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Neural keyword spotting could form the basis of a speech brain-computer-interface for

menu-navigation if it can be done with low latency and high specificity comparable to

the “wake-word” functionality of modern voice-activated AI assistant technologies. This

study investigated neural keyword spotting using motor representations of speech via

invasively-recorded electrocorticographic signals as a proof-of-concept. Neural matched

filters were created from monosyllabic consonant-vowel utterances: one keyword

utterance, and 11 similar non-keyword utterances. These filters were used in an analog

to the acoustic keyword spotting problem, applied for the first time to neural data.

The filter templates were cross-correlated with the neural signal, capturing temporal

dynamics of neural activation across cortical sites. Neural vocal activity detection

(VAD) was used to identify utterance times and a discriminative classifier was used

to determine if these utterances were the keyword or non-keyword speech. Model

performance appeared to be highly related to electrode placement and spatial density.

Vowel height (/a/ vs /i/) was poorly discriminated in recordings from sensorimotor cortex,

but was highly discriminable using neural features from superior temporal gyrus during

self-monitoring. The best performing neural keyword detection (5 keyword detections

with two false-positives across 60 utterances) and neural VAD (100% sensitivity, ~1 false

detection per 10 utterances) came from high-density (2 mm electrode diameter and 5

mm pitch) recordings from ventral sensorimotor cortex, suggesting the spatial fidelity

and extent of high-density ECoG arrays may be sufficient for the purpose of speech

brain-computer-interfaces.

Keywords: electrocorticography (ECoG), keyword spotting (KWS), automatic speech recognition (ASR), brain

computer interface (BCI), speech, sensorimotor cortex (SMC), superior temporal gyrus (STG), articulation

1. INTRODUCTION

Keyword spotting (KWS) has recently come to the forefront of human-computer-interaction with
the advent of voice-assist technologies such as Amazon Alexa, Apple’s Siri, and Google’s Assistant.
All of these systems employ local, low-resource acoustic keyword search in real-time to detect a
“wake word” that activates server-side speech recognition for interaction with an intelligent agent.
These systems have been commercially successful and lauded for their ease of use. There are
scenarios where voice-activated system interaction is suboptimal, especially when many speaking
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voices make the acoustic speech recognition less reliable and
socially awkward to use. The ability to trigger an intelligent agent
or perform menu selections with low latency and high specificity
using neural control is of great practical interest.

A number of studies of neural speech decoding motivate the
selection of electrocorticography (ECoG) for neural keyword
spotting. Bouchard et al. (2013) were the first to examine
the organization of articulation in ventral sensorimotor cortex
(vSMC) using high-density ECoG recordings. Their study
revealed that high frequency activity in the high-gamma range
(70–110 Hz) encodes precise movements of speech articulators
with a high degree of temporal specificity. Mugler et al. (2014,
2015) similarly characterized the articulatory representation in
this area and further showed that this activity is more related to
the gestural trajectories of specific muscles in the vocal tract than
it is related to the specific keywords or phonemes articulated.
Kanas et al. (2014) used high frequency content of speech-
active areas of the brain to perform voice-activity-detection, or
VAD—segmenting periods of speech from non-speech periods.
Moreover, high-gamma activity from ECoG arrays was used as
input to a language model and a small-vocabulary continuous
speech recognition from neural signals was created in a study
by Herff et al. (2015). Decoding of phonemic (Pei et al., 2011a;
Bouchard and Chang, 2014) and gestural (Lotte et al., 2015;
Mugler et al., 2015) content from vSMC has repeatedly been
shown as well. These studies provide evidence that the dynamics
of speech require the spatiotemporal resolution of intracortical
electrophysiological recordings; features derived from non-
invasive modalities do not modulate at rates necessary to make
short-time inferences about articulatory processes. This study
employs subdural ECoG recordings to determine the feasibility
of neural keyword spotting using high quality neural recordings
as a proof of concept.

In building a neural keyword spotter, we were inspired by
acoustic keyword spotting, where this has been accomplished
in a variety of ways. Hidden Markov Models (HMM) have
been applied to this problem extensively. HMM based real-time
keyword spotting tends to use a silent state, a keyword state
(or series of states) and a set of “garbage” states that capture
typical non-keyword speech. In “whole-word” approaches, each
state of the HMM represents an entire word (Rohlicek et al.,
1989; Rahim et al., 1997), whereas phonetic-based approaches
(Rohlicek et al., 1993; Bourlard et al., 1994; Manos and Zue,
1997) break down the keyword and non-keyword utterances
into sequences of phoneme sub-models. A keyword has been
identified in the window of interest if the state sequence
prediction proceeds through a keyword state (for whole-word
modeling) or sequence of phonetic states corresponding to
a keyword. Using a phonetic-based model to perform neural
keyword spotting is risky: according to Mugler et al. (2014), a
full set of American English phonemes has only been decoded
at 36% accuracy from implanted ECoG arrays, motivating a
whole-word approach.

Keshet et al. (2009) suggested a low-latency acoustic keyword
spotting using a discriminative approach rather than a HMM-
based probabilistic model. In this approach, a linear classifier
is trained to maximize the margin between acoustic feature

sequences containing keywords and others that don’t. As detailed
in the aforementioned study, this approach does not rely on
computationally intensive Viterbi decoding and achieves higher
keyword spotting performance than HMM-based systems.

