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Genetic analysis of milk production traits of Tunisian Holsteins 
using random regression test-day model with Legendre polynomials

Hafedh Ben Zaabza1,*, Abderrahmen Ben Gara2, and Boulbaba Rekik2

Objective: The objective of this study was to estimate genetic parameters of milk, fat, and 
protein yields within and across lactations in Tunisian Holsteins using a random regression 
test-day (TD) model.
Methods: A random regression multiple trait multiple lactation TD model was used to esti
mate genetic parameters in the Tunisian dairy cattle population. Data were TD yields of milk, 
fat, and protein from the first three lactations. Random regressions were modeled with third-
order Legendre polynomials for the additive genetic, and permanent environment effects. 
Heritabilities, and genetic correlations were estimated by Bayesian techniques using the Gibbs 
sampler.
Results: All variance components tended to be high in the beginning and the end of lacta
tions. Additive genetic variances for milk, fat, and protein yields were the lowest and were the 
least variable compared to permanent variances. Heritability values tended to increase with 
parity. Estimates of heritabilities for 305-d yield-traits were low to moderate, 0.14 to 0.2, 0.12 
to 0.17, and 0.13 to 0.18 for milk, fat, and protein yields, respectively. Within-parity, genetic 
correlations among traits were up to 0.74. Genetic correlations among lactations for the yield 
traits were relatively high and ranged from 0.78±0.01 to 0.82±0.03, between the first and 
second parities, from 0.73±0.03 to 0.8±0.04 between the first and third parities, and from 
0.82±0.02 to 0.84±0.04 between the second and third parities.
Conclusion: These results are comparable to previously reported estimates on the same po
pulation, indicating that the adoption of a random regression TD model as the official genetic 
evaluation for production traits in Tunisia, as developed by most Interbull countries, is possible 
in the Tunisian Holsteins.
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INTRODUCTION

Genetic selection in dairy cattle breeding programs is nowadays increasingly relying on test-
day (TD) models in many countries using TD records instead of aggregated 305-d yield 
records [1]. Advantages of the utilization of TD models compared to 305-d lactation yields 
models are: i) The TD record is not dependent on the accuracy of 305-d extension methods; 
ii) The ability of the TD to account for environmental effects that are specific to each TD; 
and iii) The shape of the lactation curve describing genetic variation during milking periods 
may be obtained from TD models within lactations as well as across lactations; and the breed-
ing values can be estimated for any day of the lactation period [2,3]. A distinct economic 
advantage of the use of TD models in breeding programs, compared to only using records of 
complete lactations is to reduce the cost of recording dairy cattle performances [1]. Further-
more, TD models provide 4% to 8% more accurate genetic evaluations in dairy cattle over 
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genetic evaluation from 305-d models [4]. Numerous studies 
have investigated the estimates of genetic parameters from TD 
milk traits using various random regression models (RRM) 
[5-7]. In the repeatability model, all TD records are considered 
to be a measure of the same trait [8,9]. In multiple trait models, 
lactation is considered as a separate trait [10,11]. Variance 
components in a random regression TD model were usually 
estimated by Legendre polynomials. However, different orders 
of Legendre polynomials for additive genetic and permanent 
environmental effects were used. Nevertheless, the choice of 
order can be based on practical considerations, accounting for 
technicalities such as the complexity of the used models, num-
ber of parameters, and the time required running the resolution 
for parameter estimates. The disadvantage of RRM is related 
to computing requirements to store all TD and time of com-
puting compared with 305-d yields [6]. Pool et al [8] reported 
that for using a TD approach on a national genetic evaluation 
scale, the size of equation system can exceed hundreds of mil-
lions of equations. However, computer capacity is continually 
improving, and the ability to use RRM might be resolved [10]. 
Holstein cows (around 200,000 cows) account for more than 
a half of the Tunisian cow population. The adoption of a ran-
dom regression TD model as the official genetic evaluation for 
production traits in Tunisia, as implemented by most Inter-
bull countries, may be an alternative method to enhance the 
genetic improvement of the Holstein population. The first step 
in implementing a routine genetic evaluation using a TD model 
is to estimate necessary genetic parameters [6]. The objective 
of this study was to estimate genetic parameters of milk, fat, 
and protein yields within and across lactations in Tunisian 
Holsteins using a random regression TD model.

