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The Schur transform is a unitary operator that block diagonalizes the action of the symmetric
and unitary groups on an n fold tensor product V ⊗n of a vector space V of dimension d. Bacon,
Chuang and Harrow [5] gave a quantum algorithm for this transform that is polynomial in n, d and
log ε−1, where ε is the precision. In a footnote in Harrow’s thesis [18], a brief description of how
to make the algorithm of [5] polynomial in log d is given using the unitary group representation
theory (however, this has not been explained in detail anywhere1). In this article, we present
a quantum algorithm for the Schur transform that is polynomial in n, log d and log ε−1 using a
different approach. Specifically, we build this transform using the representation theory of the
symmetric group and in this sense our technique can be considered a “dual” algorithm to [5]. A
novel feature of our algorithm is that we construct the quantum Fourier transform over the so
called permutation modules, which could have other applications.

1 Introduction
Schur-Weyl duality is a remarkable correspondence between the irreducible representations of the symmetric
group and those of the unitary group acting on an n fold tensor product of a vector space V . This cor-
respondence allows one to construct all of the so-called polynomial representations of the unitary, general
linear and special linear groups. Polynomial representations of matrix groups such as unitary groups are
representations whose matrix entries can be written as polynomials in the entries of the group element i.e.,
ρ(U) is a polynomial representation if the entries of ρ(U) are polynomial in the entries of U . Schur-Weyl
duality has been generalized to many other groups and algebras including quantum groups [10, 17].

Schur-Weyl duality has numerous applications in quantum information theory. It has been used to prove
that the tensor product of many copies of a density operator is close to a projector. In fact, the projector is
the one corresponding to a partition in Schur-Weyl duality that is closest to the spectrum of ρ [2, 26, 21, 9].
It has also been used to prove de Finetti theorems [30], which have many applications in security proofs
of quantum key distribution systems. The Schur transform was first constructed for qubits in the work of
Bacon, Chuang and Harrow in [4]. This has been extended to qudits by the same authors in [5]. A quantum
circuit for the Schur transform also has numerous applications in quantum information theory. It has been
applied to universal distortion-free entanglement concentration [32], universal compression [21, 22], encoding
and decoding into decoherence-free subspaces [42, 29, 24, 3]. These applications and others are discussed
in more detail in Harrow’s thesis [18]. Recently, the Schur transform has been used as a primitive in an
efficient algorithm for spectrum testing of a density operator [35] and in algorithms for sample optimal state
tomography [34, 16] improving on previous algorithms [39, 14, 20, 25]. It is also used in a scheme for optimal
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1Specifically, Harrow sketches a procedure to obtain the same labeling of irreps as the ones used for Gelfand-Tsetlin basis.
Why this procedure leads to the Gelfand-Tsetlin basis itself (not just the same labeling scheme) could be explained in more
detail.
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compression [41], quantum superreplication [8, 7]. Recently, in [19], the authors present a classical algorithm
to compute the transition amplitudes of the Schur sampling circuits.

There are two main ways in which Schur sampling is used: weak and strong sampling. Recall that with
any kind of Fourier sampling, we block diagonalize the group action to obtain the Fourier basis from the
computational basis. Strong (resp. weak) sampling refers to measuring all the registers (resp. only the label
of the irreducible representation) to obtain information from the Fourier basis. Similarly, a circuit for Schur
sampling block diagonalizes the unitary group (or equivalently the symmetric group) representation on the n
fold tensor power of a d dimensional space. In this block diagonalization, each block essentially contains three
pieces of information: (a) the irrep label, which is common to both the unitary and symmetric groups, (b)
the unitary group irrep register i.e., the register holding the state that transforms under the unitary group
and (c) the symmetric group irrep register holding the state that transforms under the symmetric group.
Strong Schur sampling refers to measuring all three registers and weak Schur sampling refers to measuring
only the irrep label. One could always measure all three registers in some basis to obtain more information
about the state being transformed. However, in most of the above applications, one only needs to measure
the irrep label register. In other words, one only needs weak Schur sampling and the associated probability
distribution over the irrep labels to get enough information for all of the above mentioned applications.
Weak Schur sampling can be performed with a quantum circuit that is polynomial in log d, n and log(1/ε)
using the so-called Generalized Phase Estimation (GPE) procedure. The construction of such a circuit for
the weak Schur transform is described in [18].