We have chosen to use a neural voice-activity detection
combined with an adaptation of the aforementioned
discriminative (non-HMM-based) approach to perform
neural keyword spotting. A flowchart that describes the signal
processing chain and two-step discriminative decoding pipeline
is described in Figure 1. Application of neural features to
existing acoustic KWS approaches requires a few modifications.
For example, mel-frequency cepstral coefficients derived from
a single spectrally-rich microphone recording are sufficient
to perform acoustic keyword recognition; by contrast, there
are many electrodes in an ECoG recording, each with a single
time-varying “activation” signal, corresponding to changes
in neural population firing rates, in turn indexed by changes
in high frequency activity. These activations capture neural
processes necessary to sequence, control, and monitor the
production of speech, as opposed to acoustic features that
capture discriminable aspects of spoken acoustic waveforms.
The motor representations of speech that capture the dynamics
of articulators, and the auditory representations of speech
that capture phonetic content during self-monitoring but also
activate during perceived speech, are of particular interest to a
neural keyword spotting system.

A recent study by Ramsey et al. (2017) has significantly
influenced the approach we’ve developed to capture the
spatiotemporal dynamics of neural features for the purpose
of informing keyword discrimination. In the study, Ramsey
discriminated phonemes from high density ECoG recordings of
vSMC using the correlation of spatiotemporal matched filters
as a means of identifying when the spatiotemporal pattern
of high frequency activity matched stereotyped patterns for
articulations (or gestural sequence of articulations). This method
achieved 75% accuracy in a four-class phoneme discrimination
problem, and highlighted the importance of including temporal
relationships of high frequency activity between cortical sites
in decoding models. We extend this methodology here to
the creation of maximally discriminative “neural templates”
to identify consonant-vowel “keyword” utterances instead of
single phonemes.

“Wake-words” for voice-assist technologies are typically
chosen to be low-frequency and phonetically complex to reduce
the number of spontaneous detections. To simplify the problem
of producing a more neurally detectable keyword, we examine
monosyllabic, “consonant-vowel” keywords, varying the place
of articulation, the consonant voicing, and the vowel height
during phonation. Within the context of this study, any speech
following the presentation (either textual or auditory) of a CV
syllable stimulus is called an “utterance.” Keyword spottermodels
were trained/tested on one of those utterances, defined as the
“keyword” utterance for that particular model, with the rest
defined as non-keyword utterances—resulting in the creation
of 12 keyword spotter models per subject; each sensitive to
a specific monosyllabic keyword. We have chosen to examine
keyword detection accuracy with respect to non-keyword speech
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FIGURE 1 | A flowchart representation of the keyword-spotting signal processing pipeline. Red arrows indicate flow of data through the pipeline. Dotted lines with

circles indicate models that were trained on the training dataset are used in this step for both the training and testing data. Training is performed using a visually

presented keyword reading paradigm, and testing occurs across an auditory keyword repetition task. This study implements a two-stage detector; one neural VAD

template is correlated across the testing dataset, and peak-picking indicates a detected utterance. When an utterance is detected, a discriminative classifier is used to

decide if the utterance was a keyword or non-keyword speech. Channel downselection, normalization parameters, neural templates, feature dimensionality reduction,

and classifiers are all trained on the reading (training) task and applied to the repetition (testing) task to simulate how keyword spotting would realistically perform in a

separate recording session.

and silence, as opposed to a multi-keyword decode to further
simplify the problem and performance metrics. We will also
limit ourselves to causal methods of feature extraction and
classification for this study to realize how neural keyword
detection would perform if deployed in a low-resource real-
time scenario.

This is the first study of neural keyword spotting in ECoG
recordings that demonstrates low latency (~1 s) using causal
models and feature extraction methods akin to low-resource
acoustic KWS implementations. Application of spatiotemporal
matched filters, trained/tested in separate ECoG recordings,
appeared to strongly influence the specificity of the spotter
in single-trials. We found that spatial and temporal features
from vSMC can be used to discriminate place of articulation
and consonant voicing in monosyllabic keywords, and that
vowel height (/a/ vs /i/) is much more discriminable using
neural features from STG during self-monitoring of overtly
produced speech, as opposed to the motor representations that
are simultaneously present in vSMC.

2. MATERIALS AND METHODS

Please refer to Figure 1 for a brief overview of the methodology
used in this study, summarized here for convenience, but with
more detail provided in subsections 2.1-2.6. Two datasets were
collected in separate recording sessions; one used for training
model parameters and another used for performance validation.
The first step in the signal processing pipeline was a signal re-
referencing to the common average followed by amanual channel
downselection and spectral extraction of high gamma log-power.
High gammamodulation across the training task was normalized
(z-scored) per-channel to a pooled baseline period constructed
by segmenting baseline periods from across the training task.
Response periods in the training dataset were used to train
neural templates, and these templates were cross-correlated

over the normalized high gamma features before a principal
component analysis (PCA) was fit. Discriminative classifiers
for each keyword were fit on these “template-PC” features
and a decision boundary was chosen for each keyword spotter
individually. Similarly, a threshold parameter was selected for a
causal peak-picking algorithm applied to the cross-correlation of
the grand-average “VAD” template. The same preprocessing steps
were applied to the testing dataset, and high gamma log-power
was normalized across testing dataset. The templates and PCA
that were trained previously were then applied without further
calibration to the testing high gamma features, and template-
PC features corresponding to super-threshold peaks in the
VAD template output were classified using the aforementioned
discriminative classifiers.

