

best solution is improved, it is re-implemented.
Otherwise, the local search type two is performed. In the
local search type two, two jobs are randomly selected and
they are reinserted into new randomly selected positions.
This local search also repeats for 휌 times. Each time, a
new solution is generated. To accept or reject a new
solution, the mentioned acceptance mechanism of the first
local search is used. Figure 3 shows the outline of the
proposed VNS.

Procedure: The_proposed_VNS

Step 1: Generate initial solution, say 휃.
Step 2: If the stopping criterion is not met,
go to step 3.
Step 3: Apply local search 1.
Step 4: If 휃 is improved; go to step 3;
otherwise, go to step 5.
Step 5: Apply local search 2.
Step 6: If 휃 is improved, go to step 5;
otherwise, go to step 2.

Fig. 3. General outline of the proposed VNS

3.2. Genetic algorithm

Genetic algorithm (GA) is designed to deal with
some problems of industry that were difficult to solve by
conventional methods. Todays, GA is a well-known
population-based evolutionary algorithm tackling both
discrete and continuous optimization problems. The idea
behind GA comes from Darwin’s ‘‘survival of the fittest’’
concept, meaning that good parents produce better
offsprings. Many hard optimization problems have been
successfully solved by GA (Wang, 2002; Toledo et al.,
2013; Balakrishnan et al., 2003). Wang (2002) solved
teacher assignment problems by GA. Toledo et al. (2013)
developed a GA to tackle lot-sizing problems.
Balakrishnan et al. (2003) also solved dynamic layout
problem by GA.

3.2.1. General structure

GA searches for a solution space with a population of
chromosomes, each of which represents an encoded
solution. A fitness value is assigned to each chromosome
according to its performance. The better the chromosome
is, the higher this value becomes. The population evolves
by a set of operators until some stopping criteria are

visited. A typical iteration of a GA, generation proceeds
as follows. The best chromosomes of current population
are directly copied to next generation (reproduction). A
selection mechanism chooses chromosomes of the current
population so as to give higher chance to chromosomes
with the higher fitness value. The selected chromosomes
are crossed to generate new offspring. After crossing
process, each offspring might mutate by another
mechanism called mutation. Afterwards, the new
population is evaluated again and the whole process is
repeated. The outline of the proposed GA is shown in
Figure 4.

The procedure: the proposed GA
Initialization mechanism
While the stopping criterion is not met, do

Selection mechanism
Crossover mechanism
Mutation mechanism

Endwhile
Fig. 4. The outline of the proposed GA

3.2.2. Initialization and selection mechanisms

GA starts with a number of chromosomes, each of
which represents a possible solution. The number of
chromosomes is the population size indicated by pop, set
to 50. The initial chromosomes are randomly generated
from the feasible solutions. After initializing the
algorithms, each chromosome is evaluated and its fitness
(i.e., objective function) is determined. The chance of
chromosome 푘 to be selected for crossover mechanism is
as follows.

푝 =
푓푖푡(푘)

∑ 푓푖푡(ℎ)

where 푓푖푡(푘) is the fitness of chromosome 푘.

3.2.3. Crossover and mutation mechanisms

New solutions are produced by crossing two other
solutions already selected by selection mechanism. These
two solutions are called parents. The operators of
combining parent are called crossover. The purpose of
this combining is to generate better offsprings. To move
the search towards better areas, we define a new solution
that inherits from both parents. In fact, we combine two
parents to form a new solution. In this research, this is
done through an operator with the following steps.

Two randomly cut points are selected. Then, the jobs
between these cut points from Parent 1 are copied to
offspring in the same positions. The remaining jobs are
put into the empty positions of the offspring from Parent
2. The order of the remaining jobs is determined by their
relative order in Parent 2. For example consider a problem
with 푛 = 6. Suppose that two parents are:

Parent	1:	{2,1, 5,4,6,3}
Parent	2:	{6,1, 3,2,4,5}

Suppose that the two randomly selected cut points are 2
and 4. In this case, the operations from position 2 to

Journal of Optimization in Industrial Engineering 21 (2017) 59-66

63

position 4 are copied into the same position in the
offspring.

offespring:	{−,1,5,4,−,−}
The remaining jobs are 2, 6, and 3. These jobs are

copied into offspring according to Parent 2. Thus, the
complete offspring becomes:

offespring:	{6,1,5,4,3,2}
After crossover, each solution is changed by the

mutation operator. The main purpose of applying
mutation is to avoid convergence to a local optimum and
diversify the population. We use the swap mutation
operator which works as follows. Two positions are
randomly selected and the jobs of these two positions are
swapped. For example, consider a problem with 푛 = 6.
Suppose that the encoded solution is:

	{6,1, 5,4,3,2}
The two randomly selected positions are 3 and 6. By

swapping the corresponding operations, we have:
	{6,1, 2,4,3,5}

4. Computational Evaluation

This section numerically evaluates the performance
of the model and algorithms. To do that, two sets of
instances are generated: one including small instances and
one with larger ones. First, the proposed MILP model is
assessed by a computational experiment with small-sized
instances. Then, the general performance of the proposed
metaheuristics (i.e., GA and VNS) is evaluated against the
optimal solutions obtained by the model. We use a
performance measure named relative percentage deviation
(RPD) obtained by the following formula:

푅푃퐷 =
퐴푙푔 − 푀푖푛

푀푖푛 ∙ 100

where 	푀푖푛 	and 퐴푙푔 are the lowest 퐶 for a given
instance obtained by any of algorithms and the solution
obtained by a given algorithm. We implement the MILP
models in CPLEX 12 and the other algorithms in
MATLAB and run on a PC with 2.0 GHz Intel Core 2
Duo and 2 GB of RAM memory. The stopping criterion
used when testing all instances with the metaheuristics is
set to a computational time limit fixed to 푛 ×푚× 0.5
seconds. This stopping criterion permits for more time as
the number of jobs or machines increases.

4.1. Evaluation on small-sized instances

This subsection first evaluates the efficiency of the
MILP model to solve the problem under consideration.
We generate a set of different instances as follows. We
have 6 problem sizes

푛 = {4,6,8} and 푚 = {2,4}
The processing times are randomly distributed over (1,
99). For each problem size, we generate 2 instances.
Therefore, it sums up to 12 instances. The MILP model is
allowed a maximum of 1000 seconds of computational

time. Table 2 shows the results obtained by the model.
The model can optimally solve instances up to 6 jobs and
2 stages. The required computational time is less than 6
seconds. Yet, for larger instances than 6 jobs and 2 stages,
it yields average optimality gap of 9%.

Table 2
Model’s results (computational time in seconds)

푛 × 푚 Model
Cmax Time Optimality Gap

4×2 161 0.06 0
4×2 153 0.06 0
4×4 274 3.84 0
4×4 288 1.34 0
6×2 196 2.28 0
6×2 236 5.03 0
6×4 348 1000 7%
6×4 346 1000 11%
8×2 281 1000 8%
8×2 258 1000 6%
8×4 316 1000 12%
8×4 335 1000 6%

We are going to evaluate the algorithms (i.e., GA and

VNS) against the optimal solutions obtained by the
models in the previous small instances. Table 3 shows the
results. GA and VNS perform the same by optimally
solving 5 instances out of 6 instances. The average
optimality gap becomes 0.63%.

Table 3
Algorithm’ results on small instances

푛 × 푚 Model Algorithm
GA VNS

4×2 161 161 161
4×2 153 153 153
4×4 274 275 275
4×4 288 298 298
6×2 196 196 196
6×2 236 236 236

Average 0.63% 0.63%

4.2. Evaluation on large-sized instances

After having investigated the general performance of
the metaheuristics, we intend to further compare the
proposed algorithms against a set of large instances. We
consider the following 16 combinations of 푛, 푚, and 푚 .

푛 = {20,50,100},푚 = {5,10}, 푚 = {2, 푈[1,3]}	
For each combination, we generate 5 random instances by
producing random processing times from a uniform
distribution over (1, 99). In this case, we have 60
instances. We use the RPD measure to compare the
algorithms.

Table 4 summarizes the results of the experiments
averaged for each combination of 푛 and	푚. GA is still the
best performing algorithm with RPD of 0.26%. VNS
yields average RPD of 1.60%.

Mehdi Yazdani et al./ Modeling and Scheduling No-idle...

64

Table 4
Algorithm’ results on small instances

푛 × 푚 Algorithm (gap)
VNS GA

20×5 1.6503 0.4487
20×10 1.1072 0.6285
50×5 2.0444 0.2082
50×10 1.8091 0.217
100×5 0.9875 0.0509
100×10 2.0134 0.0168
Average 1.602 0.2617

To further statistically analyze the results, we carry

out an analysis of variance test or ANOVA. The results
demonstrate that there are significant differences between
the algorithms with p-value very close to 0. Figure 5
shows the mean of plot and least significant difference or
LSD intervals at 95% confidence level for the different
algorithms.

