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We study evolutionary robot systems where not only the robot brains but also the

robot bodies are evolvable. Such systems need to include a learning period right

after ‘birth’ to acquire a controller that fits the newly created body. In this paper we

investigate the possibility of bootstrapping infant robot learning through employing

Lamarckian inheritance of parental controllers. In our system controllers are encoded

by a combination of a morphology dependent component, a Central Pattern Generator

(CPG), and a morphology independent part, a Compositional Pattern Producing Network

(CPPN). This makes it possible to transfer the CPPN part of controllers between

different morphologies and to create a Lamarckian system. We conduct experiments

with simulated modular robots whose fitness is determined by the speed of locomotion,

establish the benefits of inheriting optimized parental controllers, shed light on the

conditions that influence these benefits, and observe that changing the way controllers

are evolved also impacts the evolved morphologies.

Keywords: evolutionary robotics, artificial life, Lamarckian evolution, modular robots, online learning, embodied

evolution

1. INTRODUCTION

Evolutionary methods provide a successful approach to designing robots (Nolfi and Floreano, 2000;
Bongard, 2013; Vargas et al., 2014; Doncieux et al., 2015). The central premise behind evolutionary
robotics is the proven power of natural evolution to generate viable life forms for a vast variety of
possible environments. For robotics, this means that using artificial evolution it is plausible that we
can design robots for (m)any possible environment(s) and task(s). Historically, evolutionary robot
design has focused on the evolution of robot controllers for fixed, hand-designed morphologies
and the evolution of morphologies has not received much attention. Arguably, this attitude is
inherently missing out, because robot behavior is determined not only by the controller but also
by the morphology.

In this paper, we consider the evolution of morphologies as well as controllers in a system of
modular robots. This means that the evolving population is made up of robots and adding a new
individual to the population amounts to the creation of a new robot. The ‘birth’ of a robot starts off
its lifetime period that finishes when the robot is removed from the population. In this period the
robot can interact with its environment and possibly reproduce, that is, undergo crossover and/or
mutation resulting in a new robot. We assume that the controller of a robot can be adjusted during
its lifetime, but its morphology does not change. Then we can make a general distinction between
evolution and learning regardless the specific algorithmic details. The evolutionary process searches
the set of all robots within the given design space. One step in this search process is the creation of
a robot with a new morphology (body) and controller (brain). In contrast, the learning algorithm
attempts to improve the controller of a robot during its lifetime. Hence, it operates in the space of
controllers that fit the given body.
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A fundamental feature of such systems is that the morphology
of the offspring can and will be different from that of the
parent(s). Consequently, “newborn” robots necessarily need to
learn an appropriate controller, because in general it cannot
be assumed that an inherited controller matches the inherited
morphology. For this reason, we argue that any system of
morphologically evolving robots must include a learning phase
for “newborn” robots. Therefore, we adopt a system architecture
that does contain such a phase. This architecture, called the
Triangle of Life, was introduced in Eiben et al. (2013) and
used in several experimental studies that addressed the task of
gait learning (Rossi and Eiben, 2014; Jelisavcic et al., 2016; Weel
et al., 2017). Note that the choice of the gait learning task is not
arbitrary. Locomotion is one of themost fundamental robot skills
that depends on the morphology, and gait learning is the most
elementary form of locomotion without any specific direction
to follow or target to approach. As observed by the research
community including ourselves, the gait learning process can
take a significant amount of time and effort for a robot. This raises
the principal research question behind this paper:

Could the learning process be improved by making learned

controllers inheritable and bootstrapping infant learning with the

learned controllers of the parents?

Technically speaking, we are interested in Lamarckian evolution,
where a robot can pass on characteristics acquired during its
lifetime to its offspring, not by communication (that would
be “teaching”), but through genetic inheritance (Hinton and
Nowlan, 1987; Burkhardt, 2013). Although the idea seems
straightforward, until recently there has been hardly any research
into the effects of Lamarckian set-ups combining morphological
evolution and lifetime learning of robot controllers. Jelisavcic
et al. (2017c) report preliminary findings that indicate that such
a Lamarckian set-up can improve performance. A more in-depth
follow-up investigation reported a strong correlation between the
advantage of inheriting parental controllers and the amount of
retained parental controller structure (Jelisavcic et al., 2017b).

These studies raise new questions and motivate further
research into the combination of Darwinian evolution of
morphologies1 and Lamarckian evolution of controllers. In this
paper, we address three specific research questions in the context
of modular robots and locomotion as the primary task:

1. Does the inheritability of learned features provide
an advantage?

2. What does this advantage depend on?
For instance, does it depend on:

a. The morphological similarity between parents
and offspring?

b. The morphological similarity between parents?
c. The stage of the evolutionary process, e.g., is the

effect of inheritable controllers different in early and
late generations?

1Note that Lamarckian evolution of morphologies is possible if robots have the

ability of self-modification.

3. Are the morphologies to which robots evolve different for
Darwinian and Lamarckian evolution?

2. RELATED WORK

Evolutionary Robotics is the field that lies at the intersection
between of evolutionary computing and robotics (Nolfi and
Floreano, 2000; Wang et al., 2006; Floreano et al., 2008; Trianni,
2008; Doncieux et al., 2011, 2015; Bongard, 2013; Vargas
et al., 2014). The field aims to apply evolutionary computation
techniques to evolve the design, controllers, or both, for real and
simulated autonomous robots.