2.1. Data Collection
Subdural electrocorticographic recordings were made in eight
subjects undergoing intracranial monitoring prior to resective
surgery for drug-resistant epilepsy. Electrocorticographic
(ECoG) arrays of platinum electrodes with varying exposed area
and spatial density were placed for a 1–2 week period according
to clinical requirements. Subjects performed both syllable-
reading and syllable-repetition paradigms as part of a protocol
approved by the Johns Hopkins University Institutional Review
Board. All subjects gave written informed consent in accordance
with the Declaration of Helsinki. Electrode localization was
performed by aligning electrode locations from a post-operative
computed tomography image with a pre-operative magnetic
resonance image using Bioimage Suite (Papademetris et al.,
2006). Neuroimaging and electrode locations are shown
in Figure 2.

Subjects performed two tasks wherein they were asked to
overtly produce monosyllabic consonant-vowel (CV) utterances.
In the (syllable) reading task, a textual representation of the
utterance was visually presented for 1 s (see Table 2 for details)
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FIGURE 2 | Neuroimaging and electrode localization for eight subjects implanted with subdural electrode arrays. Electrodes positioned over sensorimotor cortex are

highlighted in red and electrodes over superior temporal gyrus are highlighted blue. Biographical and experimental details for these subjects can be found in Table 1.

Subject 1 had a large lesion within pre-central gyrus, from which very little high frequency activity was recorded. Subject 3 had an ictal locus very near sensorimotor

cortex with substantial inter-ictal activity that limited observation of neural features in this area. Subject 8 had a lesion in the right supramarginal gyrus.

followed by an intertrial interval of 2–3 s during which the subject
was instructed to fixate on a visible fixation cross. The (syllable)
repetition paradigm was identical, except that the fixation cross
remained on screen throughout the task and the utterance was
aurally cued using a speaker. In both tasks, the subject was
instructed to speak the prompted syllable aloud after stimulus
delivery, and a microphone was used to record the subject’s
responses to a high quality digital audio file. A monitor-output
cable connected the microphone recording device (Zoom H2,
Zoom Corporation, Tokyo, Japan) to an auxiliary analog input
on the electrophysiological amplifier (Neuroport, Blackrock
Microsystems, Salt Lake City, UT; and EEG1200, Nihon Kohden,
Tomioka, Japan), recording a lower-resolution version of the
subject’s speech synchronized with the ECoG data at 1,000
samples per second. BCI2000 (Mellinger and Schalk, 2007) was
used to present stimuli and record the data from the amplifier
into a standardized format for offline analysis. Data was collected
in blocks of 60 trials; 5 trials each for all 12 utterances in a
randomized order. The paradigm was split across two blocks of
reading and two blocks of repetition for each subject, but time
and clinical constraints limited collection to one-block of the
tasks for some subjects. Details of data collection for each subject
is documented in Table 1.

2.2. Preprocessing and Segmentation
Seventy one channels across all subjects (1–18 per subject) were
identified as noisy/bad by a neurologist via visual inspection of
the raw ECoG signals and were removed from further analysis.
Spatial filters were applied to re-reference recordings to the
common-average of the included channels. Trial markers from
BCI2000 that designated stimulus presentation (auditory or
visual) were used to define the trial onset points. The 250–450
Hz band-power in the synchronized low-fidelity microphone
recording captured the first formant of speech in each subject,
and was thresholded to detect the voice onset time for each
trial. These threshold crossings tend to be associated with the
voice-onset-time in CV keywords containing a voiced consonant
and the plosive release in CV keywords containing an unvoiced
consonant, due to the silent nature of consonant articulation.

Templates were generated from a 1-s “response” period centered
around this threshold crossing to capture differences in the
timing of neural features relative to the response onset (Mugler
et al., 2014; Jiang et al., 2016; Ramsey et al., 2017). Neural
features were normalized within each task individually to a
pooled “baseline” period which was created from a 1-s period
prior to stimulus presentation across all trials within a single
task. All trials from the reading dataset were used for training
templates and classifiers that were applied across the repetition
dataset. In this way, the training data were entirely separate from
the testing data, and the templates generalized feature extraction
across tasks.

2.3. Feature Extraction and Electrode
Downselection
Electrodes over sensorimotor cortex and superior temporal gyrus
were manually identified by a neurologist; see Figure 2 for a
summary. Electrodes lying outside these areas were excluded
from further analysis. A 128ms window sliding by 16ms
increments was used to perform spectral decomposition via
the fast Fourier transform. Spectral power was log-transformed
and z-scored to the baseline period, per-frequency. Frequency
bins between 70 and 110 Hz were averaged together to form
a time-varying feature capturing the band power modulations
in the “high-gamma” range, a frequency range highly correlated
with the firing of local neural populations (Ray et al.,
2008). This feature was then re-normalized to the baseline
period per-electrode.