MATERIALS AND METHODS

Data used in this study were obtained from the official milk 
recording maintained by the Center for Genetic Improvement 
of the Livestock and Pasture Office. The original data were TD 
of milk, fat, and protein yields from the first 3 lactations of 
Tunisian Holsteins collected from 1997 to 2014 and included 

a total of 960,000 records. Data were edited on the following 
requirements: Day in milk ranged from 5 to 305 days. Reason-
able ages of calving in a specific lactation were applied. The 
latter were those of cows that had their tests between ages of 
20 and 48, 34 and 65, and between 45 and 85 months for the 
first, second, and third calving, respectively. Lactations were 
required to have at least 5 TD records for milk, fat, and protein 
yields. Herds with fewer than 5 cows per herd-year of calving 
were discarded. Only records from the first 3 parities that had 
data for all production traits on a given TD were kept. Within 
cow, if lactation p (p = 2 to 3) was present, lactations p-1 and 
p-2 when applicable were also present. There were 90,327 
animals in the pedigree file. Animals with missing pedigree 
information were discarded. The edited data structure and 
the mean for milk, fat, and protein yields and other variables 
are shown in Table 1. The model for trait r (milk, fat, and pro-
tein) in lactation p (first, second, and third) was
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Where, yijmprt are records on trait r of cow m in lactation p on days in milk (DIM) t, CGi is the effect of 103 

contemporary group defined as herd test date recording; ASj is the fixed effect of the jth subclass of age at 104 
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vember, December to February, March to May, and June to 
July); ztq = is the qth Legendre polynomial corresponding to 
day t of lactation; ampq = random additive genetic coefficients 
of cow m corresponding to polynomial q of parity p; pempq = 
random permanent environmental coefficients of cow m cor-
responding to polynomial q of parity p; eijmprt was the residual 
effect for each observation. The choice of the third-order poly-
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Hammami et al [12] who reported that the constant, linear, 
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Table 1. Characteristics of the edited data (standard deviations in parentheses)

Item

Minimum length of lactation 200
Total no. of test-days records 614,520
No. of records per lactation 1/2/3 295,840/200,017/122,904
No. of animals with records per lactation 1/2/3 41,492/28,655/18,074
No. of herds 312
No. of daughters per bull per lactation 14.2/11.31/8.41
Average no. of test days per cow per lactation 7.13/6.98/6.8
Average test-day milk (kg) per lactation1/2/3 20.54(7.53)/ 21.73(8.49)/22.32(8.51)
Average test-day fat (kg) per lactation 1/2/3 0.68(0.27)/ 0.74(0.31)/0.77(0.32)
Average test-day protein (kg) per lactation 1/2/3 0.64(0.23)/0.68(0.27)/0.70(0.27)
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  y = Xb+Za+Wp+e,

  Where, y = the vector of TD record for milk, fat, and protein 
yields for the first three lactations; b = vector of fixed effects; 
a = vector of random regression coefficients for genetic addi-
tive animal effects; p = vector of random regression coefficients 
for permanent environmental effects; e = vector of residual 
effects. X, Z, and W = incidence matrices that relate obser-
vations to their respective effects. The phenotypic covariance 
matrix V of the observations is given by.
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variances and permanent environmental variances were high 
at the beginning and end of lactation and lower in between. 
Additive genetic variances of daily milk, fat, and protein yields 
tended to be more stable over DIM in the 3 parities compared 
with permanent environmental variances. For all traits in all 
lactations, the permanent environmental variance estimates 
were consistently higher than the genetic additive variance. On 
the other hand, the permanent environmental variances for 
milk, fat, and protein yields were more heterogeneous across 
lactations associated with high difference between the periph-
eries and the middle part of lactation. For TD milk, fat, and 
protein yields, the pattern of the additive genetic variances was 
relatively similar in all lactations, decreasing from the beginning 
of lactation until around DIM 185 and increased afterward. 
Heritability of milk yield was lowest in mid-lactation and higher 
in early and late lactation, especially in lactations 2 and 3. Daily 
heritability of milk, fat, and protein yields tended to increase 
as parity increases. Heritabilities for daily milk, fat, and pro-
tein yields were higher in the third lactation, and ranged from 
0.095 to 0.287, 0.069 to 0.258, and 0.087 to 0.285, respectively. 