2.1. Simultaneous Evolution of Morphology
and Control
A robot’s behavior is the result of the interaction between
its morphology, controller, and environment (Pfeifer and Iida,
2004). Evolutionary robotics offers amethodology to consider the
development and adaptation of robot morphology and control
holistically (Eiben and Smith, 2015). Simultaneous evolution of
morphology and control was introduced with Sims’ simulated
virtual creatures (Sims, 1994) and has been investigated without
regards to physically producible results many times since then.
One notable example is the work of Cheney et al. (2013), using a
voxel-based substrate to evolve soft-bodied virtual robots.

Lipson and Pollack (2000) first demonstrated that this
approach is also applicable in systems where the final (i.e.,
after evolution has run its course) results are realized and
evaluated as actual physical robots, with substantial research
revisiting this approach. For example, generative encodings have
been explored and resulted in physically instantiated robots
in Hornby et al. (2003) and Samuelsen and Glette (2015),
resulting in regular, symmetrical, and insect-like bodies and
behaviors. Moreover, robot shapes have been optimized in Clark
et al. (2012) and Corucci et al. (2015), resulting in dynamic
body-brain behavior for aquatic robots. There have also been
some approaches targeting modular robotic systems, such as
robotic manipulator design in Chocron and Bidaud (1997), and
a multi-purpose approach in Faíña et al. (2013). In Marbach
and Ijspeert (2005), modular robots had their morphology and
control parameters evolved offline, before being subject to on-line
control adaptation using a fast-converging function optimization
algorithm. We have also recently seen experiments where even
the robot morphologies have evolved in a real-world setup; using
an external robotic arm to assemble modules in Brodbeck et al.
(2015), or a self-reconfiguring robot in Nygaard et al. (2018).

The simultaneous development of robot morphologies and
control systems is a difficult task, and we have only seen relatively
simple results so far, as noted by Lipson et al. (2016). As Pfeifer
and Iida (2005) conclude, “morphological computation is about
connecting body, brain and environment.” Some of the difficulty
is due to the increased dimensionality of the search, but a more
insidious aspect may be the increased ruggedness of the search
space: a small mutation in the morphology can easily offset the
performance of the controller-body combination found earlier.
Lipson et al. (2016) illustrate this by casting the morphology
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as a physical interface between controller and environment; the
variation operators that generate a new individual can then be
seen as “scrambling” this interface. An obvious remedy would
be to allow the controller to adjust to the new morphology, on
a different timescale from the morphological changes—i.e., to
enable lifetime learning for new robot bodies.

2.2. Locomotion Controller Approaches
Robotic locomotion requires the creation of rhythmic patterns
which satisfy multiple constraints: generating stable and energy
efficient forward motion, and coping with changes in the
environment or the organism (Sproewitz et al., 2008).

In evolutionary robotics, efficient but straightforward control
methods can be found in tables of control sequences (Bongard
et al., 2006) and spline-based cyclical patterns (Kormushev
et al., 2011). Simple parametric control schemes based on
trigonometric functions, like in Koos et al. (2013), have also been
successfully applied in a range of experiments.

A more nature-inspired approach exploits central pattern
generators (CPGs), which model neural circuitry that outputs
cyclic patterns as found in vertebrates (Ijspeert, 2008; Sproewitz
et al., 2008). In this case, robot actuators are controlled by
the signal generated by coupled synchronized CPGs, allowing
synchronized movement. CPGs also require few parameters
and provide smooth control transitions when parameters
are changed.

Approaches based on CPGs have been successfully applied
in several evolutionary robotics and learning contexts, such as
for bipedal walking (Reil and Husbands, 2002), salamander-
like robots (Crespi and Ijspeert, 2008), and modular robots
(Sproewitz et al., 2008; Moeckel et al., 2013).

Clune et al. (2011) used controllers based on more general
artificial neural networks to develop controllers for efficient
locomotion. They used the HyperNEAT indirect encoding which
is based on evolving a Compositional Pattern Producing Network
(CPPN) (Stanley and Miikkulainen, 2002; Stanley et al., 2009).
We use that very same concept in this experiment, and our
main finding entirely relies on CPPN. The CPPN is a network
that encodes a function to determine connection weights in
the substrate artificial neural net that controls the robot. The
CPPNs were evolved using NEAT, an evolutionary algorithm
specially tailored to the evolution of neural networks (Stanley
and Miikkulainen, 2002). However, CPPNs evolved by NEAT do
not have to encode neural network connections indirectly, they
can, for instance, be used directly as pattern generators for robots
(Morse et al., 2013), or be queried for CPG parameters, which
is the approach we have applied in our work on robot control
(Jelisavcic et al., 2017b).

2.3. Lifetime Locomotion Learning
Most of the mentioned research considers the off-line
development of locomotive controllers, i.e., controller
optimization as a separate phase before deployment intending
to developing controllers that remain fixed once deployed. Weel
et al. (2017) considered on-line gait learning, where the controller
is adapted to the robot’s task environment during deployment.
The experiments showed that spline-based controllers with the

RL PoWER algorithm provide dynamic autonomous on-line
gait learning capabilities. Jelisavcic et al. (2016) showed that RL
PoWER is very similar to an online (µ+1) evolutionary strategy.
The complexity of the problem increases if a directed locomotion
is a requirement (Lan et al., 2018).