2.4. Template Generation and Voice Activity
Detection
Previous studies indicate that the timing of high gamma activity
contributes significantly to decoding of speech from vSMC (Jiang
et al., 2016; Ramsey et al., 2017). Neural templates were trained
to capture spatiotemporal relationships of high gamma activity
in an efficient, but causal representation. A “response template”
was created by calculating the mean of the neural responses
from all trials (N = 60–120) in the training dataset. A “keyword
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TABLE 1 | Biographical and experimental details for subjects.

ID Side Age Sex Reading

trials

Repetition

trials

Grid specifications

1 R 17 M 120 60* vSMC: 85 (85 HD-5)

STG: 2 (2 HD-5)

Total: 87

2 L 37 F 60 120 vSMC: 36 (32 µ, 4 SD)

STG: 57 (57 HD-5)

Total: 93

3 L 25 M 105** 120 vSMC: 30 (30 HD-5)

STG: 32 (16 µ, 16 SD)

Total: 62

4 L 39 M 120 120 vSMC: 14 (14 SD)

STG: 48 (32 µ, 16 SD)

Total: 62

5 L 40 M 120 120 vSMC: 13 (13 SD)

STG: 9 (9 SD)

Total: 22

6 L 40 F 60 120 vSMC: 4 (4 SD)

STG: 87 (81 HD-3, 6 SD)

Total: 91

7 R 27 M 120 60 vSMC: 5 (5 SD)

STG: 12 (12 SD)

Total: 17

8 R 19 M 120 120 vSMC: 52 (43 HD-5, 9 SD)

STG: 19 (HD-5)

Total: 7

The implant hemisphere (side), age, sex, number of reading/repetition trials, and grid

specifications for all eight subjects in the study are listed here. Associated neuroimaging

and electrode localization can be found in Figure 2. Channels are delineated by region

of interest, and further by the diameter of the electrode’s exposed area, then by the inter-

electrode spacing. SD: Standard macro-array (2 mm diameter, 1 cm pitch). HD-5: High

density array (2 mm diameter, 5 mm pitch). HD-3: High density array (1 mm diameter, 3

mm pitch). µ: Micro-ECoG array (75 µm diameter, 1 mm pitch). *120 trials were recorded,

but the synchronized microphone recording failed for the second set of 60 trials. Neural

keyword spotting can be applied to this second block, but ground truth timing metrics are

unavailable. **Recording session ended early.

template” for each keyword was also created by calculating
the mean of the neural responses for each of the keywords
individually (5–10 trials). We additionally took advantage of
our keyword design to create neural templates composed of
higher trial counts across axes of articulation, as described in
Table 2. The response template was then subtracted from each of
these keyword templates, the resulting “discrimination template”
captured spatiotemporal relationships that differed from the
mean neural responses in the response template. A significance
mask was created by z-scoring the condition mean (prior to
subtraction of the response template) relative to the baseline
period. A temporal smoothing kernel (hamming, 0.1 s) was
applied to reduce noise in the template before the significance
mask was applied; elements with a z-score of <3.0 were set
to zero to further reduce noise. The smoothed and regularized
discrimination templates were correlated with the corresponding
high-gamma features in both testing and training datasets—
these features were further smoothed (hamming, 0.25 s) to
reduce the influence that slight timing mismatches could have
on keyword discrimination. An example visualization of the

TABLE 2 | Utterances and associated axes of articulation.

/IPA/ (“Stim”) Bilabial Alveolar Velar

Voiced /ba/ (“BAH”) /da/ (“DAH”) /ga/ (“GAH”)

Unvoiced /pa/ (“PAH”) /ta/ (“TAH”) /ka/ (“KAH”)

/IPA/ (“Stim”) Bilabial Alveolar Velar

Voiced /bi/ (“BEE”) /di/ (“DEE”) /gi/ (“GEE”)

Unvoiced /pi/ (“PEE”) /ti/ (“TEE”) /ki/ (“KEE”)

Utterances vary on three axes; three places of articulation, two ways of consonant voicing,

and two vowel heights. Utterances are shown with their IPA notation as well as the textual

prompt as shown in the reading paradigm. “GEE” would typically be pronounced /Ãi/ but

subjects were instructed to respond with /gi/ instead.

generation of a discrimination template for bilabial keywords
can be found in Figure 4A. A PCA was fit to identify linear
combinations of template output features that accounted for
90% of the variance across the entire reading task. Principle
components of template outputs were calculated for both the
reading and repetition datasets, reducing covariance in the
template outputs and creating neural features which can be used
for keyword discrimination.

Electrodes from STG were excluded from the response
template; the resulting template was used as the neural VAD
template. Auditory representations of speech in STG tend to have
less specificity to self-generated speech and their inclusion in
the VAD model can result in false-positive detections coincident
with the perception of speech, whether or not it was produced by
the subject. Neural VAD was calculated as the squared temporal
correlation between the VAD template and the normalized high-
gamma power. VAD output was further smoothed using a
temporal smoothing kernel (hamming, 1.0 s). A causal peak-
picking algorithmwas applied to identify utterance onset times—
the derivative of the neural VAD signal was thresholded and
the zero-crossing that follows a threshold crossing was chosen
as the utterance detection time. Example templates and their
corresponding correlational output are shown in Figure 4.
Application of these templates to live neural features results in
exactly 1 s of latency for neural VAD and keyword discrimination.