Heritability trends for daily milk, fat, and proteins yields were 
similar to trends for additive genetic variance but were less 
extreme at the start and end of the curve because of higher 
permanent environmental variances. Estimates of heritabili-
ties and genetic correlations of 305-d yields and their standard 
errors are given in Table 5. Heritability estimates ranged from 
0.14 in the first lactation to 0.2 in the third lactation. Estimates 
of heritability for milk were higher than for fat and protein 
yields. Genetic correlations among lactations for yield traits 
were relatively high and ranged from 0.78±0.01 for milk to 
0.82±0.03 for protein, between the first and second parities, 
respective estimates were from 0.73±0.03 to 0.80±0.04 between 
the first and third parities, and from 0.82±0.02 to 0.84±0.04 
between the second and third parities. Genetic correlations 
between milk, fat, and protein yields within lactation were 
moderate to high, ranging from 0.74±0.02 to 0.8±0.06 between 
milk and fat yield, from 0.8±0.03 to 0.85±0.06 between fat and 
protein yields, and from 0.83±0.02 to 0.88±0.05 between milk 
and protein yields.
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), and heritabilities of test-day fat yield in lactations 1, 2, and 3

Days in milk
First lactation Second lactation Third lactation
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5 0.0066 0.0372 0.108 0.0082 0.0492 0.106 0.0112 0.0552 0.128
35 0.0028 0.0198 0.071 0.0046 0.0273 0.087 0.0061 0.0299 0.106
65 0.0013 0.0122 0.042 0.0029 0.0181 0.070 0.0038 0.0194 0.085
95 0.0011 0.01 0.039 0.0024 0.0157 0.062 0.0031 0.0169 0.074
125 0.0015 0.0099 0.055 0.0024 0.0157 0.061 0.0029 0.0175 0.070
155 0.0021 0.0098 0.074 0.0024 0.0156 0.063 0.0029 0.0180 0.069
185 0.0026 0.009 0.092 0.0026 0.0145 0.068 0.003 0.0170 0.072
215 0.003 0.0081 0.107 0.0028 0.0131 0.077 0.0037 0.0152 0.091
245 0.0034 0.0088 0.118 0.0036 0.0138 0.096 0.0058 0.0149 0.137
275 0.0043 0.0143 0.122 0.0057 0.0208 0.121 0.0108 0.0204 0.205
305 0.0063 0.0288 0.121 0.0098 0.0398 0.140 0.0205 0.0377 0.258
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), and heritabilities of test-day protein yield in lactations 1, 2, and 3

Days in milk
First lactation Second lactation Third lactation
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5 0.0053 0.027 0.129 0.0062 0.0347 0.120 0.0078 0.0402 0.134
35 0.0022 0.0147 0.086 0.0038 0.0194 0.111 0.0044 0.0223 0.119
65 0.001 0.0097 0.053 0.0027 0.0135 0.100 0.003 0.0152 0.104
95 0.001 0.0084 0.055 0.0023 0.0123 0.093 0.0026 0.0139 0.095
125 0.0015 0.0084 0.080 0.0023 0.0128 0.091 0.0025 0.0146 0.090
155 0.0021 0.0083 0.109 0.0024 0.0129 0.092 0.0024 0.015 0.087
185 0.0025 0.0076 0.134 0.0025 0.0121 0.098 0.0025 0.0143 0.090
215 0.0029 0.0069 0.154 0.0027 0.011 0.110 0.003 0.0129 0.112
245 0.0032 0.0076 0.162 0.0034 0.0117 0.131 0.0046 0.0126 0.167
275 0.0038 0.0122 0.153 0.005 0.0172 0.152 0.0085 0.0166 0.239
305 0.0053 0.0242 0.139 0.0083 0.0323 0.161 0.0159 0.0295 0.285
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DISCUSSION