Fig. 5. The average RPD and LSD interval of the algorithms

It is also interesting to plot the performance of the

algorithms versus the problem size. Figure 6 shows the
mean obtained by the algorithms in the different problem
sizes. In all the three problem sizes, GA outperforms
VNS. There is a clear trend that GA works better in larger
sizes.

Fig. 6. The average RPD of the algorithms versus the problem size

5. Conclusion

This paper considered a practical extension of hybrid
flow shops, called no-idle scheduling. In this type of
scheduling, it is assumed that a machine has to
continuously process jobs. That is, no idle time on
machine is allowed. Although no-idle scheduling is an
active field of research in the literature, all the papers in
this area focus on flow shop problems and there is no
paper studying no-idle hybrid flow shops. For the very
first time, this problem is mathematically formulated by a
mixed integer linear programming model. Using this
model and CPLEX software, the instances up to 6 jobs
can be solved to optimality. Yet, larger instances cannot
be optimally solved due to hardness of the problem.
Therefore, two metaheuristics in form of variable
neighborhood search and genetic algorithm were
developed.

To evaluate the performances of model and
metaheuristics, two computational experiments were
done. In the first experiment, small instances were used to
assess the model’ computational time to solve the
instances (Table 2). The experiment was implemented in
CPLEX software. Moreover, the general performance of
the proposed metaheuristics was evaluated (Table 3). The
results of numerical experiment showed that the proposed
metaheuristics effectively solve the problem. In the
second experiment, using large instances, the proposed
metaheuristics were compared (Table 4). The results
showed that genetic algorithm outperformed variable
neighborhood search.

References

Aladag, C.H., Hocaoglu G., Basaran M.A. (2009). The effect of
neighborhood structures on tabu search algorithm in
solving course timetabling problem, Expert Systems with
Applications, Vol. 36, 12349–12356.

Baraz, D., Mosheiov, G., (2008). A note on a greedy heuristic
for flow-shop makespan minimization with no machine
idle-time. European Journal of Operational Research, Vol.
184, 810–813.

Balakrishnan, J., Cheng, C.H., Conway, D.G., Lau, C.M.,
(2003). A hybrid genetic algorithm for the dynamic plant
layout problem. International Journal of Production
Economics, Vol. 86, 107–20.

Burke, E.K., Eckersley A.J., McCollum B., Petrovic S., Qu R.
(2010). Hybrid variable neighbourhood approaches to
university exam timetabling, European Journal of
Operational Research, Vol. 206, 46–53.

Dai, M., Tang, D., Giret, A., Salido, M.A., Lid, W.D., (2013).
Energy-efficient scheduling for a flexible flow shop using
an improved genetic-simulated annealing algorithm.
Robotics and Computer-Integrated Manufacturing, Vol.
29(5), 418-429.

Deng, G., Gu, X., (2012). A hybrid discrete differential
evolution algorithm for the no-idle permutation flow shop
scheduling problem with makespan criterion. Computers
and Operations Research, Vol. 39, 2152–2160.

0

0.5

1

1.5

2

VNS GA

R
PD

0

0.5

1

1.5

2

2.5

20 50 100

VNS

GA

R
PD

The number of jobs

Journal of Optimization in Industrial Engineering 21 (2017) 59-66

65

Ebrahimi, M., Fatemi Ghomi, S.M.T., Karimi, B., (2014),
Hybrid flow shop scheduling with sequence dependent
family setup time and uncertain due dates, Applied
Mathematical Modelling, Vol. 38, 2490-2504.

Elmi, A., Topaloglu, S., (2013). A scheduling problem in
blocking hybrid flow shop robotic cells with multiple
robots, Computers and Operations Research, Vol.
40, 2543-2555.

El Houda Saadani, N., Guinet, A., Moall, M., (2005). A
travelling salesman approach to solve the F/no-idle/Cmax
problem. European Journal of Operational Research, Vol.
161, 11–20.

Fatih Tasgetiren, M., Pan, Q.K., Suganthan, P.N., Oner, A.,
(2013a). A discrete artificial bee colony algorithm for the
no-idle permutation flowshop scheduling problem with the
total tardiness criterion. Applied Mathematical Modelling,
Vol. 37, 6758–6779.

Fatih Tasgetiren, M., Pan, Q.K., Suganthan, P.N., Buyukdagli,
O., (2013b). A variable iterated greedy algorithm with
differential evolution for the no-idle permutation flowshop
scheduling problem. Computers and Operations
Research, Vol. 40, 1729-1743.

