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1,4-Disubstituted-1,2,3-triazoles, considered as an important and useful class of

heterocycles with potential applications in material science and biology, have been

prepared in an efficient and selective manner by copper on carbon-catalyzed [3+2]

cycloaddition reactions of azides and alkynes (CuAAC) in water under strict click

chemistry conditions. Copper(I) catalysts heterogenized onto commercially activated

carbon materials (Cu-CC) and on another carbon material produced from vegetable

biomass using Argan nut shells (Cu-CANS) were found to be versatile catalytic sources

for sustainable CuAAC. These copper on carbon supports were prepared and fully

characterized by using two types of activated carbons that exhibit different porosity

and specific surface. The delineation of the nature of the catalytic copper species and

the role of the carbon support in the CuAAC were addressed. These heterogeneous

copper on carbon catalysts were recovered and reused until ten catalytic runs without

any noticeable loss of activity.

Keywords: copper, activated carbon, 1, 2, 3-triazole, click chemistry, heterogeneous catalyst,

recovery/recycling, water

INTRODUCTION

1,2,3-Triazoles are important and useful non-classical bioisostere linkage heterocycles. They
have several applications as agrochemical agents, dyes, corrosion inhibitors, photostabilizers, and
photographic materials. Several 1,2,3-triazole derivatives show interesting biological activities
under the so-called peptidomimetic substances (Chung et al., 2002; Mark, 2006; Run et al., 2007;
Ostapenko et al., 2008; Zheng et al., 2008). The most popular method for the construction of 1,2,3-
triazole moiety is the Huisgen reaction of [3+2] dipolar cycloaddition of azides with alkynes (Yan
et al., 2005; Zhang et al., 2006). Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) (Tornøe
et al., 2002; Pachón et al., 2005; Bock et al., 2006) has emerged as one of the most reliable reactions
under the click chemistry regime (Kolb and Sharpless, 2003; Yadav et al., 2007) that enables
the practical and efficient preparation of 1,4-disubstituted-1,2,3-triazoles, from a wide range of
substrates with excellent selectivity, which cannot be achieved by traditional Huisgen non-catalyzed
thermal approaches (Huisgen, 1963).
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SCHEME 1 | Lipshutz’s protocol for the preparation of “copper-in-charcoal.”

The synthesis of 1,2,3-triazoles under CuAAC proceeds in the
presence of copper salts as homogeneous catalysts, which make
the separation and recovery of such copper catalysts very difficult
(Gaetke and Chow, 2003; Hong et al., 2010; Yang et al., 2014).
In addition, it is most likely that under homogeneous catalytic
fashion, the final 1,2,3-triazoles can be contaminated by copper
particles. So far, many challenges remain and much work still
needs to be done in terms of the copper catalyst recovery and the
obtention of copper-free 1,2,3-triazolic compounds. Therefore,
an efficient and simple way to synthesize 1,2,3-triazoles is still
necessary by working under strict click chemistry conditions
and taking into account the sustainable chemistry criteria. In
order to overcome these problems, recent works have focused on
heterogeneous catalytic systems, which have several advantages
such as good dispersion of the catalytically active sites, easier
and safer handling, easy separation of the products from the
reaction mixture and reusability of the catalyst. Thus, a good
number of heterogeneous catalytic systems has been developed.
For instance, immobilizing copper salts on silica and their use
as heterogeneous catalysts in CuAAC (Miao and Wang, 2008;
Coelho et al., 2010; Diz et al., 2015; Jumde et al., 2015), as
magnetic nanoparticles (Xiong and Cai, 2013; Moghaddam and
Ayati, 2015; Pourjavadi et al., 2015, 2016; Tajbakhsh et al., 2015;
Bahrami and Arabi, 2016; Jahanshahi and Akhlaghinia, 2016),
polymers (Bonami et al., 2009; Wallyn et al., 2011; Xiong et al.,
2016), zeolites (Chassaing et al., 2007, 2008), hydroxyapatite
(Masuyama et al., 2011), and carbon support such as charcoal
(Lipshutz and Taft, 2006) have been subject of previous works.

The Lipshutz group has in fact described the preparation
of copper-in-charcoal by impregnating of copper(II) nitrate
in activated carbon (Darco-KB) using water as solvent under
ultrasound radiation followed by distillation of water by
azeotropic drying with toluene. The prepared copper-in-charcoal
namely Cu/C was employed to assist the click of 1,2,3-triazoles
using high temperature microwave conditions (Scheme 1).

Although the Lipshutz’s copper-in-charcoal was efficient in
assisting CuAAC, the studied triazole click reactions made use
of a high catalyst loading of 10 mol%, an additional base (Et3N)
and were peformed at high temperature (60 ◦C) in a hazardous
solvent such as dioxane. The catalyst could be reused for only just
three catalytic cycles without any loss of its activity (Lipshutz and
Taft, 2006; Buckley et al., 2015).

In recent years, green synthesis and nature-friendly as well
as sustainable resources and processes involving supported
catalysts from agricultural wastes biomass have been found to
be of increasing interest in the synthesis of heterocycles. In the
context of our efforts to develop green, highly eco-efficient, and

SCHEME 2 | Preparation scheme of copper on carbon support made from

Argan nut shells Cu-CANS.

practical chemical methods utilizing bio-heterogeneous catalysts
in [3+2] cycloaddition reactions of azides with alkynes (Bahsis
et al., 2018), we herein report an easy sustainable protocol
for the synthesis of 1,2,3-triazoles. For that, we use a new
supported copper(I) on activated carbon materials easily made
from agricultural wastes biomass such as Argan Nut Shells,
namely Cu/CANS (Scheme 2). The choice of starting from CuX
(X = I, Br, Cl) precursor and its impregnation into the pores of
the carbon material in acetonitrile arises from the fact that such
precursor of Cu(I), considered as the catalytically active specie in
CuAAC, is nicely soluble in acetonitrile and the solutions are air
stable and may be stored at room temperature.