A concave shaped trend for the additive genetic and perma-
nent environmental variances; that is, greatest values at the 
peripheries of the lactation, was reported by Naserkheil et al 
[3], Pool et al [8], and Pereira et al [14]. However, the shapes 
obtained in this study were different from those reported by 
Druet et al [6] and Mayeres et al [15] and both using Legendre 
Polynomials. In fact, Druet et al [6] observed that the additive 
genetic variance was highest in mid-lactation and lowest at 
the beginning and the end of lactation. The genetic additive 
variance was small in comparison with the permanent envi-
ronmental variance for milk, fat, and protein yields, this is in 
agreement with results obtained by Caccamo et al [11], and 
Druet et al [16]. It was also observed that the genetic and per-
manent environmental variances were smaller in the first 
lactation compared with the second and third lactation. Similar 
pattern was obtained by Miglior et al [17] using a random re-
gression TD model in Italian and Chinese Holsteins. Permanent 
environmental variances were larger than additive genetic vari-
ances (25.85 vs 4.9 kg2 around 5 DIM for milk yield in first 
parity) indicating that environmental effects had a higher im-
pact on the variation of milk yields among cows than genetic 
effects. Pool et al [8] noticed that the permanent environmen-
tal effect needs to be modeled by higher orders of Legendre 
polynomials than the additive genetic effect. Hammami et al 
[12] using fourth-order Legendre Polynomial reported that 
permanent environmental variances in the Tunisian cow popu-
lation were 65% larger than that in Luxembourgian population 
in a joint analysis of both cow populations. Limited feed re-
sources and harsh environmental factors are more likely to 
occur in Tunisian climatic conditions; where cows are man-
aged under conditions completely different from those where 
their sires were selected, might be a possible explanation for 
these high estimates of the permanent variances [18]. Con-
siderable variation in the pattern of the variance components 
have been reported in the literature probably due to differences 

in genotypes, climatic conditions, herd management levels 
among countries and production systems. Several researchers 
have considered each country as a distinct environment such 
as Weigel et al [19] and Ojango et al [20], whereas other au-
thors argued that some herds in different countries could be 
considered to be in the same environment [21]. Gebreyohannes 
et al [22] reported that the genetic parameter estimates with 
random regression TD models are influenced by covariance 
structure of additive genetic, residual, and permanent effects, 
and especially by the regression functions. Misztal et al [23] 
argued that the results based on random regression were very 
heterogeneous. Heritability of daily milk, fat, and protein yields 
were low and ranged from 0.1 to 0.28 for all parts of lactations. 
Estimates of heritability for milk were higher than for fat and 
protein yields. This result is in agreement with results of Stra-
bel and Jamrozik [24]. Several studies reported that high values 
of heritability at the peripheries of the lactation can be explained 
by the difficulties in modeling the corresponding variances 
because of the biological process generated at the onset and 
termination of the lactation [22]. Other studies advanced that 
the unreasonably high heritability estimates at the beginning 
and the end of lactation could be explained by a lack of infor-
mation to model the variability, particularly nearing the end 
of lactation [14,24]. The use of herd by year of calving as a 
random effect improves modeling the trajectory of variance 
components and heritability curves [24]. The range of daily 
heritabilities in this study was from 0.1 to 0.28. Current esti-
mates are lower than those reported by De Ross et al [5], Druet 
et al [6], Pereira et al [14], and Miglior et al [17] who found 
heritabilities higher than 0.3 for milk, fat, and protein yields 
in some parts of the lactation trajectory. Heritabilities for 305-d 
milk, fat, and protein yields from the current study were com-
parable with those obtained by Ben Gara et al [25]. Hammami 
et al [12] also reported a low heritability (around 0.16) of 305-d 
yield for first lactation in Tunisian Holsteins using test-day 
random regression sire model. Likewise, heritability estimates 
were in the same range as found by Ojango et al [20] in Kenyan 