2.5. Discriminative Classification
A discriminative classifier similar to SVM, as described in
great mathematical detail by Keshet et al. (2009), was trained
on the reading dataset. In broad strokes, the training step
attempted to designate a linear discrimination boundary that
maintains a constant margin of separation between pairs of
feature-vectors corresponding to keyword and non-keyword
utterances. For each pair, the training step searched for the
feature-vector within ±100 ms of the alignment time for
the non-keyword utterance that looked maximally “keyword-
like,” given the current discrimination boundary. The learning
step adjusted the discrimination boundary using the difference
between that maximized non-keyword feature-vector and the
ground-truth keyword feature-vector. A significant advantage of
this classifier is that it can be trained online as new observations
become available.
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FIGURE 3 | High-gamma single-trial rasters across the reading task from four manually selected electrodes in Subject 1. Trials, plotted along the Y axis, were sorted

first by the place of articulation for the consonant, then by consonant voicing. Trials were aligned with response-onset time set to 0 s, denoted by a black vertical line

at the center of each raster. Color denotes the high-gamma feature z-score normalized to a pooled pre-trial baseline period. Activity in electrode (A) appears to

represent a bilabial place of articulation, whereas activity in electrode (B) appears to indicate an alveolar place of articulation. Timing differences of high-gamma activity

relative to the voice onset time encoded the voicing of bilabial and alveolar consonants in these areas. Electrode (C) exhibited consistent high-gamma amplitude and

timing for all utterances; informing neural VAD but less useful for keyword discrimination. Electrode (D) appeared to encode consonant voicing across all places of

articulation. No clear patterns emerged if the trials were sorted by vowel height (/a/ vs /i/) for any electrodes in Subject 1.

Pairs of feature-vectors associated with keyword and non-
keyword utterances were assigned within stimulus blocks.
Additionally, feature-vectors associated with keyword utterances
were paired with feature-vectors corresponding to silent periods
(1.0 s before stimulus onset) to adapt the classifier boundary to
VAD false-detections during silent periods. In Figure 5, classifier
output was calculated using ground-truth utterance detections
derived from the microphone. During simulated testing, results
of which are shown in Figure 6, the classifier output was
calculated at times when the neural VAD model identified an
utterance. The slight temporal misalignments between neural
VAD and microphone-derived timing accounts for the different
classifier performances between these figures.

2.6. Testing and Performance Metrics
The templates, principle components, and discriminative
classifiers were trained on all trials of the reading task. Testing
and performance metrics were calculated from the application
of these models to the repetition task. A VAD performance
metric was calculated by sweeping the aforementioned VAD
threshold value from 0 to 20 standard deviations (relative to
baseline periods) and comparing the utterance detection times to
the ground-truth microphone threshold crossings. An utterance
detection within ±100 ms of a microphone event was classified
as a true-positive, but subsequent detections for that utterance
were considered false-positives.

An ROC curve was created for each of the keyword classifiers
using microphone-derived voice onsets in the repetition task. A
classifier threshold was swept from −10 to 10 and the resulting
keyword detections and false-positives were used to create an
ROC curve and derive area-under-curve (AUC) metrics for
each keyword classifier. Significance of the AUC statistic was
calculated by scrambling the ground-truth utterance labels while
training keyword detectors. A bootstrapped null-distribution of
1000 AUC metrics was generated for each keyword classifier,
from which statistical significance thresholds for the metric were

calculated. Keyword spotting performance using neural VAD
times was also calculated for each classifier using a threshold
that was chosen to maximize sensitivity while minimizing false
detections’ in particular, equalizing the error rates for false-
negatives and false-positives, the so-called “equal error rate”
condition (Motlicek et al., 2012)—on the training dataset.

3. RESULTS

Within the context of this methodology, discrimination between
keyword and non-keyword speech relies upon differences in
timing and/or amplitude of high-gamma activity. Differences in
high-gamma amplitude across keywords are useful in traditional
decoding approaches where only single time-points of high-
gamma activity are used to make classification decisions. Single-
trial plots, as seen in Figure 3, suggest high-gamma amplitude in
vSMC can be sufficient to decide the place-of-articulation for an
utterance. Consonant voicing appears to be encoded in the timing
of high-gamma activity relative to voice onset time. The sensation
of pressure build-up in the vocal tract prior to plosive release is a
plausible explanation for the timing of this discriminable neural
activation in electrodes a and b, especially given the placement of
these electrodes in postcentral gyrus; an area typically associated
with sensation.