Such a copper-supported on carbon Cu/CANS was found
to be highly eco-efficient to assist CuAAC in water at room
temperature as well as a recyclable heterogeneous catalyst. The
commercially available activated carbonmaterial (Cu/C) was also
used for comparative purposes.

EXPERIMENTAL SECTION

General Methods
All chemicals were used as purchased without further
purification. The reactions were performed under ambient
conditions. NMR analyses were carried out on a spectrometer
Bruker AC-400 MHz (400 MHz for proton, 100 MHz for carbon)
by using deuterated chloroform as solvent. The chemical shifts
(δ) are expressed in ppm. The high resolution mass spectra
(HRMS) were recorded in the EI (70 eV) or FAB mode at
the mass spectrometry service of the University of Valencia.
Melting points were determined using a Stuart melting point
apparatus SMP3, employing the capillary tubes. FT-IR spectra
(4000–450 cm−1 range) were recorded with a Nicolet 5700
FT-IR spectrometer on samples prepared as KBr pellets. The
polycrystalline sample of each support was lightly ground
in an agate mortar, pestle and filled into 0.5mm borosilicate
capillary prior to being mounted and aligned on an Empyrean
PANalytical powder diffractometer using Cu-Kα radiation (λ
= 1.54056 Å). Three repeated measurements were collected at
room temperature in the 10◦ < 22 < 60◦ range with a step
size of 0.01◦. Scanning Electronic Microscopy (SEM) images
were obtained with a HITACHI-S4100 equipment operated at
20 kV. The specific surface areas were determined from the
dinitrogen adsorption/desorption isotherms (at 77K) on a
Quantachrome Autosorb-1 nautomatic analyzer using the BET
(Brunauer-Emmett Teller) method. The pore size distribution
was calculated from the N2 adsorption isotherms with the
classic theory model of Barrett, Joyner and Halenda (BJH).

Frontiers in Chemistry | www.frontiersin.org 2 February 2019 | Volume 7 | Article 81

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Aflak et al. Sustainable Construction of 1,2,3-Triazoles by Click Chemistry

The Scanning Electron Microscopy was carried out by using a
VEGA3 TESCAN microscope and a high resolution JEOL Field
Emission Gun-Scanning Electron Microscope (FEG-SEM).

Procedure for the Synthesis of the Benzyl
Azide Derivative
Benzyl bromide derivative (10.0 g, 58.5 mmol) and NaN3 (11.4 g,
175 mmol) were dissolved in 200mL of dimethylformamide. The
reaction mixture protected from light is stirred for 20 h at room
temperature. After filtration, water was added to the filtrate and
the product was extracted with dichloromethane three times. The
organic phases were combined, dried over anhydrous MgSO4,
then filtered-off and the solvents evaporated under reduced
pressure, yielding a liquid product.

Synthesis of 1-(Azidomethyl)Benzene
Colorless liquid. Yield: 90%. Rf = 0.8 in hexane/ethyl acetate
(4:1 v/v). 1H NMR (400 MHz, CDCl3, δ ppm): 4.39 (s, 2H,
CH2); 7.41–7.5 (m, 5H, CHar). FT-IR (film on NaCl, cm−1):
2,096 cm−1 (N3).

Synthesis of
(Azidomethyl)-4-Methoxybenzene
Brown liquid. Yield: 87%. Rf = 0.64 in hexane/ethyl acetate (4:1
v/v). 1H NMR (400 MHz, CDCl3, δ ppm): 3.68 (s, 3H, OMe);
4.13 (s, 2H, CH2); 6.78–6.81 (d, J = 12.00Hz, 2H, CHar); 7.11–
7.14 (d, J = 12.00Hz, 2H, CHar). 13C NMR (100 MHz, CDCl3, δ
ppm): 54.3 (CH2); 55.2 (CH3); 114.2 (2CHar); 127.4 (Car); 129.7
(2CHar); 159.64 (Car).

Procedure for the Synthesis of
1-Azidobenzene
Aniline (13 mmol) was suspended in 80mL of hydrochloric
acid (17%) at room temperature, then ethanol was added until
a clear solution was obtained. The solution was cooled to 0◦C
and NaNO2 (19.5 mmol) was added in small portions. After
stirring at 0◦C for 15–30min, NaN3 (19.5 mmol) was slowly
added (caution!! when handling NaN3) and the mixture was
stirred for additional 2 h at room temperature. The reaction
mixture was extracted with diethyl ether (3 × 80mL) and the
combined organic fractions were washedwith saturatedNaHCO3

solution (3 × 50mL) and with brine (50mL). After drying
over MgSO4 the ether was removed under reduced pressure
and the desired azidobenzene was obtained without further
purification as a brown liquid. Yield: 90%. Rf = 0.86 in hexane.
1H NMR (400 MHz, CDCl3, δ ppm): 7.08–7.44 (m, 5H, CHar).
13C NMR (100 MHz, CDCl3, δ ppm): 119.46 (CHar); 125.31
(2CHar); 130.19 (2CHar); 140.6 (Car). FT-IR (film on NaCl,
cm−1): 2,119 cm−1 (N3).