In this paper, we present a circuit that can be used for strong Schur sampling using the representation
theory of the symmetric group that runs in time polynomial in log d, n and log(1/ε). In the previous approach
by Bacon, Chuang and Harrow (BCH) [5], the Schur transform is constructed using the unitary group
representation theory. By contrast, our algorithm uses the symmetric group and, in fact, uses transforms
such as Beals’ algorithm for the Fourier transform over the symmetric group [6] and the GPE algorithm
mentioned above. To give an intuition for how the dual Schur transform works, we should look at how
the original algorithm by BCH for the Schur transform works. BCH developed a quantum circuit for
the Clebsch-Gordan (CG) decomposition problem for the unitary group, which entails block diagonalizing a
tensor product of two irreps of the unitary group. Then they use this circuit to construct the Schur transform
by applying it iteratively.

This gives us a clue as to how to construct the dual transform if we look at the so called Littlewood-
Richardson (LR) coefficients. The LR coefficients give the number of times an irrep of the unitary group
appears in the CG decomposition of two unitary group irreps. The same coefficients describe the decompo-
sition of induced representations of the symmetric group from certain Young subgroups. This suggests that
we need to investigate permutation modules of the symmetric group since they are exactly such induced
representations. We can now see that block diagonalizing these induced representations gives us the dual
Schur transform. We will not directly work with LR coefficients or the related Kostka numbers, but embed
them in a larger space. This dual version is polynomial in log d, n and log(1/ε), where as the one in [5] is
polynomial in d, n and log(1/ε). However, as mentioned above, in Harrow’s thesis [18], a short description
is given of how to make the algorithm from [5] polynomial in log d, n and log(1/ε). A classical algorithm to
compute the CG coefficients for SU(d) is given in [1].

This paper is organized as follows. In Section 2, we explain the necessary background in representation
theory, namely the notions of induced representations, symmetric and unitary group representations and
the structure of permutation modules of the symmetric group. In Section 3, we describe the construction
of quantum Fourier transforms over induced representations. This construction was also used in [31] for
Fourier transforms over quantum doubles over finite groups. Then, we apply this QFT for permutation
modules which are essentially induced representations. In Section 4, we construct the dual algorithm for the
Schur transform and show that the construction is O(poly(n, log d, log 1/ε)) elementary operations. Finally,
in Section 5, we present some conclusions and other potential applications of our subroutines.
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2 Background in representation theory
2.1 Basics of induced representations
In this section, we briefly describe the representation theoretic concepts such as irreducible representa-
tions (irreps, for short), regular representations and induced representations. Induced representations are
important in this article since the dual Schur transform is essentially a block diagonalization of induced
representations. These concepts for finite groups are described in several texts such as [37, 12]. Here we
follow the development in [12].

A representation of a finite group on a finite dimensional complex Hilbert space V is a homomorphism
from the group G to the unitary group on the vector space U(V ) i.e., a representation is ρ : G→ U(V ). For
every finite or compact group, any representation on V can be made unitary i.e., ρ(g) is a unitary matrix for
all g ∈ G. Very often, the space which the representation ρ maps to, is identified with the representation.
Two representations ρ and ρ′ of a group G acting on the same vector space V are considered equivalent
if there exists a unitary U such that Uρ(g)U† = ρ′(g) for all g ∈ G. A subspace W of V is called a sub-
representation if ρ(g) preserves W for all g ∈ G. In this case, the orthogonal complement of W in V is also a
sub-representation and V can be viewed as a direct sum of these two sub-representations. A representation
is called an irreducible representation (irrep) if it does not contain any non-trivial sub-representations. Any
representation V can be broken up into a direct sum of sub-representations W and its complement as above.
Continuing this process further and breaking up W and its complement into sub-representations, one can
arrive at a decomposition of V into irreps: V ∼= V1⊕ · · ·⊕Vn, where some of the irreps in the decomposition
may be equivalent. A special kind of irrep is the trivial irrep which acts on a one-dimensional vector space
and takes all the group elements to the identity. Any finite group G has a finite number of irreducible
representations whose number is equal to the number of conjugacy classes of G.