Note, that the methods for gait development mentioned above
are all evolutionary. This may cause some confusion, as we
consider them in the role of lifetime learning in an overarching
evolutionary process where the morphologies evolve. Thus, we
consider systems comprising two adaptive processes. At the
highest level, the robot morphologies evolve: a new individual
implies a unique body that is the result of applying variation
operators to its parents’ genomes. We have argued that this
necessitates a second adaptive process of lifetime learning that
operates at a different time-scale to optimize the individual’s
controller to suit its body and environment. We consider on-
line evolution as a suitable technique for this second phase—it
can be seen as an instance of reinforcement learning (Haasdijk
et al., 2012). So, reiterating: there are two interleaved evolutionary
processes: one that adapts morphologies and another that adapts
controllers, and the latter implements lifetime learning for
the former.

There are two principal options for evolution to exploit
lifetime learning: Baldwinian and Lamarckian evolution.
The former does not directly store the results of lifetime
learning phase, only the resulting fitness values. Lamarckian
evolution, by contrast, does explicitly store the locally learned
improvements in the individual genomes, so that lifetime
learning can directly accelerate the evolutionary process
and vice versa (Ackley and Littman, 1994). While this
mechanism has mostly not seen as a correct description of
biological evolution, some recent research has reported a
Lamarckian type of evolution in nature (Dias and Ressler,
2014). Lamarckian learning has also shown to be successful
with evolutionary algorithms (Le et al., 2009), and while most
lifetime learning experiments in evolutionary robotics have
focussed on Baldwinian learning (Nolfi and Floreano, 1999),
there have also been reports on efficient Lamarckian approaches
(Ruud et al., 2016).

To implement the Lamarckian evolution of morphology and
control the robot’s genome must encode the robot’s controller as
well as its morphology. Lifetime learning schemes that directly
encode parameters for particular actuators make less sense than
indirect encodings: it is difficult or even impossible—e.g., when
expression of themorphology is non-deterministic or depends on
the environment (Liu and Sen, 2011)—to identify the mapping
of controller parameters to actuators in a newmorphology where
some actuatorsmay no longer occur and new ones have appeared.
An indirect encoding scheme such as HyperNEAT would not
be hampered in this way: a different layout of actuators would
merely imply a change in input values when expressing the
genome. Implementations that do encode the robot controllers
directly exclude recombination operators and have deterministic
morphogenesis and therefore are less susceptible to this issue
(Lipson and Pollack, 2000). Several approaches to co-evolution
of morphology and control with indirect and coupled body-brain
encodings exist, e.g., based on graphs or L-systems (Sims, 1994;
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Hornby et al., 2003), where the control components are generated
along with the morphology.

2.4. Triangle of Life Architecture
As explained in Eiben et al. (2012), Eiben and Smith (2015), and
Howard et al. (2019) the substrate in which (artificial) evolution
takes place does make a difference. The Evolution of Things,
e.g., the evolution of robots, is different from the evolution of
solutions for a routing problem with a genetic algorithm. Thus,
to capture the overall system architecture of robotic systems that
evolve in real time and real space we need a framework different
from the generic scheme of traditional evolutionary algorithms.

An appropriate system architecture was introduced Eiben
et al. (2013) and extensively discussed in Eiben (2014). This
framework, named the Triangle of Life, is generic, the only
significant assumption is the genotype-phenotype dichotomy
that assumes that the robotic organisms that undergo evolution
are the phenotypes encoded by their genotypes. This assumption
implies two essential system properties. First, that crossover and
mutation take place at the genotypic level and second, that there
is a mechanism that can produce the phenotype (the robot)
corresponding to a given genotype (the code).

The resulting framework contains three main components
or stages as shown in Figure 1. The pivotal moments that span
the triangle and separate the three stages are (1) Conception:
A new genome is activated, construction of a new robot starts.
(2) Delivery: Construction of the new robot is completed. (3)
Fertility: The robot becomes ready to conceive offspring. Thus,
the first stage—that can be physically implemented in a so-
called Production Center–starts with a new piece of genetic code
that is created by mutating or recombining the code of existing
robots (the parents) and ends with the delivery of a new robot
(the child). The second stage—that can take place in a so-called
Training Center— follows the production of a new robot and

FIGURE 1 | Generic system architecture for robot evolution conceptualized by

the Triangle of Life. Note that the the Learning Loop in the Infancy stage is not

necessarily evolutionary, but in this study we employ an evolutionary algorithm

(HyperNEAT) as a learning method.

ends when this robot acquires the basic skills for surviving in
the environment and performing user-defined tasks (if any).
If the robot successfully passes an application dependent test
of these skills, it is declared to be fertile and can enter the
third stage. Making fertility depend on some test of quality is
an essential design choice meant to prevent the reproduction
of inferior robots and the waste of resources. The third stage
corresponds to the period of maturity. It is this period when
the robot “lives and works” and possibly reproduces. Depending
on the given selection mechanism the robot can produce a new
genome through recombination and/or mutation and start off a
new iteration of the Triangle of Life.

Forced by technological constraints, currently there exist only
simulated implementations of a complete Triangle of Life system,
such as Weel et al. (2014). Physical implementations are limited
to two simplified proof-of-concept studies. Brodbeck et al. (2015)
can be perceived as a systemwith a (semi-)automated Production
Center, while Jelisavcic et al. (2017a) demonstrates one life cycle
relying heavily on humans in the loop.

3. ROBOT DESIGN

In the following we describe the make-up of our robots
distinguishing the bodies and the brains, that is the robot
morphologies and the robot controllers.