Fattahi, P., Hosseini, S.M.H., F. Jolai, Tavakkoli-Moghaddam,
R., (2014). A branch and bound algorithm for hybrid flow
shop scheduling problem with setup time and assembly
operations, Applied Mathematical Modelling, Vol. 38, 119-
134.

Flesza, K., Hindi K.S. (2004). Solving the resource-constrained
project scheduling problem by a variable neighborhood
search, European Journal of Operational Research, Vol.
155, 402–413.

Hansen, P., Mladenovic N. (2001). Variable neighborhood
search: principles and applications, European Journal of
Operational Research, Vol. 130(3), 449–467.

Goncharov, Y., Sevastyanov, S., (2009). The flow shop problem
with no-idle constraints: A review and approximation.
European Journal of Operational Research, Vol. 196, 450–
456.

Lahimer, A., Lopez, P., Haouari, M., (2013). Improved bounds
for hybrid flow shop scheduling with multiprocessor tasks,
Computers and Industrial Engineering, Vol. 66, 1106-
1114.

Liao, C.J., Cheng, C.C. (2007). A variable neighborhood search
for minimizing single machine weighted earliness and
tardiness with common due date, Computers and Industrial
Engineering, Vol. 52, 404–413.

Lu, Y.Y., (2016). Research on no-idle permutation flowshop
scheduling with time-dependent learning effect and
deteriorating jobs, Applied Mathematical Modelling, Vol.
40, 3447–3450.

Luo, H., Du, B., Huang, G.Q., Chen, H., Li, X. (2013). Hybrid
flow shop scheduling considering machine electricity
consumption cost, International Journal of Production
Economics, Vol. 146, 423-439.

Kalczynski, P.J., Kamburowski, J., (2005). A heuristic for
minimizing the makespan in no-idle permutation flow
shops. Computers and Industrial Engineering, Vol. 49,
146–154.

Kocatürk, F., Özpeynirci, Ö., (2014). Variable neighborhood
search for the pharmacy duty scheduling problem,
Computers and Operations Research, Vol. 51, 218-226.

Mladenovic, N., Hansen P. (1997). Variable neighborhood
search, Computers and Operations Research, Vol. 24(11),
1097–1100.

Moslehi, G., Khorasanian, D., (2013). A hybrid variable
neighborhood search algorithm for solving the limited-
buffer permutation flow shop scheduling problem with the
makespan criterion, Computers and Operations Research,
DOI: 10.1016/j.cor.2013.09.014.

Pan, Q.K., Ruiz, R., (2014). An effective iterated greedy
algorithm for the mixed no-idle permutation flowshop
scheduling problem. Omega, Vol. 44, 41-50.

Pan, Q.K., Wang, L., (2008). No-idle permutation flow shop
scheduling based on a hybrid discrete particle swarm
optimization algorithm. International Journal of Advanced
Manufacturing Technology, Vol. 39, 796–807.

Toledo, C.F.M., Oliveira, R.R.R., Franca, P.M., (2013). A
hybrid multi-population genetic algorithm applied to solve
the multi-level capacitated lot sizing problem with
backlogging. Computers and Operations Research, Vol.
40, 910-919.

Wang, Y.Z., (2002). An application of genetic algorithm
methods for teacher assignment problems. Expert Systems
with Applications, Vol. 22, pp. 295–302.

Wang Y.Z. (2003). Using genetic algorithm methods to solve
course scheduling problems, Expert Systems with
Applications, Vol. 25, 39-50.

Zhang, D., Liu, Y., M’Hallah, R., Leung, S.C.H., (2010). A
simulated annealing with a new neighborhood structure
based algorithm for high school timetabling problems.
European Journal of Operational Research, Vol. 203, 550–
558.

Zhou, Y., Chena, H., Zhouc, G., (2014). Invasive weed
optimization algorithm for optimization no-idle flow shop
scheduling problem, Neurocomputing, Vol. 137, 285–292.

Xiao, Y., Zhang, R., Zhao, Q., Kaku, I., Xu, Y., (2014).
A variable neighborhood search with an effective
local search for uncapacitated multilevel lot-sizing
problems, European Journal of Operational Research, Vol.
235, 102-114.

This article can be cited: Yazdani, M. & Naderi, B. (2017). Modeling and Scheduling No-idle Hybrid Flow
Shop Problems. Journal of Optimization in Industrial Engineering.10(21), 59-66.

URL: http://qjie.ir/article_261_37.html

Mehdi Yazdani et al./ Modeling and Scheduling No-idle...

66