Procedure for the Preparation of Activated
Carbon-Argan Nut Shells (CANS)
The argan oil shells were collected, washed with distilled water,
dried at room temperature and crushed by a plunger ball mill
until a fine powder was obtained. The unmodified Argan nut
shells material is abbreviated as ANS. The prepared raw material

was treated by phosphoric acid with a mass proportion of
H3PO4/ANS 1:1. The mixture was stirred using the plaster mill
with a speed of 400 rpm/mn for 10min. Subsequently, the
mixture was kept at 120◦C during 4 h. The carbonization of the
obtained dried material was carried out in a muffle furnace at
500◦C for 1 h at air atmosphere, whereas the activation with
phosphate group would produce a well-developed porosity of the
as-prepared activated carbon. After cooling, the recovered solid
was crushed, washed several times with 0.15M HCl solution,
then with distilled water until the pH of the solution becomes
neutral (pH ∼ 7). The resulting material was dried completely
and then crushed again by the plunger ball mill at a speed of
400 rpm for 15min. Finally the obtained phosphate-containing
carbon material was kept in a hermetic glass bottle.

Synthetic Procedure of Copper on Carbon
Catalyst
The commercially available carbon (CC) or carbon prepared
from Argan nut shells (CANS) (1 g) was added to a solution of
copper(I) iodide (250mg) in acetonitrile (50mL). The suspension
was stirred overnight at room temperature and the resulting
solid compounds were filtered-off, washed with acetonitrile (2
× 15mL), diethyl ether (2 × 15mL) and dried overnight. The
catalyst was characterized by X-ray diffraction (XRD), scanning
electronic microscopy (SEM), and infrared spectroscopy
(FT-IR). Atomic Absorption Spectroscopy (AAS) (Aurora
AI800) was used to determine the copper contents in both
carbon materials.

General Procedure of Copper on
Carbon-Catalyzed Click of 1,2,3-Triazole
From Azides and Alkynes
Azide (0.751 mmol, 1.2 equivalent), alkyne derivative (0.622
mmol, 1 equivalent), and CuI (0.005 equivalent) on carbon
catalyst were placed in a reaction tube and 5mL of water was
added. Themixture was stirred for 6 h at room temperature. After
completion of the reaction as evidenced by TLC, the 1,2,3-triazol
product was extracted using diethyl ether and the Cu on carbon
catalyst separated by filtration. The combined diethyl ether
washings were evaporated under reduced pressure to afford the
corresponding final pure 1,2,3-triazole. The recovered catalyst
was dried and reused at least 10 times without any noticeable loss
of its activity.

Synthesis of
1-Benzyl-4-Phenyl-1H-1,2,3-Triazole (3a)
White solid. Yield: 94%. Rf= 0.3 in hexane/ethyl acetate (3:1 v/v).
Mp = 130–132 ◦C. 1H NMR (400 MHz, CDCl3, δ ppm): 5.60 (s,
2H, CH2); 7.28–7.44 (m, 8H, CHar); 7.68 (s, 1H, CHtriazole); 7.81–
7.83 (d, J = 8.00Hz, 2H, CHar). 13C NMR (100 MHz, CDCl3, δ
ppm): 54.4 (CH2); 119.5 (CHar); 125.9 (3CHar); 127.8 (2CHar);
128.2 (2CHar); 129.2 (CHtriazole); 131,5 (Car); 135.0 (Car); 148.3
(Ctriazole). HRMS (FAB+) m/z: Calcd for C15H14N3: 236.1188;
Found: 236.1177.
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Synthesis of Methyl
4-(1-Benzyl-1H-1,2,3-Triazol-4-yl)Benzoate
(3b)
White solid. Yield: 88%. Rf= 0.42 in hexane/ethyl acetate (2:1
v/v).Mp= 176–178 ◦C. 1HNMR (400MHz, CDCl3, δ ppm): 3.91
(s, 3H, OCH3); 5.58 (s, 2H, CH2); 7.33–7.38 (m, 5H, CHar); 7.74
(s, 1H, CHtriazole); 7.86–7.89 (d, J = 12.00Hz, 2H, CHar); 8.05–
8.08 (d, J = 12.00Hz, 2H, CHar). 13C NMR (100 MHz, CDCl3,
δ ppm): 52.3 (CH3); 54.5 (CH2); 120.4 (CHar); 125.6 (2CHAr);
128.3 (2CHar); 129.1 (2CHar); 129.4 (2Car); 129.7 (CHtriazolic);
130.3 (Car); 134.5 (Ctriazolic); 134.9 (Car); 147.3 (Car); 166.9
(CO). HRMS (FAB+) m/z: Calcd for C17H16N3O2: 294.1243;
Found: 294.1245.

Synthesis of 4-(1-Benzyl-1H-1,2,3-Triazol-
4-yl)-N,N-Dimethylbenzenamine (3c)
Yellow solid. Yield: 89%. Rf= 0.26 in hexane/ethyl acetate (2:1
v/v). Mp = 202–204 ◦C. 1H NMR (400 MHz, CDCl3, δ ppm):
2.97 (s, 3H, CH3); 5.54 (s, 2H, CH2); 6.72–6.75 (d, J = 12.0Hz,
2H, CHar); 7.26–7.38 (m, 5H, CHar); 7.53 (s, 1H, CHtriazole); 7.65–
7.68 (d, J = 12.00Hz, 2H, CHar). 13C NMR (100 MHz, CDCl3,
δ ppm): 40.6 (CH2); 54.2 (CH3); 112.5 (2CHar); 118.1 (Car);
126.8 (CHar); 128.1 (2CHar); 128.8 (2CHar); 129.2 (2CHar); 135.1
(Car+CHtriazolic); 150.5 (Ctriazolic). HRMS (FAB+)m/z: Calcd for
C17H19N4: 279.1609; Found: 279.1599.