The correlation of neural templates with high-gamma activity
created high-level features that appeared to be useful for
clustering utterances using these spatiotemporal relationships,
as shown in Figure 4. The discriminative quality of a neural
template appeared to rely primarily upon the number of trials
used to create it; a decrease in the template noise was associated
with a higher number of trials. A neural template for a particular
contrast highlights the difference from the mean template, which
can be a problem if there is no discriminable difference between
the contrasts. As seen in Figure 4, Subject 1 had very little
discriminable activity within the vowel height condition (/a/ vs
/i/), meaning the trial average across the ‘/a/’ condition and
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FIGURE 4 | Example neural templates and utterance discrimination in Subject 1. (A) From left to right: the response spatiotemporal matched filter; an average of all

keyword utterances, the bilabial spatiotemporal matched filter (STMF); an average of just keyword utterances with a bilabial place of articulation, the difference

template; the subtraction of the response spatiotemporal matched filter from the bilabial spatiotemporal matched filter, and the discrimination template; the regularized

and smoothed/denoised discrimination template for bilabial keywords. (B) Neural templates, created as a trial-average of particular keywords or phonemic contrasts

followed by regularization and normalization, are shown for the four electrodes (a, b, c, and d) depicted in Figure 3. The VAD template, shown at the bottom, is the

mean across all 120 trials in the task. The correlation of these templates with the high-gamma activity in the same task is shown in the plot to the right of the

templates for a contiguous period of ~95 to ~125 s into the reading task. Vertical gray lines in this plot indicate ground truth utterance times as recorded by a

microphone, and the associated utterance is indicated at the bottom of these lines. Peaks of the neural VAD output closely matched the utterance times. (C) The

values of these template features across all templates (including many not pictured) at the utterance onset times were collected and reduced to two dimensions using

multi-dimensional scaling, then plotted in the scatter plot, highlighting how these features clearly discriminate place of articulation and consonant voicing.

the ‘/i/’ condition were very similar to the trial grand-average.
Subtracting the trial-average from the two condition averages
resulted in a template that introduced significant noise to the
feature set. The inclusion of these templates was less of a
problem due to the following decomposition of these features
into principal components; the noisy template outputs tended to
be de-emphasized as they did not explain much of the variance
of the features across time. Noting that template output appeared
to fluctuate around neural VAD timings, temporal alignment was
absolutely critical when interpreting these features.

Neural VAD and keyword discriminability appeared to
be somewhat decoupled; several subjects showed consistent
high-gamma modulation across utterances that was useful for
performing VAD, but these features were less useful for keyword
discrimination, as shown in Figure 5. Subject 1 exhibited
exceptional VADwith highly significant discrimination of several
keywords. Subject 2 showed similar VAD performance, but
demonstrated relatively poor keyword discrimination. Classifiers
in Subject 1 leveraged neural features that discriminated
consonants well (shown in Figure 3), whereas classifiers from
Subject 2 were only informed by features that discriminated
vowel height and alveolar place of articulation, shown in

Figure 7. VAD and keyword discrimination results for all subjects
are shown in Supplementary Material.

4. DISCUSSION

This study is the first to examine keyword spotting using
ECoG. A neural keyword spotter could form the basis of a
menu-selection BCI for disabled users, or a low latency “neural
click” in a virtual reality context where the user is unable to
see/use a real-world input device. A BCI-enabled keyword spotter
could respond selectively to the user whereas acoustic keyword
spotters struggle to operate in multi-speaker conditions. These
results were obtained by performing a two-step classification
procedure involving neural VAD and keyword vs. non-keyword-
speech classification. As mentioned previously, neural voice
activity detection has been performed before using spectral
decomposition techniques and a discriminative classifier by
Kanas et al. (2014). Performing VAD using this method of
template-based “matched filtering” has a number of benefits
over this prior work. Due to the fact that all utterances are
roughly the same length and surrounded by silence, cross
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FIGURE 5 | Isolated VAD and keyword discriminability for two subjects. The left-most panel shows the electrodes highlighted in red and blue that were used to

discriminate syllables. Only electrodes highlighted in red were used to perform VAD. The center panel shows the VAD performance in sensitivity (percentage of

utterance timings correctly identified) against the number of false detections per utterance for various VAD thresholds. The right-most panel shows ROC curves for all

12 keyword detectors. ROC curves with AUC values were significant at the 95% confidence interval are highlighted in red. The keyword detector that produced the

highest AUC is highlighted in bold-red and indicated via annotation under the curves, followed by an asterisk that indicates significance at the p < 0.05 level with

respect to the distribution of maximum AUC models.

FIGURE 6 | Simulated keyword spotting performance on the testing dataset for all spotters across all subjects. For each subject, two boxplots relating the

performance of all 12 keyword spotters are shown; a blue boxplot to the left indicating the percentage of correct keyword detections with a value ideally closer to 1.0,

and a red boxplot to the right indicating the percentage of false keyword detections per utterance with a value ideally closer to 0.0. These performance metrics are

coupled to neural VAD performance, which is shown in the Supplementary Material for all subjects.
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FIGURE 7 | Vowel-specific high gamma activity from Subject 2 (top) and Subject 6 (bottom). Single-trial high-gamma rasters to the left are sorted first by place of

articulation, then by vowel height. Electrode (D) and (H) appear to encode vowel height, in similar areas of STG. Electrode (A) and (B) are micro-ECoG electrodes over

vSMC that appear to encode place of articulation. Electrodes (C), (F), and (G) appear to modulate consistently with all utterances and are more useful for VAD, but

provide little discriminative information. Modulation recorded by electrode (E) appears to be consistently related to articulation, but does not appear to discriminate

utterances by place of articulation or vowel height.

correlation with the neural VAD template actually provides a
good alignment point for the application of a discriminative
classifier. Furthermore, the cross correlation is computationally
efficient and only relies on a peak-picking implementation
to find utterances. The second-stage discriminative classifier
tends to classify VAD false detections as “non-keyword
utterances,” and serves as a secondary filter before detecting
keyword events.