A regular representation of a finite group G acts on the vector space C[G], where g acts on any basis
vector h by left multiplication g : h → gh. The regular representation turns out to have the following
interesting direct sum decomposition into irreps.

C[G] ∼=
⊕
i

W⊕dii , (2.1)

where Wi is an irrep of G, i runs over all the different irreps of G and di is the vector space dimension of
the irrep Wi. The quantum Fourier transform (QFT) over a group G usually refers to the transform that
performs the above block diagonalization. This can be defined as the following basis transformation.

|g〉 → |ρ, i, j〉 ,

where ρ is the label of the irrep, i is the multiplicity space index and j is the irrep space index. From the
above decomposition, we can see that the dimension of both the multiplicity space and irrep space are the
same and so i and j run over the same index set labeling the basis vectors.

A type of representation that is of particular importance here is the induced representation defined as
follows. Given a subgroup H of G and a representation (ρ,W ) of H, we can construct a representation V
of G as follows. As a vector space, it is the tensor product C[G/H] ⊗W , where C[G/H] is the space of
cosets of H in G. The action of G on this basis can be described using a transversal G/H = {t1, t2, . . . , tm}
for H in G, where m is the number of cosets i.e., m = |G|/|H|. This means that these elements form an
orthonormal basis of the vector space C[G/H]. Let {|w1〉, . . . , |wd〉} be a basis of W . We denote the induced
representation by ↑GH ρ or ↑G ρ (when H can be inferred). In this basis, (↑GH ρ)(g) is the following action on
basis vectors (which can be linearly extended to other vectors).

(↑GH ρ)(g) : |t〉 ⊗ |wi〉 7→ |t′〉 ⊗ ρ(h)|wi〉 (2.2)

where t′ ∈ G/H and h ∈ H are the unique elements for which gt = t′h.
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2.2 Irreducible representations of symmetric and unitary groups
The symmetric group on n letters is denoted Sn and consists of all possible permutations of the n letters.
There are n! permutations and every element can be written as a product of transpositions, where a transpo-
sition is a swap of two letters. Here we denote a transposition between a and b as (a, b). The representation
theory of the symmetric group is discussed in several books (see for example, [12, 23, 36]). The irreducible
representations of Sn are labeled by Young diagrams, which are diagrams that consist of rows of boxes. A
Young diagram corresponds to a partition of n, which is defined as a tuple λ = (λ1, λ2, . . . λk), where λj ≥ 0,∑
j λj = n and λk ≥ λl for k < l. Given a partition, a Young diagram has k rows and ij boxes in row j.

In this case, we say that there are k parts in the partition λ. For example, a Young diagram corresponding

to the partition (2, 1) (not to be confused with a transposition) is given by . A Young tableau is a

Young diagram with numbers in the boxes. If the numbers are from 1 to n, increasing from left to right
and increasing from top to bottom, then the Young tableau is called a standard Young tableau (SYT). For

example, for the partition (2, 1), an SYT could be
1 3
2 or

1 2
3 . In fact, these are the only possible

choices. This reflects the fact that the irrep labeled by this Young diagram is two dimensional. In general,
the dimension of the irrep of Sn corresponding to a partition λ is the number of possible standard Young
tableau. It is also given by the famous hook length formula

dλ = n!
Πi,j hλ(i, j) , (2.3)

where the product in the denominator is over all boxes (i, j) and hλ(i, j) is the hook length of a box, which
is defined as the sum of the number of boxes to the right (including the box (i, j)) and the number of boxes
directly below the given box (i, j). We will get back to other aspects of the symmetric group when we discuss
subgroup adapted bases and permutation modules in the next section.