3.1. Morphologies
The morphologies of the robots in our system are based on the
RoboGen framework (Auerbach et al., 2014)2. The framework
uses a set of seven component types, but we reduced the
number to a subset of three 3D-printable components: fixed
brick, core component, and active hinge (Figure 2). The reasoning
for using the subset of components is to simplify the analysis
of the evolutionary process. The two-part model defines each
of these components used in the simulation: a detailed mesh
suitable for visualization and 3D-printing and a set of geometric
primitives that define the components mass distribution and a
contact surface.

Following the standard RoboGen specification, each
component is described with the type of the component it
represents, its name, orientation, possible parametric values, and
children slots to which neighboring components are connected3.
For making the evolution of morphologies more flexible, the
RoboGen specification was extended to define the attachment
slot to its parent component4. To simplify the identification
of the heredity of each robot’s morphology the specification
was supported with a color-coding for each component. This
allows the morphological traits that a robot inherits to be easily
attributed to either parent by matching colors.

Robots are genetically encoded by a tree-based representation
where each node represents one building block of the robot
(i.e., a RoboGen module) and edges between nodes represent

2http://robogen.org/
3http://robogen.org/docs/guidelines-for-writing-a-robot-text-file/
4In the standard specification, components are attached to a parent component

only by the slot 0.
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FIGURE 2 | The 3D-printable robot components., (B) Fixed brick, (C) Core component, and (H) Active hinge. These models are used in the simulation, but also could

be used for 3D printing and construction of real robots. The blue-, yellow-, and red-colored blocks bellow components illustrate a 2D representation of robots in

Figure 15.

FIGURE 3 | An illustration of a robot’s genome (left) for one of the possible morphologies and the outcome of assembled morphology (right). On the genome

representation, a fixed brick module is designated with B, a core component with C, and an active hinge with H.

connections in between. An example of a genome’s tree structure
for one of the possible morphologies is shown in Figure 3. The
construction of a robot in this representation begins with the root
node, which by definition always represents the essential core
component. The robot body is then constructed by traversing the
tree edges and attaching the components represented by child
nodes to the current component at the specified slot positions
and orientations. Details about recombinations and mutations
are described in subsection 4.1.

3.2. Controllers
The controller system for the robot locomotion consists of two
main components —a CPG controller structure derived from a
robot’s body structure, and weights of CPG connections derived
as outputs of a CPPN network. In these controllers, sensory
feedback is omitted, because an open-loop controller can solve
the given task (gait learning). Including sensory feedback is
a possible augmentation to the CPG structure. However, the
primary goal is to investigate effects of the specific evolutionary
setups on body development. Adding an extra dimension in form

of the feedback loop to the system would make it harder to
distinguish an effect of the system from the sensory noise.

Figure 4 depicts the resulting architecture. The CPG is firmly
grounded in the morphology of a given robot (explained below).
The part that can be transferred between different robots is
the CPPN. This is very important as it enables us to transfer
controllers between different bodies.

The main components of the CPG controllers are differential
oscillators. One oscillator is defined for each active hinge.
Each oscillator is defined by two neurons that are recursively
connected as shown in Figure 5.

These generate oscillatory patterns by calculating
their activation levels a and b according to the following
differential equation:

ȧ = wbay+ biasa

ḃ = wabx+ biasb

with wab and wba denoting the weights of the connections
between the neurons; biasa and biasb are parameters of the
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FIGURE 4 | The overall architecture of the learning system. The learning method is implemented by an evolutionary algorithm (HyperNEAT). It evolves the CPPN that

defines the connection weights of the CPG-based controller whose topology is based on the morphology of the given robot.

FIGURE 5 | A differential oscillator with output node as used in the CPG

controller.

neurons. If wba and wab have different signs the activation of the
neurons a and b is periodic and bounded.

An oscillator’s x node is connected to a linear output neuron
that in turn connects to the robot’s active hinge. Output neurons
use the following activation function:

f (a) = (wao · a− bias) · gain.

with a, the activation level from the oscillator, wao, the weight of
the connection between oscillator and output node and bias and
gain parameters. Each active joint in the robot body is associated
with an oscillator and connected to it through an output neuron
that determines the joint’s angle.

The oscillators of neighboring hinges (i.e., hinges separated
by a single component) are interconnected through weighted
connections between their a neurons. This results in a chain-like
neural network of differential oscillators that extends across the
robot body, as illustrated in Figure 6.

Like a neural network, a CPPN is a network of mathematical
functions with weighted connections. Unlike neural networks,
the network can contain a variety of activation functions
including sine, cosine, Gaussian, and sigmoid. The CPPNs have
six inputs denoting the coordinates of a source and a target
node when querying connection weights or just the position of
one node when obtaining node parameters with the other three
inputs being initialized as zero. The CPPNs have three outputs:
the weight of the connection from source to target as well as
the bias and gain values when calculating parameters for a node.
To determine the weight of a connection in the CPG network
that controls the robot (the substrate), the coordinates of the
two substrate nodes are fed into the CPPN which then returns
the connection weight (Stanley, 2007). In order to obtain the

FIGURE 6 | Schematic view of the CPG network generated for one of the

possible morphologies. The rectangular shapes indicate passive body parts,

the circles show active hinges, each with their own differential oscillator, and

the arrows indicate the connections between the oscillators.

parameters of a node, the coordinates of that node and the all-
zero vector (instead of a coordinate of the other node) are used as
inputs. This way enables us to select either a connection between
two nodes, or a specific node itself.