Acoustic “wake word” spotting typically relies on keywords
that are low frequency and dissimilar from typical non-
keyword utterances, the most popular wake words being
words/phrases like “Alexa,” “Hey Siri,” and “Okay Google.” In
this study, monosyllabic keywords were chosen to examine
what makes keywords more distinguishable neurally as opposed
to acoustically. The utterances used in our experiment were
exceptionally similar to each-other, varying only by 1–3
distinctive articulatory features. Indeed, a particularly important
feature—keyword length—was the same across all utterances,
making the keyword detection problem significantly more
difficult. The simulated keyword spotting performance for all
keyword spotters in Subject 1 is shown in Supplementary Figure,
and the simulated keyword spotting summary performance

metrics are shown for all subjects in Figure 6. While this
performance is not comparable with the current state of the art in
acoustic keyword spotting, neural VAD alone appears to provide
a temporally precise 1-bit (silent vs. speech) BCI and the addition
of keyword discrimination would allow the user to trigger the
BCI while not restricting speech between intended triggerings.

The most striking finding from this study was that vowel
height was poorly represented in vSMC. This is consistent
with the findings of Bouchard et al. (2013) in which syllable
discrimination using a high-density grid in vSMC achieved lower
cluster separability of vowel height than manner of consonant
articulation. This result also corroborates a finding from Ramsey
et al. (2017) that vowels are the least distinguishable phonemes in
their test set; the authors speculated that lacking plosives, vowels
differ only in lip positions, which may not be well-represented
in this area. Our findings suggest that vowel height is well
represented in auditory association cortex areas STG, presumably
due to self-monitoring, shown in Figure 7.

None of the subjects in the study exhibited high gamma
activity that significantly encoded vowel height within vSMC.
Many studies indicate vowel phones may be decoded from
vSMC (Pei et al., 2011a; Bouchard and Chang, 2014; Mugler
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et al., 2014; Ramsey et al., 2017), although some studies
also note that decoding accuracy is generally worse than
consonant phones (Mugler et al., 2014; Ramsey et al., 2017).
None of the aforementioned studies report a failure to
decode vowel phones from vSMC, which is contrary to our
findings. This may be due to the fact that the vowels chosen
for this study, /a/ and /i/, result from a slight variation
in tongue height and do not involve differential activation
of the lips, such as with the vowel contrasts selected for
the aforementioned studies, /a/ and /u/, which can recruit
sensorimotor areas related to the face. This said, STG has been
shown to consistently modulate with differences in vowel height
(Mesgarani et al., 2014) during audition and self monitoring.
Practically, our results suggest that discrimination of vowels
during keyword spotting with a neural interface may be
improved by including auditory representations from STG with
sensorimotor representations from vSMC. This finding also
suggests that modulation and control of vowel height relies on
interactions between auditory areas and motor areas more than
consonant articulation which seems to be well represented in just
suprasylvian cortex.

The subject with electrode coverage most analogous to the
implant detailed in Bouchard et al. (2013) had a high-density
grid with 2-mm electrode diameter and 5-mm interelectrode
distance over somatosensory cortex. Although we showed no
significant neural differences between low and high vowel height
with this grid placement, the grid in Bouchard et. al. had a slightly
smaller pitch and this higher resolution may have captured more
information about vowel height than we observed. Similarly,
we showed significantly worse performance with lower density
coverage of vSMC, demonstrated by subjects with only standard-
density (2 mm electrode diameter and 1 cm pitch) coverage,
indicating that standard ECoG arrays are likely insufficient for
a comprehensive speech neuroprosthesis. Some subjects were
also implanted with microelectrode array grommets (75 µm
electrode diameter and 1 mm pitch); these arrays have a sensor
density similar to what is thought to be the spatial limit of
subdural neural recordings (Slutzky et al., 2010). Micro-ECoG
was useful in discriminating place of articulation for utterances
from Subject 2, but its utility was greatly dependent on placement
due to its limited spatial extent. An ideal ECoG array would
probably cover all of vSMC with the same 1 mm pitch, but
this is not yet technically feasible with clinically approved
ECoG electrodes and their connectors. Although our best results
came from a subject with a high density grid over vSMC,
our inability to observe neural activity associated with velar
consonants indicates that even these high density arrays do not
capture sufficient detail to distinguish all articulators (and hence,
all phones) necessary for a speech neuroprosthesis. Further
research into recording devices that cover a similar spatial extent
but with higher sensor density and channel counts might be
fruitful, but our results indicate that neural features recorded
from high density ECoG arrays can, at a minimum, produce
a usable neural interface for whole-word keyword spotting in
overt speech.