The unitary group U(d) is the group of d×d unitary matrices that is an infinite, though compact, group.
The irreducible representations of this group can be labeled in several ways. Here, we describe the labeling
using both Dynkin labels and Young diagrams. A Dynkin label is the set of coefficients in the so called
basis of fundamental weights. Every irreducible representation has a basis whose vectors are called weight
vectors and have weights associated with them. In this basis, the highest (and lowest) weight vectors are
unique and, in fact, every irrep of the unitary group can be associated to a unique highest weight (and there
is a one-to-one correspondence between them). It turns out that the weight vectors lie in a space (called
the root space) spanned by the fundamental weights. This means that every highest weight (of any irrep)
can be written as a linear combination of the fundamental weights. The weights and weight vectors of a
given irrep form a special basis of the irrep of the unitary group called the Gelfand-Tsetlin basis. We will
discuss this basis in more detail below. It turns out that one can use Young diagrams to label irreps of the
unitary group as well. One can convert the Dynkin label representation to a Young diagram representation
in the following way: if the Dynkin labels are (l1, . . . lr), then the corresponding partition λ has components
λi = li + · · ·+ lr. Conversely, a Young diagram λ that represents an irrep can be converted to Dynkin labels
by setting li = λi − λi−1.

2.3 Subgroup adapted bases
A subgroup adapted basis is a canonical basis for an irrep of a group G that is obtained from a tower of
subgroups G0 = 1 ⊂ G1 ⊂ . . . Gn = G from the identity to G. To see how one obtains a canonical basis
from a given subgroup tower, first consider an irrep ρ of G = Gn. Suppose we restrict it to the subgroup
Gn−1, then ρ can be decomposed into irreps of Gn−1. Suppose that this restriction yields irreps σi of Gn−1
each with multiplicity mi, then choosing a basis for the multiplicity spaces and the irrep spaces would give
us a basis for ρ. In choosing a basis for the σi, we can restrict to Gn−2 and so on down the subgroup tower.
Finally, we would end up with the trivial subgroup and since it has only a one-dimensional irrep, this would
fix the entire basis. In the special case that each of the restrictions from Gi to Gi−1 are multiplicity-free i.e.,
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mi are all zero or one, we get a canonical basis. In other words, there is no ambiguity in choosing the basis
for the multiplicity space except for the choice of a phase for each multiplicity space.

In most applications, one makes a projective measurement in this basis, which makes this phase choice
irrelevant. However, if one were to perform other quantum operations conditioned on basis vectors after the
Schur transform, then the phase choice might be relevant. But in that case, one can incorporate that phase
choice into the conditional operations to be performed. We will see next that there are special subgroup
towers for both the symmetric and unitary groups that have multiplicity-free branching along the tower and
hence lead to canonical bases.

For the symmetric group, the tower of subgroups 1 = S1 ⊂ S2 ⊂ . . . Sn, where Si permutes the first i
letters and fixes the remaining n− i ones, gives a multiplicity-free branching rule from one subgroup to the
next. This tower is fixed once we number the n qudit registers in some fashion. The resulting canonical basis
is called Young orthonormal basis (also Young-Yamanouchi basis). This basis can be associated to Young
diagrams with numbers in the boxes with the rule that the numbers are strictly increasing as one goes from
left to right along a row and top to bottom along a column. As mentioned above, such numbered Young
diagrams are called standard Young tableaux (SYT). An example is given below.

λ =
1 3 4
2 5 6
7

. (2.4)

As is well-known, the symmetric group is generated by adjacent transpositions (k, k+ 1). If k and k+ 1 are
in different rows and columns in T , the action of any such transposition on an SYT T is given as

(k, k + 1)|T 〉 = aTk |T 〉+ bTk |(k, k + 1)T 〉 , (2.5)
(k, k + 1)|(k, k + 1)T 〉 = bTk |T 〉 − aTk |(k, k + 1)T 〉 , (2.6)

where aTk is the inverse of the Manhattan distance in T between the boxes labeled k and k + 1 and bTk =√
1− (aTk )2. The Manhattan distance between two boxes is the number of steps needed to go up plus number

of steps to the right minus number of steps to the left minus number of steps down. It can be seen easily
that this does not depend on the path taken. We use the notation |(k, k + 1)T 〉 to denote the SYT with k
and k + 1 interchanged, which can be seen to be a SYT. If k and k + 1 are in the same row, they must be
next to each other and the action is given as

(k, k + 1)|T 〉 = |T 〉 , (2.7)

and if they are in the same column (and necessarily in adjacent rows) the action is

(k, k + 1)|T 〉 = −|T 〉 . (2.8)