Further on, we will explain how the controllers’ genotypes
(CPPN) and phenotypes (CPG) are connected. The important
piece of the puzzle is the Cartesian coordinate system, universal
to any body structure with a referent (0, 0) coordinate positioned
in the core component. Based on this, the CPG nodes are
positioned in a three-dimensional hyperspace. The hyperspace
consists of a planar space with x and y coordinates that position a
differential oscillator (i.e., an active joint) and a third coordinate
z which define a position of a neuron in the oscillator. Such
modular differentiation allows specialization of the active hinge‘s
movements depending on its relative position in the robot.
The hinge coordinates are obtained from a top-down view of
the robot body. Thus, two coordinates of a node in the CPG
controller correspond with the relative position of the active
hinge it is associated. The third coordinate depends on the role
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of the node in the CPG network: output nodes have a value of 0,
and differential nodes have values of 1 for a and −1 for b nodes.
As illustrated in Figure 7, differential CPG is defined based on
a robot’s body structure, and weights between connections are
defined by applying output values of evolved CPPN network
on it.

Example for the process of applying parameters to a specific
neuron in a CPG network is illustrated in Figure 7. On the CPG
structure, the coordinates of each active hinge are illustrated. In
order to define the values for the b node on the coordinate (3, 0),
we designate (x1, y1) = (3, 0) and z1 = −1. To mark that we
are querying for node values and not weight of a connection
the second part of the CPPN input (i.e., the destination node)
is marked as (x2, y2, z2) = (0, 0, 0).

Based on values fed into a CPG network, a different
output pattern is produced for every actuator resulting in a
different locomotion behavior. The given learning algorithm
then iteratively improves the CPPN in order to optimize the
connection weights, the node biases, and the gain levels of
the output nodes produced by it. Details about our learning
algorithm are presented in the next section.

4. EVOLUTIONARY AND LEARNING
METHODS

The general system architecture as captured by the Triangle
of Life consists of two loops: the evolutionary loop that spans
the triangle and the learning loop within the Infancy stage,
see Figure 1. The evolutionary process affects both the bodies
and the brains, while the learning algorithm only works on
the brains. As mentioned before, in this study we decided to
use HyperNEAT for gait learning (Stanley and Miikkulainen,
2002). This implies that our learning method is an evolutionary
algorithm. Consequently, we have two evolutionary processes.
The outer evolutionary process (with a Darwinian and a

Lamarckian version) works on the morphologies and the
controllers, and the inner evolutionary process (HyperNEAT)
works on the controllers within the Infancy stage.

4.1. Evolution of Morphologies
The evolutionary process of morphologies uses a direct encoding
and is relatively straightforward using recombination and
mutation operators defined in RoboGen. As described in
subsection 3.1, the morphologies of the robots are represented
as tree structures where every node represents one component.
Therefore, we can apply the recombination and mutation
operators that are well-established in genetic programming
(Banzhaf et al., 1998). The recombination of parent genomes
is implemented as random subtree exchange: a random node
from parent A is selected and replaced with a random subtree
of parent B if only the exchange does not violate the constraint
of intersecting body parts. In order to limit robot complexity,
a new part is added with a probability proportional to the
number of parts that are expected to have been removed by
subtree removal, minus the number of parts expected to have
been added by subtree duplication. The new part is randomly
generated and attached to a random free slot on the tree to
produce the final robot. To keep the complexity of the robot
morphologies within bounds we require that each robot must
consist of at least five and no more than 50 modules. The
parameters of these operations are shown in Appendix 3. The
mutation operator is applied after each crossover directly to the
generated offspring and replaces a randomly selected subtree with
a randomly generated tree. The probability of mutation is set
to 0.05.

By design, we are using non-overlapping generations. Hence,
after evaluating the current population of 20 robots we need to
select 20 pairs of parents to produce the next generation. To
this end, we use standard binary tournaments. To obtain two
parents for crossover we perform two tournaments and for each
tournament we select two potential parents randomly. These

FIGURE 7 | Example of the lifetime process of applying the proper weights from a CPPN network onto a CPG neuron. The arrow is pointing to a neuron within a

differential oscillator with coordinates (x, y) = (3, 0) and z = −1 for the b node (see Figure 5).
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are compared and the one with the highest fitness (e.g., highest
speed) wins the tournament and becomes a parent.

4.2. Learning of Controllers
We use HyperNEAT for learning the morphology independent
parts of the robot controllers. As described in section 3.2, this
means evolving CPPNs for setting the CPG parameters.We chose
to apply a population size of 10 CPPNs, which means that each
robot has 10 controllers on board that can be activated and tested
one by one. The method to fill the initial controller population
after the ‘birth’ of a new robot depends on the Darwinian or
Lamarckian nature of the algorithm for controller evolution.
These details are explained in section 4.3. A full overview of
HyperNEAT parameters is given in Appendix 3.

HyperNEAT requires bookkeeping of the complexification
process that occurs by adding and removing nodes and
connections. This is implemented employing innovation

numbers that uniquely identify inserted material. The innovation
number introduced by the same mutation of the network is
identical across different networks for nodes and connections.
This solution combines two interacting ideas. Firstly, the
introduction of a crossover operator which randomly can
choose from which parent a neuron or connection should
be inherited if it is present in both. This can be useful since
neurons or connections in a topological context should fulfill
a similar purpose and therefore swapping them will not give
a completely different network, only a slightly changed one.
Secondly, the usage of speciation, which groups networks
with similar neuron and connection parameters as well as
similar topologies. This can easily be inferred due to the usage
of innovation numbers, thus ensuring that mostly similar
networks are crossed over. Together these ideas help reduce
the likelihood of introduction of dysfunctional networks
through crossover.