Correlating spatiotemporal templates with streaming high
gamma features was primarily motivated by existing keyword

FIGURE 8 | Keyword discrimination ROC curves for Subject 1 before (to the

left) and after (to the right) replacement of neural templates with rectangular

smoothing windows. Keyword discrimination performance dropped across all

models suggesting inclusion of spatiotemporal relationships using neural

templates aids keyword discrimination.

search methodology, as well as a recent study by Ramsey
et al. (2017). The temporal encoding of consonant voicing
in Subject 1 (see Figure 3) further motivated the application
of spatiotemporal template methodology. To evaluate the
contribution of neural templates to keyword discrimination,
the templates were replaced with a rectangular window of
the same size, resulting in smoothing of the high gamma
features on the same order as that of the templates. After
making this change, we observed a marked drop in keyword
discrimination, highlighted in Figure 8, suggesting that temporal
relationships between high-gamma events provide information
useful for discriminating keywords, and that these templates
are an effective way of quantifying these relationships in
single trials.
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A rational application of neural keyword spotting would
detect keywords that would have more contextual relevance
in the presence of continuous speech. Commercial keyword
spotting systems tend to select low-frequency words with more
discriminable acoustic features that maximize the probability
of keyword detection while minimizing the number of false-
positive detections during typical non-keyword speech. The
keywords chosen for this particular study were not selected with
these considerations in mind, but rather highlight how keyword
spotting performance varies primarily with the articulatory
representations sampled. For Subject 1, there were no electrodes
that showed high gamma modulation during the articulation of
syllables with a velar place of articulation—yet within the context
of this study—these articulations were readily discriminable
because of this lack of neural activity. Within the context of
Figure 3, a keyword that only modulated electrodes c and d, and
not a or b, can be reasonably deduced to have a velar consonant,
but if the keywords were downselected to just “GAH, KAH, GEE,
and KEE,” these keywords would not be sufficiently discriminable
using the coverage from Subject 1. As described earlier, Subject
1 also had no discriminable neural modulation across the vowel
contrast in the keyword set, with false detections tending to
trigger for the alternative vowel height (see simulated KWS
performance for Subject 1 in Supplementary Material). These
observations demonstrate why whole-word keyword spotting
approaches are better suited for neural data. Some phonemic
representations may not be sampled by a particular electrode
coverage even with high-density spatial sampling—particularly
if the neural populations associated with those articulators are
located in a sulcus, which surface ECoG has difficulty sampling.
They further demonstrate the inherent difficulty of performing
phonemic-based automatic speech recognition ala (Herff et al.,
2015) using even the high density neural recordings from our
best-performing subjects.

Critically, the results of this study suggest that the precise
temporal sequencing of neural activity correlated with the subset
of neural articulator representations that are sampled can be
sufficient to discriminate a keyword from non-keyword speech.
Furthermore, neural keyword spotting has several significant
advantages to an acoustic keyword spotting system. Neural
keyword spotting is capable of activating selectively to the
intended speaker even in the presence of multiple speakers,
and it performs keyword discrimination using features that
can discriminate acoustically similar words like “Alexa” and
“Balexa” which most commercial keyword spotting systems
would struggle with using acoustic features alone—especially in
the presence of noise. Although utterance detection using the
peak-picking algorithm described in this study would likely need
modification to properly trigger for keywords that occur mid-
vocalization, our results suggest that neural VAD as described by
this study would perform well for interaction with a virtual agent,
wherein a period of silence is followed first by the keyword, then
the command for the agent. We further propose that our results
demonstrate encouraging performance that motivates a follow-
up study using practical keywords in a less constrained scenario
involving continuous speech.

5. CONCLUSIONS

This study suggests that a high-sensitivity/specificity one-bit
neural keyword spotting BCI can be created using ECoG
recordings from vSMC and STG. Neural signals capturing speech
motor representations from vSMC appear to be useful for low-
latency (~1 s) and high-specificity VAD, while a combination
of neural signals from vSMC and auditory representations
from STG may be useful for discriminating keyword utterances
from non-keyword speech. Spatiotemporal relationships of
high gamma activity across electrodes, captured and efficiently
quantified using a method of neural template correlation, appear
to be instrumental for keyword discrimination. In this study,
keyword-spotting performance depended on several factors
including electrode density and the number of electrodes within
vSMC and STG. Our results suggest that high-density ECoG grids
may be necessary and sufficient for capturing the spatial layout
of cortical speech representations needed for a keyword-spotting
neural interface. Neural features that provide information about
consonant articulation appear to be best represented in vSMC,
with place of articulation primarily encoded by the spatial
location of high-gamma activity and consonant voicing encoded
by the temporal dynamics of this activity. Vowel height during
overt speech appeared to be poorly encoded by vSMC, but
better represented in traditionally auditory areas along STG
during self-monitoring. Although we did not test whether neural
activity in STG during covert speech was sufficient for decoding
vowel height, other studies have indicated that this may be
possible (Pei et al., 2011b; Leuthardt et al., 2012). Together with
these and other studies, our findings support the feasibility of
keyword spotting with an ECoG BCI provided that relevant
cortical areas are recorded with sufficient spatial sampling
and that keywords are composed of neurally discriminable
articulatory gestures.
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