Synthesis of 4-(1-Benzyl-1H-1,2,3-Triazol-
4-yl)Benzenamine (3d)
White solid. Yield: 92%. Rf = 0.48 in hexane/ethyl acetate (1:2
v/v). MP = 184◦C. 1H NMR (400 MHz, CDCl3, δ ppm): 4.85
(s, 2H, NH2); 5.56 (s, 2H, CH2); 6.72–6.75 (d, J = 12.00Hz,
2H, CHar); 7.31–7.35 (m, 5H, CHar); 7.49–7.52 (d, J = 12.00Hz,
2H, CHar); 8.05 (s, 1H, CHtriazole). 13C NMR (100 MHz, CDCl3,
δ ppm): 55.36 (CH2); 116.83 (2CHar); 121.07 (Car); 121.44
(CHar); 128.17 (2CHar); 129.43 (2CHar); 129.96 (2CHar); 130.44
(CHtriazolic); 137.32 (Car); 149.90 (Ctriazolic); 150.36 (Car). HRMS
(FAB+)m/z: Calcd for C15H15N4: 251.1297; Found: 251.1299.

Synthesis of Ethyl 1-Benzyl-1H-1,2,3-
Triazole-4-Carboxylate (3e)
White solid. Yield: 95%. Rf = 0.29 in hexane/ethyl acetate (2:1
v/v). Mp = 83–85◦C. 1H NMR (400 MHz, CDCl3, δ ppm): 1.35–
1.40 (t, J = 10.00Hz, 3H, CH3); 4.35–4.42 (q, J = 9.33Hz, 4H,
OCH2); 5.57 (s, 2H, CH2); 7.26–7.29 (m, 3H, CHar); 7.37–7.4 (m,
3H, CHar); 7.96 (s, 1H, CHtriazole). 13C NMR (100 MHz, CDCl3,
δ ppm): 14.4 (CH3); 54.6 (CH2); 61.4 (CH2); 127.4 (CHar);
128.4 (2CHar); 129.3 (CHar); 129.4 (CHar); 133.8 (CHtriazolic);
140.7 (Ctriazolic); 160.8 (CO). HRMS (FAB+) m/z: Calcd for
C12H14N3O2: 232.1086; Found: 232.1087.

Synthesis of
1,4-Diphenyl-1H-1,2,3-Triazole (3f)
White solid. Yield: 89%. Rf = 0.48 in hexane/ethyl acetate (3:1
v/v). MP = 183–184◦C. 1H NMR (400 MHz, CDCl3, δ ppm):
7.33–7.4 (m, 2H, CHar); 7.44–7.49 (t, J = 7.47Hz, 2H, CHar);
7.53–7.58 (t, J = 7.56Hz, 2H, CHar); 7.79–7.81 (d, J = 7.80Hz,

2H, CHar); 7.92–7.94 (d, J = 7.93Hz, 2H, CHar); 8.22 (s, 1H,
CHtriazole). 13CNMR (100MHz, CDCl3, δ ppm): 118.07 (2CHar);
120.98 (Car); 126.34 (2 CHar); 128,98 (CHar); 129,31 (CHar);
129,37 (2CHar); 130,23 (2CHar); 130.34 (CHtriazolic); 130.73 (Car);
137.47 (Ctriazolic). HRMS (FAB+) m/z: Calcd for C14H12N3:
222.1031; Found: 222.1029.

Synthesis of N,N-Dimethyl-4-(1-Phenyl-1H-
1,2,3-Triazol-4-yl)Benzenamine (3g)
Yellow solid. Yield: 87%. Rf= 0.5 in hexane/ethyl acetate (2:1
v/v). Mp = 169–171 ◦C. 1H NMR (400 MHz, CDCl3, δ ppm):
2.19 (s, 1H, CH3); 6.81–6.84 (d, J = 12.00Hz, 2H, CHar); 7.43–
7.58 (m, 5H, CHar); 7.80–7.82 (d, J = 8.00Hz, 2H, CHar); 8.08
(s, 1H, CHtriazole). 13C NMR (100 MHz, CDCl3, δ ppm): 40.6
(2CH3); 112.6 (2CHar); 116.1 (2CHar); 120.6 (5CHar); 126.9
(Car+CHtriazolic); 130.1 (Ctriazolic); 141 (Car). HRMS (FAB+)m/z:
Calcd for C16H17N4: 265.1453; Found: 265.1444.

Synthesis of Ethyl 1-Phenyl-1H-1,2,3-
Triazole-4-Carboxylate (3h)
White solid. Yield: 73%. Rf = 0.56 in hexane/ethyl acetate (2:1
v/v). Mp = 75–77◦C. 1H NMR (400 MHz, CDCl3, δ ppm): 1.41–
1.45 (t, J = 8.00Hz, 3H, CH3); 4.43–4.5 (q, J = 9.33Hz, 4H,
CH2); 7.46–7.58 (m, 3H, CHar); 7.74–7.76 (m, 3H, CHar); 8.51
(s, 1H, CHtriazole). 13C NMR (100 MHz, CDCl3, δ ppm): 31.1
(CH3); 61.6 (CH2); 120.9 (Car); 125.6 (2CHar); 129.6 (2CHar);
130.1 (CHtriazolic); 136.5 (Ctriazolic); 141 (CO). HRMS (FAB+)
m/z: Calcd for C11H12N3O2: 218.0929; Found: 218.0924.

Synthesis of 1-(4-Methoxybenzyl)-4-
Phenyl-1H-1,2,3-Triazole (3i)
White solid. Yield: 96%. Rf = 0.28 in hexane/ethyl acetate (3:1
v/v). Mp = 132–135◦C. 1HNMR (400MHz, CDCl3, δ ppm): 3.73
(s, 3H, OCH3); 5.43 (s, 2H, CH2); 6.82–6.85 (d, J = 12.00Hz, 2H,
CHar); 7.18–7.82 (m, 5H, CHar); 7.54 (s, 1H, CHtriazole); 7.69–7.72
(d, J = 12.00Hz, 2H, CHar). 13CNMR (100MHz, CDCl3, δ ppm):
53.9 (CH2); 55.4 (CH3); 114.6 (2CHar); 119.3 (2CHar); 125.8
(2CHar); 128.2 (CHar); 128.9 (2CHar); 129.8 (Car); 128.8 (2CHar);
130.7 (Car+CHtriazolic); 148.2 (Ctriazolic); 160.1 (CHar). HRMS
(FAB+)m/z: Calcd for C16H16N3O: 266.1293; Found: 266.1286.