FIGURE 8 | Illustration of transferring controllers from parent robots to their offspring. The best five controllers from each robot are transferred to their child, where

they form the initial population of the HyperNEAT algorithm for gait learning.

FIGURE 9 | Example of an evolved robot from lineage 3, generation 2. The colors of its modules disclose their origins, blue and green modules come from different

parents. The curves on the right hand side show the development of speed of this robot during the learning period starting from scratch or based on Lamarckian

inheritance.

Frontiers in Robotics and AI | www.frontiersin.org 8 February 2019 | Volume 6 | Article 9

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Jelisavcic et al. Lamarckian Evolution of Simulated Modular Robots

When combining CPPNs from two separate HyperNEAT runs
(i.e., the learning processes on two different robot morphologies),
the innovation numbers must be updated so that no conflicts
occur. Offsetting the innovation numbers from one of the two
parents proved a convenient method to achieve this, allowing
the CPPNs from both parents to be (re)combined in the
offspring’s population.

4.3. Darwinian and Lamarckian Evolution
of Controllers
Darwinian evolution as observed in nature works through
an inheritance mechanism that cannot propagate traits of an
organism to its offspring that are learned by experience. In
contrast, the idea of Lamarckism assumes that an organism
can pass traits acquired over its lifetime to its offspring. In
evolutionary robot systems, the inheritance of controllers can be
implemented in a Darwinian or in a Lamarckian way, depending
on the preferences of the system designer. In both cases, a
“newborn” robot A starts its lifetime and the infant learning
process of the Triangle of Life scheme with the initial controller
inherited from its parents. At the end of this process robot A
will contain a learned controller and its fitness is determined
by how well this works. If the robot is fit and gets selected

for reproduction, then it will propagate its morphological and
controller properties to its offspring. The difference between a
Darwinian and a Lamarckian system is grounded in the different
methods for propagating parental controllers. If the offspring,
robot B, is seeded with the initial controller robot A was born
with, then we have a Darwinian system. If A passes on its learned
controller to B then the system is Lamarckian.

As explained in the previous section, in this study we use an
evolutionary algorithm (HyperNEAT) with population size 10 as
a learning method. This means that each “newborn” robot needs
to be initialized with 10 controllers. Exploiting the fact that the
CPPNs are morphology independent, i.e., that any CPPN can be
used in any robot, the inheritance of controllers can be done in
a simple manner, including five controllers from one parent and
five from the other parent in the child. For obvious reasons, each
parent passes on the best five of its controllers to the offspring.
This method is illustrated in Figure 8 .

5. EXPERIMENTS

Implementing an evolutionary robot system as outlined above
in real hardware is not possible with the current technology.
Therefore, we conduct our experiments with the Revolve

FIGURE 10 | Development of fitness over the course of evolution for Lamarckian (left column) and Darwinian evolution (right column) based on a low, medium, or high

budget for the lifetime learning method, i.e., 10/100/1,000 CPPN evaluations within the HyperNEAT algorithm.
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FIGURE 11 | Improvement of Lamarckian over Darwinian evolution per

generation. Improvement is defined as the difference in average performance

of all individuals of all lineages in the given generation. A positive number

means that the Lamarckian approach is better.

FIGURE 12 | Correlation of normalized tree-edit distances between a parent

and its offspring and improvements in performance the offspring shows. The

data points are individual performance differences over nine generations (the

second up to tenth) in five generated lineages, aggregated. For correlation we

use 90% confidence level interval for predictions from the linear model.

simulator, cf. Hupkes et al. (2018)5. Technically, Revolve is a
wrapper around Gazebo, a general-purpose robotic simulator
based on the ODE physics engine, that manages insertion,
deletion, and production of robots in a simulated environment.
The settings of the simulation parameters are presented
in Appendix 3.

The experiments are executed on five different lineages, where
a lineage is specified by a randomly generated initial population
of robots. These five initial populations are the starting points for
the thereafter separate Darwinian and Lamarckian evolutionary
runs, leading to different populations of morphologies. In all
cases, the population size is 20 and the run is terminated after
10 generations.

The initial robot populations are created by randomly
generating 20 morphologies that contain at least five active joints

5The source code for Revolve can be found at https://www.github.com/ci-group/

revolve

and no more than 50 components all together. Furthermore, it is
required that it is physically feasible to construct the given robot.
Consecutive generations are produced by the usual selection-
reproduction cycle in a non-overlapping fashion. Thus, the
total number of robots in an evolutionary lineage is 200. The
evolutionary operators crossover, mutation, and selection work
as explained in section 4.1 and Appendix 3. As for fitness, we
use speed. For any given controller the speed equals m/s, where
s is the duration of the evaluation period (30 s as shown in
Appendix 3) andm is the straight line distance the robot covered
in this period. For a robot as a whole, the fitness is the maximal
speed, achieved by the end of its learning period.

Regarding the controllers of the robots, we use an evolutionary
algorithm, HyperNEAT, as a learning method with settings
described in Appendix 3. We set the population size in
HyperNEAT at 10 and the ‘heads’ of the initial robot populations
of the five lineages are filled with CPPNs consisting of
randomly initialized networks that only contain the input
and output neurons and connections from every input to
every output neuron with randomly initialized weights and
neuron parameters. A HyperNEAT run—that is, a gait learning
process of the given robot body—can be terminated after
10 or 100 or 1,000 evaluations. This means 1, 10, or 100
non-overlapping generations6.