Table 5. Genetic correlations (above diagonal), and their standard errors (below diagonal), and heritabilities1) (diagonal) for 305-d milk, fat, and protein yields

Lactation Traits
First lactation Second lactation Third lactation

Milk Fat Prot Milk Fat Prot Milk Fat Prot

1 Milk 0.14 0.74 0.83 0.78 0.68 0.70 0.73 0.67 0.70
Fat 0.02 0.12 0.80 0.63 0.80 0.77 0.62 0.78 0.77
Prot 0.02 0.03 0.13 0.73 0.73 0.82 0.71 0.72 0.80

2 Milk 0.01 0.03 0.04 0.17 0.75 0.85 0.82 0.71 0.81
Fat 0.03 0.02 0.03 0.03 0.15 0.81 0.68 0.82 0.80
Prot 0.03 0.02 0.03 0.03 0.04 0.16 0.81 0.78 0.84

3 Milk 0.03 0.04 0.03 0.02 0.02 0.02 0.20 0.80 0.88
Fat 0.04 0.03 0.02 0.03 0.05 0.05 0.06 0.17 0.85
Prot 0.02 0.02 0.04 0.05 0.04 0.04 0.05 0.06 0.18

1) Standard errors for heritability ranged from 0.01 to 0.04.
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Holsteins. In contrast, results from the current study on heri-
tability estimates are markedly smaller than those found in 
other previously published results on Holsteins using multi-
ple-trait multiple lactation models [5,7,17]. Several authors 
explained low heritability estimates in some occasions by 
limited production levels [18,20,25]. Ojango et al [20] in the 
same study found heritability values (0.26 vs 0.45 in the Kenyan 
vs UK Holstein populations, respectively) associated with two 
305-day milk yield (4,557 vs 7,674 kg in the Kenyan vs UK 
Holstein populations, respectively). Nevertheless, other authors 
attributed the low heritability values to the environmental 
factors especially to heat stress conditions [12,26,27]. Ham-
mami et al [27] argued that animals with the high genetic 
merit in cold environments do not necessarily have the high 
genetic merit in warm stressful environments. In Tunisia, the 
climate varies from arid in the South to humid in the North, 
and characterized by hot summers coupled with high humidity 
[18]. The feeding system is unbalanced and rations are based 
mainly on concentrates. The forage is characterized by poor 
quality, and high rate in indigestible cellulosic constituents that 
could be possible causes of the lower milk yield. All these fac-
tors could lead to decreases in production performances and 
increase in the incidence of health troubles such as acidosis 
at the herd level. Within-parity genetic correlations obtained 
in the present study were relatively high among milk, fat, and 
protein yields (>0.73) especially in the third parity. Genetic 
correlations between milk and protein yields were the highest 
suggesting the possibility to introduce protein yield in breed-
ing objectives without any pressure on milk yield. Estimates of 
genetic correlations between second and third lactations were 
larger than between the first and second lactations, which con-
firm the results obtained by Muir et al [7]. However, Hammami 
et al [28], using a comparable model with smaller Tunisian 
data and including RR coefficients of the herd by year of calving, 
reported genetic correlations estimates of 0.64 to 0.86 between 
the first and second lactation, and of 0.6 to 0.81 between the 
second and third lactation. Reasons for differences in estimates 
are not apparent, but can be explained by the evolution of the 
Tunisian management system in recent years. Genetic para
meters for milk, fat, and protein yields for Tunisian Holstein 
dairy cows were estimated using a random regression TD 
model. Results are similar to previous reports where a com-
parable model to that used in the current study was applied. 
Genetic parameter estimates suggest that the adoption of a 
random regression TD model as the official genetic evalua-
tion for production traits in Tunisia is feasible.
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