Synthesis of Methyl
4-(1-(4-Methoxybenzyl)-1H-1,2,3-Triazol-4-
yl)Benzoate (3j)
White solid. Yield: 80%. Rf = 0.66 in hexane/ethyl acetate (1:1
v/v). Mp = 183–185◦C. 1H NMR (400 MHz, CDCl3, δ ppm):
3.74 (s, 3H, OCH3); 3.84 (s, 3H, OCH3); 5.44 (s, 2H, CH2); 6.83–
6.86 (d, J = 12.00Hz, 2H, CHar); 7.19–7.22 (d, J = 12.00Hz,
2H, CHar); 7.63 (s, 1H, CHtriazole); 7.77–7.80 (d, J = 12.00Hz,
2H, CHar); 7.97–8.00 (d, J = 12.00Hz, 2H, CHar). 13C NMR
(100 MHz, CDCl3, δ ppm): 52.1 (CH3); 53.9 (CH2); 55.3 (CH3);
114.5 (2CHar); 125.4 (2CHar); 129.5 (2CHar); 129.7 (2Car); 130.1
(CHtriazolic); 134.9 (Ctriazolic); 147.1 (Car); 160.0 (Car); 166.7
(CO). HRMS (FAB+) m/z: Calcd for C18H18N3O3: 324.1348;
Found: 324.1338.
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TABLE 1 | The specific surface area, average pore diameter, and Vtotal of pores of

CANS and CC.

Activated

carbon

SBET (m2/g) Average pore

diameter (nm)

VTotal of pores

(cm3/g)

CANS 1151.75 2.204 0.635

CC 702.76 1.168 0.193

CANS, carbon from Argan Nut Shells biomass; CC, commercially carbon.

Synthesis of 4-(1-(4-Methoxybenzyl)-1H-
1,2,3-Triazol-4-yl)Benzenamine (3k)
Yellow solid. Yield: 78%. Rf = 0.34 in hexane/ethyl acetate (1:1
v/v). Mp = 121–123◦C. 1H NMR (400 MHz, CDCl3, δ ppm):
2.09 (s, 1H, NH2); 3.73 (s, 3H, OCH3); 5.40 (s, 2H, CH2); 6.61–
6.64 (d, J = 12.00Hz, 2H, CHar); 6.81–6.84 (d, J = 12.00Hz,
2H, CHar); 7.17–7.19 (d, J = 8.00Hz, 2H, CHar); 7.41 (s, 1H,
CHtriazole); 7.49–7.52 (d, J = 12.00Hz, 2H, CHar). 13C NMR (100
MHz, CDCl3, δ ppm): 53.6 (CH3); 55.3 (CH2); 114.4 (2CHar);
115.1 (2CHar); 117.9 (2CHar); 126.8 (2CHar); 126.9 (2Car); 129.6
(Car + CHtriazolic); 146.4 (Ctriazolic); 159.8 (Car). HRMS (FAB+)
m/z: Calcd for C16H17N4O: 381.1402; Found: 281.1398.

RESULTS AND DISCUSSION

Synthesis and Characterization of Copper
on Carbon Catalyst
The synthesis of activated carbon from the local biomass such as
Argan nut shells by the chemical activation method was adopted
in this study. The advantage of this activation is to opt for low
pyrolysis temperatures and a smaller activation cost. The high
quality of activated carbon with a very large porous texture and
high surface area was prepared from Argan nut shells biomass by
using orthophosphoric acid as activating agent. This activation
process aims to develop and modulate the porous structure of
carbon, leading to a very sharp increase in its specific surface area.
Indeed, the specific surface area of activated carbon is one of the
most important physical structure parameters, the accuracy of its
measured value being essential for realistic reference significance.
In this work, the dinitrogen adsorption method was adopted
to measure the specific surface area of activated carbon and
the results obtained are summarized in Table 1. In this work,
the Brunauer–Emmett–Teller (BET) method was adopted to
measure the specific surface area of activated carbon and the
corresponding results are also summarized in Table 1. It can be
deduced from such results that commercially available carbon
material CC, used for comparative purposes, presents a specific
surface area equal to SBET = 702.76 m2/g with microspores
rounding a size <2 nm, while the prepared carbon material
CANS exhibits a highly porous structure as shown by the high
found value of the specific surface area found to be SBET =

1151.75m2/g) and themesoporous character evaluated at 2.2 nm.
This behavior allows easy access and contact between the reagents
employed in a given heterogeneous catalytic protocol.

The Cu-carbon catalysts were prepared by impregnation
of carbon supports with CuI in acetonitrile overnight at

FIGURE 1 | XRD results of CANS support (A), Cu-CANS material (B), and

phenylacetylene in Cu-CANS (C).

FIGURE 2 | XRD results of CC support (A), Cu-CC material (B), and

phenylacetylene in Cu-CC (C).

room temperature. The reaction mixture filtered, and the solid
successively washed with acetonitrile, diethyl ether and dried
under vacuum. The catalysts were characterized by several
techniques such as Scanning electronmicroscopy (SEM), Energy-
dispersive X-ray (EDX), X-ray diffraction (XRD) analysis, and
FT-IR spectroscopy.