To compare the Lamarckian and the Darwinian systems we
monitor the average performance (i.e., speed) of the robots
during each run. Furthermore, we carry out another analysis
regarding the amount of parental material in the controllers.
To this end, note that the 10 CPPNs of a “newborn” robot
are all inherited from its parents, in the Darwininan as well
as in the Lamarckian setup. Hence, the learning period—
a run of HyperNEAT—starts with 100% of parental CPPN
genetic material. During the run of HyperNEAT the CPPNs
are augmented with new neurons and connections, thus the
ratio decreases. The ratio of parental material that is present in
the CPPNs’ structures at the end of a learning period is called
parental retention.

6. RESULTS

Before presenting the main results let us give a simple illustration
of the effect of Lamarckism in our system. For this purpose,
we take an evolved robot (shown on the left of Figure 9)
and plot the development of speed during a lifetime learning
process starting with a) 10 randomly initialized CPPNs and
b) 10 CPPNs inherited from its parents after they finished
learning. These curves are shown on the right hand side of
Figure 9. The locomotion strategies employed at different stages
of the learning process can be seen in a Supplementary Video7.
The differences in performance are representative for many
of the robots in our experiments, but there are also a few
morphologies where learning from scratch outperforms learning
from inherited material. This warrants further analysis of the

6In reality, a HyperNEAT run is terminated after 1,000 evaluations, but the

performance is cross-sected after 10, 100 and 1,000 evaluations.
7Available online at https://youtu.be/GaxMlntR3IA
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relations between performance, morphologies, and brains, as
detailed in the following sections.

6.1. Performance Differences
To answer our first research question we compare the
Lamarckian and the Darwinian evolutionary approaches. For this
purpose, we merge the data of all five lineages and plot the fitness
values in each robot generation in Figure 10. The plots the show
development of fitness over the course of evolution for both
approaches with three different learning budgets: low (10 CPPN
evaluations, 1 generation in HyperNEAT), medium (100 CPPN
evaluations, 10 generations in HyperNEAT), and high (1,000
CPPN evaluations, 100 generations in HyperNEAT).

Looking at the plots, we can observe the superiority of the
Lamarckian approach. The differences in performances are most
prominent for a low and a medium learning budget, when using
1,000 evaluations for learning the differences are smaller. This
indicates that the Darwinian approach can eventually catch up
with the Lamarckian system, but only at a large expense in the
number of evaluations. This can be consequence of converging
to a nearly maximal speed for the given morphology. Phrasing
it differently, if the resources are constrained, the Lamarckian
approach is advisable. This is especially important to consider in
a real-world evolution scenario (in the future).

We can shed further light on the evolutionary dynamics
by looking at the difference in fitness between the Lamarckian
and Darwinian evolutionary process per generation. That is, we
consider the difference in fitness values from the start to the
end of the lifetime learning process, like in Figure 9, but in this
case the fitnesses are based on population averages We plot these
data in Figure 11 for the case of using a high learning budget.
In the early generations, the Lamarckian approach is clearly
better, but in the last generations the Darwinian setup reaches
the performance of the Lamarckian one. The overall conclusion

is similar to that made after analyzing Figure 10, if the resources
are constrained (here: we only have time for a few generations),
then the Lamarckian approach is preferable.

6.2. Morphological Analysis
To answer our second research question, we inspect the evolved
morphologies in two different ways. First, we look at the
genotypic differences between parents and offspring using the
Zhang-Sasha method for the tree-edit distances, cf. Zhang
and Shasha (1989). Second, we consider the phenotypes and
characterize the forms of the robots through seven different
morphological descriptors, size, symmetry, proportion, number of
active joints, coverage, length of limbs, number of limbs, afterMiras
et al. (2018). Details are given in Appendix 2.

The correlation of the normalized tree-edit distances between
a parent and its offspring and the advantage of Lamarckian
inheritance compared to learning from scratch is exhibited in
Figure 12. The data show a trend: the smaller the difference of
a robot from its parents, the higher is the benefit of inheriting the
controller the parent learned, instead of learning the controller
from a random start. Intuitively this makes sense because it
stands to reason that the controllers that are optimized for a
specific morphology are more useful for a similar morphology
than for a different one.

Using the morphological descriptors we can define the
difference between two robots (e.g., two parents or a parent and
a child) based on their phenotypes. Because all descriptors have
numerical values, we can simply apply the numerical difference
here. With the sub-questions of our second research question
in mind we can try to correlate the advantage of Lamarckian
evolution to a) the difference between a robot and its parents, and
b) the difference between the parents. The data corresponding
to option a) are shown in the top row of Figure 13 for the
five morphological descriptors where a trend could be observed.

FIGURE 13 | Averaged variance of four morphological descriptors between parents and their offspring (top row), and averaged variance between parents (bottom

row) correlated with the observed improvements. For correlation we use 90% confidence level interval for predictions from the linear model.
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These trends are similar to the one regarding the genotypic
distance: the benefit of Lamarckian evolution is higher if the
difference of a robot to its parents is smaller. The bottom row
of Figure 13 show the trends when considering the difference
between the parents. The trend is not so clear in this case and
this is natural: the only reason why there would be a similar trend
is because two similar parents have a greater potential to create
a robot that’s similar to them and thus transfer controllers that
are adapted for their morphologies. The correlations for all five
measures are verified in Table 1 with Spearman’s correlation.