The XRD patterns of CC, CANS, Cu-CC, and Cu-CANS are
presented in Figures 1, 2. The obtained XRD patterns displayed
the following diffraction peaks (2θ [◦]): 25.5, 29.46, 42.19, and
49.91◦ for Cu-CANS, (Figure 1) which can be correlated to the
(111), (200), (220), and (311) hkl indices, respectively, of CuI
(JCPDS no. 06-0246). As shown in Figure 2, five peaks at 2θ
= 25.47, 29.46, 42.34, 49.96, and 52.30◦ corresponding to the
(111), (200), (220), (311), and (222) planes of CuI (JCPDS no.
06-0246) were observed in the pattern of the Cu-CC composite,
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FIGURE 3 | Comparative FT-IR spectra of CuI precursor (red), Cu-CC (blue),

and Cu-CANS material (green).

indicating that CuI has been successfully loaded on the carbons.
The average crystallite size D of the nanoparticles is calculated
from the Scherrer equation: D = Kλ/(βcosθ), where K is
the Debye-Scherrer constant (0.9), λ is the X-ray wavelength,
β FWHM (full-width at half-maximum or half width) is in
radians, and θ is the Bragg diffraction angle. Here, the (111)
peak of the highest intensity was picked out to evaluate the
particle diameter of CuI. The values of the D constants were
calculated to be about 18.81 and 26.15 nm for nm for Cu-CC and
Cu-CANS, respectively.

Infrared spectroscopy is one of the most widely used
techniques in heterogeneous catalysis to characterize and identify
the purity of solids by the presence of characteristic bands of
extraneous compounds. Comparison between FT-IR spectrum of
copper particles on activated carbon with that of copper iodide
and with the carbon support reveals the appearance of weak
absorption bands at 496 cm−1 (Figure 3). This is related to the
supported copper particles on activated carbon. Furthermore, the
change observed in the absorption peaks of the carbonyl group
from 1654.7 to 1650.4 and 1561.4 to 1557 cm−1 is related to
the coordination of oxygen atoms (acetate and phosphate) to
copper metal ions (Samim et al., 2007; Ghouma et al., 2017).
The presence of oxygen atoms (phosphate-containing groups)
may afford the assembly of polynuclear copper ions in the carbon
support because of the known bridging ability of the phosphate
groups (Ikotun et al., 2010).

We used the scanning electron microscopy (SEM) to study
and visualize the morphology of the surface before and
after the immobilization of copper on activated carbons. The
SEM images of activated carbons and catalysts clearly reveal
the presence of different size pores on the raw activated
carbons and showed that both catalysts have the same shape
and contain a mosaic of copper particles of different sizes
and morphologies (Figure 4). The energy dispersive X-ray

FIGURE 4 | SEM images of CANS support (a), Cu-CANS (b), and Cu-CC

material (c).

(EDX) results obtained from the SEM analysis for the CANS,
and Cu-CANS showed the presence of C, O, Al and P
atoms for the former and C, Cu, and P atoms for the
latter (Figure 5).
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FIGURE 5 | EDX spectrum of (A) CANS and (B) Cu-CANS catalyst.

The copper contents in the carbon materials were determined
by AAS analysis and found to be 1.38 wt% of Cu for Cu-
CANS and 3.82 wt% of Cu for Cu-CC. Thus, 100mg of carbon
composite contains 2.18 mol% of copper for Cu-CANS and
6.01 mol% of copper for Cu-CC. The low copper loadings
in Cu-CANS compared with Cu-CC can be explained by
their respective preparation method and the functionalizing
groups that may coordinate to the copper ions in the
carbon material.

Adsorption Isotherms
The equilibrium adsorption isotherms are very important
for understanding the mechanism of the CuI adsorption on
both activated carbons investigated. The adsorption data were
analyzed with the help of the following linear forms of Freundlich
and Langmuir isotherms.

The Langmuir isotherm is valid for monolayer adsorption on
surface containing a finite number of identical sites (Langmuir,
1916). The linear form of the Langmuir isotherm can be

represented by the following equation:

Ce

qe
=

1

qmKL
+

1

qm
Ce

where Ce (mg/L) represents the equilibrium concentration of the
adsorbate, qe is the amount adsorbed at equilibrium (mg/g), and
KL (L/mg) and qm (mg/g) stand for the Langmuir constant and
the maximum amount of adsorbate, respectively.

The Freundlich isotherm model is an empirical equation
based on sorption on a heterogeneous surface or surface
supporting sites of varied affinities (Freundlich, 1906).
The linearized Freundlich model is represented by the
following equation:

log
(

qe
)

= log
(

Kf

)

+
1

n
log (Ce)

where Kf (mg/g) is the Freundlich constants related to the
sorption capacity and n is the heterogeneity factor.

As shown in Table 2, the comparison of the Freundlich and
Langmuir models, reveals that the values of the correlation
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TABLE 2 | Isotherm constants for adsorption of CuI on CANS and CC activated carbons.

Isotherm model Langmuir Freundlich

qmax KL R2 KF n R2

CANS 1,250 0.003 0.86 7.58 1.29 0.98

CC 0.63 0.037 0.90 1.05 1.09 0.95

TABLE 3 | Catalyst and conditions screening for the cycloaddition of benzyl azide and phenylacetylenea.