6.3. Morphological Attractors
Based on morphological descriptors we can obtain new insights
by creating density plots in the multi-dimensional space they
span. We find this a useful tool that gives insights into our third
question. For reasons of printability, we selected a few pairs
of descriptors and created contour plots in the corresponding

TABLE 1 | Coefficient values of Spearman’s rank correlation of improvement to

tree-edit distances and morphological descriptors (parent to offspring).

coef. p-value

Tree-edit Dist. −0.2 1.6 × 10−11

L. of Limbs −0.27 1.9 × 10−4

Coverage −0.29 8.56 × 10−5

Joints −0.3 4.38 × 10−5

Proportion −0.2 5.2 × 10−3

Size −0.23 1.7 × 10−3

2-dimensional space showing the regions with the highest
density, that is, with a relatively high number of evolved
robots. Now the question is if these areas of attraction differ
for Darwinian and Lamarckian evolutionary setups. The most
interesting density plots are presented in Figure 14 and the
whole set in Figure S3 in the Appendix. We can see that the
Lamarckian robots are more consistent, while the Darwinian
robots tend to scatter more over the morphological search space.
This observation is interesting as it indicates that treating the
(learning of) controllers differently changes the development of
morphologies too.

The morphologies of the evolved robots can be visually
inspected as well. In Figure 15 we exhibit the best-performing
three robots in all five lineages for the Lamarckian andDarwinian
scenarios. We can see that in the Darwinian scenario, the
morphologies are more elongated, while in the Lamarckian
system X- and T-shaped robots seem to occur more frequently.
This relates to the plots in Figure 14 where the size and
proportion tend to increase in the Lamarckian setup, whilst the
coverage decreases compared to the Darwinian setup.

6.4. Changes in CPPNs During Learning
and Evolution
Finally, let us look beyond morphological issues and investigate
how the rate of change in CPPN structure relates to performance.
In Figure 16 the upper plot compares the performance trends,
while the lower plot shows the ratio of parental genetic material
for both the Darwinian and the Lamarckian setups. We can
clearly see that in the Darwinian scenario parental genetic

FIGURE 14 | Density areas for the three most prominent morphological descriptors in the 10th generation of both Darwinian (top row) and Lamarckian (bottom row)

regimes.
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FIGURE 15 | The best three morphologies of the final (10th) generations in all

5 lineages in both scenarios. The Darwinian setup (left) develops

predominantly I- and L-shaped robots. The Lamarckian setup (right) develops

X- and T-shaped robots.

FIGURE 16 | Development of speed (top plot) and the percentage of parental

genetic material (bottom plot) within generations 2–10 in the Lamarckian

(purple line) and the Darwinian (orange line) scenarios. The curves exhibit the

averaged values of all robots in all lineages, the vertical bars are the standard

deviations.

material is disappearing much faster than in the Lamarckian
system. This can be explained by observing that the well-
adapted inherited CPPNs of a “Lamarckian parent” need fewer

modifications to adapt to a new body than the CPPNs of
a “Darwinian parent.” The trend is also in line with the
performance trend wherein every generation, in general, the
Lamarckian setup outperformed the Darwinian.

7. CONCLUDING REMARKS

The long-term goal of our research is a technology to produce
highly adapted robots for many possible environments and
tasks. Our approach toward this goal is evolutionary, thus
we are interested in robot systems where both morphologies
and controllers undergo evolution. It is important to note
that morphologically evolving robot systems need to include a
learning period right after ‘birth’ to acquire a controller that
fits the newly created body. For efficiency reasons, the number
of trials should be kept as low as possible. In this paper, we
investigate the possibility of reducing the learning times by
seeding the infant robot with the learned controllers of the
parents. In particular, we address three research questions in
the context of morphologically evolvable modular robots and
locomotion as the main task: (1) Does the inheritability of
learned features provide an advantage? (2) What does this
advantage depend on? (3) Does Lamarckian evolution lead to
different morphologies?

Our findings can be summarized in the following
observations. First and foremost, it is possible to learn a
proper gait with a relatively low number of trials (about 100 in
our system) that make online learning in real time practicable.
Secondly, we have confirmed the benefits of Lamarckian
evolution. The main message of this paper is thus: Inheriting
learned parental controllers speeds up infant learning, hence,
using a Lamarckian set-up is advisable.

The added value of Lamarckism turned out to depend on the
available learning budget, i.e., the allowable number of trials. If
the learning budgets are limited (and in practice they always are),
then starting off infant robot learning with inherited controllers
makes a big difference.

Another interesting result is the correlation between the
morphological similarity between the parents and the benefit
of inheriting their controllers. Our data show that the benefits
for the offspring are higher if the parents are more similar.
This can play a significant role in future implementations since
it can support educated guesses about how well the parental
controllers will perform on the offspring robot. This issue
deserves further research, for instance into autonomous mate
selection mechanisms, where would-be parents do not rely
on an abstract fitness value, but visually inspect each other.
Such mechanisms that allow mate selection without a central
authority using only locally observable information could be
essential ingredients in real-world evolutionary robot systems of
the future.

Last, but not least, we can draw additional conclusions
considering the evolved morphologies. Remarkably, even though
the difference between the Darwinian and Lamarckian versions
only concern the controllers, the final impact is also visible in the
space of morphologies.
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Naturally, our results are based on one system only, and
the advantages of inheriting parental controllers will depend
on the given environment, the robot design, and the task.
Nevertheless, the empirical evidence fully supports the common
sense expectation that bootstrapping infant learning by inheriting
learned parental controllers is a highly advisable option for the
design of evolutionary robotic systems.
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