Entry Catalyst Cat. loading (mol %) Solvent Time (h) Yield (%)b

1 – – Water 24 0

2 CC – Water 24 0

3 CuCl-CC 5 Water 6 66

4 CuBr-CC 5 Water 6 74

5 CuI-CC 3 Water 6 99

6 CuI-CC 2 Water 6 98

7 CuI-CC 0.5 Water 6 77

8 CuI-CC 0.1 Water 6 74

9 CuI-CC 5 Ethanol 6 85

10 CuI-CC 5 Methanol 6 74

11 CuI-CC 5 Toluene 6 80

12 CuI-CC 5 Acetonitrile 6 98

13 CuI-CC 5 Hexane 6 35

aReaction conditions: benzylazide (0.75 mmol); phenylacetylene (0.62 mmol); solvent (5mL); and catalyst were mixed and stirred at room temperature.
b Isolated yields.

coefficient of the Freundlish isotherm (R2 = 0.98 and 0.95) are
high for both activated carbons. This result suggests that the
CuI was heterogeneously adsorbed on a multilayer surface and
the values found for n were >1, a feature which proves that the
adsorption on both adsorbents is favorable.

Catalytic Activity of the Cu-Carbon
Catalytic System in the Synthesis of
1,2,3–Triazole Derivatives
In order to explore the catalytic activity of the synthesized
catalysts and to optimize the reaction conditions for the
[3+2] cycloaddition, the reaction between benzyl azide and
phenylacetylene was chosen as a model [3+2] cycloaddition
reaction. As starting point, different reaction conditions such as
copper sources, solvent, and amount of catalyst were investigated
(see Table 3). The control experiments show that the [3+2]
cycloaddition reaction azide-alkyne does not take place in the
absence of the catalyst (entries 1–3, Table 3). Moreover, the
effect of copper(I) sources supported within the pores of both

CC and CANS was examined (entries 4–6, Table 3). In fact,
the results shown in Table 3 confirm the recently established
catalytic activity trend found in CuAAC assisted by several N-
heterocylic carbene copper(I) complexes, namely [(NHC)CuX]
[NHC = N-Heterocycle carbene; X = I, Cl, Br]: [CuI(NHC)]
> [CuBr(NHC)] > [CuCl(NHC)] (Díez-Gonzalez et al., 2010).
Our results show that among the studied Cu(I)-carbon catalysts,
CuI-CC and CuI-CANS are the most efficient ones for the 1,2,3-
triazole click reactions performed under strict click chemistry
conditions, specifically by using water as solvent and working
at room (entries 4–6, Table 3). Having identified the CuI-CC
and CuI-CANS as efficient catalytic systems for the reactions; we
then explored the effect of the catalyst amount on the conversion
yields and the catalyst loading being enhanced from 0.1 to 3
mol%. As a result, the conversion yields were increased from 70 to
99% by the increasing of catalyst amount (entries 6–8, Table 3).
However, no elevated conversion yields were observed once the
catalyst amount becomes greater than 3 mol%. Consequently, in
both Cu(I)-CC and Cu(I)-CANS catalysts, a catalyst loading of
0.5 mol% appears to be optimal with respect to excellent yields
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TABLE 4 | Cycloaddition of azides and alkynes catalyzed by copper-carbon catalystsa.

Entry Alkyne Azide Product Catalyst Yieldb (%) TONc TOFd

1 3a Cu-CC 77 154 25.66

Cu-CANS 95 190 31.66

2 3b Cu-CC 60 132 22.00

Cu-CANS 88 176 29.33

3 3c Cu-CC 91 182 30.33

Cu-CANS 89 178 29.66

4 3d Cu-CC 71 142 23.00

Cu-CANS 92 184 30.66

5 3e Cu-CC 76 152 25.33

Cu-CANS 95 190 31.66

6 3f Cu-CC 75 150 25.00

Cu-CANS 94 188 31.33

7 3g Cu-CC 76 152 25.33

Cu-CANS 87 122 20.33

8 3h Cu-CC 61 182 30.33

Cu-CANS 73 146 24.33

9 3i Cu-CC 76 152 25.33

Cu-CANS 96 192 32.00

10 3j Cu-CC 74 148 24.66

Cu-CANS 80 160 26.66

11 3k Cu-CC 76 152 25.33

Cu-CANS 78 156 26.00

aReaction conditions: azide (0.75 mmol); alkyne (0.62 mmol); water (5mL); catalyst (0.005 equivalent) mixed at room temperature.
b Isolated yields.
cTON, Turnovers number (moles substrate/moles of catalyst).
dTOF, Turnover frequency (TON/time of reaction).

and short reaction times. Furthermore, the catalytic reaction was
performed in different organic solvents, as shown in Table 3.
We found that the catalytic conversion yields in water and
acetonitrile were higher than those in other organic solvents,
such as ethanol, methanol, toluene and hexane (entries 8–12,
Table 3). As a matter of consequence, water known as a benign
and inexpensive solvent, was then used as the solvent of choice.

After optimizing the reaction conditions, in order to explore
the scope and generality of this protocol, several alkynes such
as para-substituted aryl alkyne derivatives and activated alkyne

with azides such as para-substituted benzyl and phenyl azides
were used as substrates for the synthesis of 1,4-disubstituted-
1,2,3-triazoles. The results are given in Table 4. They show
that the reactions are equally facile with both electron-donating
and electron-withdrawing substituents present on the aryl
alkynes and benzyl azides, as most of the reactions were
completed within 6 h, resulting one regioisomer in good to high
yields of the corresponding 1,4-disubstituted-1,2,3-triazole (see
Table 4). These 1,2,3-triazoles were obtained in good turnover
numbers ranging from 122 to 196. All the synthesized triazole
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FIGURE 6 | The proposed mechanism for the formation of 1-4-disubstituted-1,2,3-triazoles catalyzed by Cu/carbon.

FIGURE 7 | Recycling results of the Cu-CC and Cu-CANS catalytic systems in

the copper-catalyzed cycloaddition reaction of phenylacetylene and benzyl

azide.

derivatives were characterized by NMR spectroscopy and HRMS
analysis (see Supplementary Material).

On the basis of our previous reports (Ben El Ayouchia
et al., 2018), a stepwise mechanism of CuAAC is outlined in
Figure 6. The electron density of the alkyne in the proposed
mechanism is reduced by the copper(I) ion stabilized in pore of
the carbon support (A) forming the dinuclear copper-acetylide
(B), enabling a facile nucleophilic attack by the organoazide, and
then resulting in the corresponding complex (C). The next step

TABLE 5 | Loadings of copper in each 100mg of copper-carbon catalyst.

Catalyst Copper loading (wt%)

Before

reaction

After the first

cycle

After the eighth

cycle

Cu-CC 3.82 3.65 0.82

Cu-CANS 1.38 1.09 0.58

consists of a nucleophilic attack at N3 of the organoazide by
the acetylide carbon C4 forming the first covalent C—N bond
and then producing the intermediate (D). The ring contraction
of D leads to the formation of the triazolyl-copper (E). The last
step corresponds to a fast protonation of the copper triazolide,
releasing the final 1,2,3-triazole product as 1,4-regioisomer.

Stability and Recycling of the
Copper-Carbon Catalyst
Generally copper(I) catalysts are unstable and can readily oxidize
to copper(II). However, it is legitimate to question also the
stability of Cu-carbon entities as reagents in organic reactions.
The conservation of the copper(I)-carbon catalysts under non-
inert conditions (under air), did not cause any change in their
external aspects and it has been observed, unexpectedly, that after
1 year nothing has been lost of their activities. This heterogeneous
catalytic system offers easy manipulation and separation by
simple filtration, thus facilitating the recycling of the copper-
carbon catalysts. The recyclability of copper-carbon was tested in
the model cycloaddition reaction of phenylacetylene and benzyl
azide (Figure 7). After completion of the cycloaddition reaction
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TABLE 6 | Comparison of the catalytic activity of cooper-carbon catalysts with others heterogeneous copper-based catalytic systems.

Entry Catalyst Time (h) Cat. loading

(mol %)

Temperature/solvent Number of

cycle

Yield (%) Reference

1 Cu-CC 6 1 r.t./water 10 98 This work

2 Cu-CANS 6 1 r.t./water 10 98

3 Cu/C 48 10 23◦C/dioxane – 65 Lipshutz and Taft, 2006

4 Cu2O/C 2 5 r.t./i-PrOH:H2O 3 82 López-Ruiz et al., 2012

5 TRGO/Cu 48 2 40◦C/THF 4 99 Shaygan Nia et al., 2014

6 Cu-Alginate 18 21 r.t./water 3 98 Rajender Reddy et al., 2007

7 Cu-Chitosan 6 10 r.t./water 5 90 Anil Kumar et al., 2015

8 Cu-

Hydroxyappatite

16 5 50◦C/water 8 95 Masuyama et al., 2011

9 Cu-zeolite 15 10 r.t./toluene 5 83 Chassaing et al., 2007

in water at room temperature, the catalyst was recovered by
simple filtration and reused after washing with diethyl ether and
drying in the air. The catalyst was reused directly for the next
run under the same conditions. This process was performed
until 10 times without any significant loss of efficiency and
selectivity of the Cu-carbon as shown by the catalytic histogram
in Figure 7.

The percentages of the copper contents of the fresh and
recycled Cu-CC and Cu-CANS after the first and the eight
consecutive trial were determined by AAS analysis. The AAS
results shown in Table 5 indicate that the weight percentage
of the copper contents of the recycled catalysts after the first
cycles is around 3.65 wt% for Cu-CC and 1.01 wt% for
Cu-CANS, values which are lower than those of the fresh
catalyst, 3.82 and 1.38 wt%, respectively. After the eight catalytic
trial, the percentages of the copper content were found to
be around 0.82 wt% for Cu-CC and 0.58 wt% for Cu-CANS.
The decrease of the 1,2,3-triazole products yields is caused by
the loss of the catalytically active species copper(I) during the
work-up processes.

Comparison of the Copper-Carbon
Catalysts With Other Heterogeneous
Catalysts Containing Copper Particles
In principle, any efficient prepared catalytic system is expected be
superior to the commercially available catalysts used for the same
purpose. Taking into account this principle, it seemed important
to compare also the catalytic activity of the copper(I)-carbon
with that of other copper-containing heterogeneous catalysts
among the most active known for this type of cycloaddition

reaction such as Cu-charcoal, Cu2O-C, copper-graphene, copper-
alginate, copper-chitine, copper-hydroxyappatite, copper-argile,
and copper-resin (Table 6). The series of catalysts used proved
to be effective since the product was obtained with excellent
yields in all the cases. However, the total conversion of the
substrates was possible only after 15–18 h of reaction, proving
the lower reactivity of these catalysts in this type of reaction.
Remarkably, the Cu-CANS and Cu-CC catalysts have a higher
activity, allowing the formation of the desired product using only
0.5 mol% during 6 h of reaction. In addition, this catalytic system
has many advantages: it is robust, inexpensive, readily available,
non-toxic, and has no sensitivity to humidity or air.

CONCLUSIONS

In summary, we have successfully developed a highly efficient
and recyclable inexpensive copper on carbon heterogeneous
catalyst for the regioselective construction of 1,4-disubstituted
1,2,3-triazoles by the [3+2] cycloaddition reactions of azides
with alkynes under very strict click chemistry conditions with a
sustainable fashion. The copper on carbon Cu-CANS was readily
prepared by the copper(I) impregnation of carbon material
that has been made from a naturally raw vegetable biomass.
A wide range of azides and alkynes can be combined to form
the important biologically active 1,2,3-triazoles by using Cu-
CANS in water as solvent at room temperature. Cu-CANS was
recycled and reused for several catalytic trials without noticeable
loss of its catalytic activity. The use of benign water as solvent
at room temperature makes the entire catalytic protocol an
environmental friendly one.
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