For the unitary group, a subgroup tower that leads to a canonical basis is 1 = U1 ⊂ U2 ⊂ . . . Ud, where Ui
is the unitary group acting on the i× i minor of the full d×d matrix. This tower is determined once we fix a
basis for each qudit register. This tower, like the one for the symmetric group, gives rise to multiplicity-free
branching and hence to a canonical basis. This canonical basis is called the Gelfand-Tsetlin basis. Given
any irrep λ of Ud in the form of a Young diagram, one can obtain the diagrams in the restriction to Ud−1
by removing a box from end of each column in all possible ways. If two columns have the same length in λ
and the choice is to remove a box from the left column, then one must also remove the box from the right
column to ensure that a valid Young diagram is obtained. An example is given below.

λ = →

 , , ,

 . (2.9)
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Suppose we pick one and proceed with a choice down the tower, we would have the following possibility.

→ → → . (2.10)

This sequence gives us a basis vector of the irrep λ. This can be encapsulated by putting numbers into the
original irrep, which represent the stage before which the boxes are removed. For the above sequence the
following numbering would hold.

1 1 2
2 3 3
3

. (2.11)

Notice that the rows are weakly increasing i.e., the numbers either increase or stay the same as we move right
and the columns are strictly increasing. Such a Young diagram is called a semi-standard Young diagram
(SSYT). SSYTs with numbers taken from the set [d] label basis vectors in the irrep of Ud. We will see below
that SSYTs also play a role in certain induced representations of the symmetric group called permutation
modules. Efficient encodings of these bases are constructed in [5] i.e., using poly(log d, n, log 1/ε) bits. For
a SSYT, the tuple that contains the number of boxes labeled by a given integer is called the content of the
SSYT. For instance, in the example above, the content is (2, 2, 3) corresponding to 2 boxes numbered one,
2 boxes numbered two and 3 boxes numbered three.

SSYTs have an interesting structure that is useful in our algorithms. If we consider all the boxes con-
taining a specific number, we find that no two of them appear in the same column. If we isolate these boxes,
such a skew diagram is called a horizontal strip. An SSYT can be thought of as being composed of horizontal
strips. It turns out that this composition can be made more precise as we describe in the next subsection.
An example of an SSYT and the associated horizontal strips are given below.

1 1 2
2 3 3
3

, 1 1 ,
2

2 ,
3 3

3 . (2.12)

In terms of horizontal strips, the above decomposition of an irrep λ of U(d) into irreps µ of U(d− 1) can be
rephrased as the set of all µ that can be obtained from λ by removing a horizontal strip in all possible ways.

2.4 RSK algorithm and composition of Young tableaux
The discussion in this section is taken from the book by Fulton [11]. This procedure is used in the algorithm
DualSchur (step 4). For a more detailed explanation of how to obtain SYTs with permuted content, see
[11] chapter 4. The RSK (Robinson-Schensted-Knuth) algorithm establishes a correspondence between pairs
of words and pairs of tableaux. The main part of the RSK is a procedure called row insertion that lets
one insert a letter into a tableau such that the resulting tableau is semi-standard with one more box. This
correspondence has several applications, but the primary application here is to produce semi-standard Young
tableaux where the content is permuted. In this subsection, we briefly describe this algorithm. The row
insertion procedure takes as input a tableau T and an integer x and outputs a tableau with one more box
than T . The procedure is as follows

1. Find the number in the first row of T that is greater than x.

2. If there is none, then place x in a box at the end of the first row.

3. If there are numbers greater than x in the first row, let y be the smallest among them. Place x in y’s
position (x ‘bumps’ y).

4. Repeat the previous steps with y (in the place of x) and starting with the second row.

6



The RSK algorithm uses the above row bumping procedure. It takes a pair of words, say u = u1u2 . . . ur and
v = v1v2 . . . vr that has the following two properties as input. The first is that u is weakly increasing and
second if uk−1 = uk, then vk−1 ≤ vk. Given such pairs as input the procedure produces a pair of tableaux
(P,Q) iteratively as follows. Start with the base tableaux x and y , where x = v1 and y = u1. Then from
any pair (Pk−1, Qk−1), row insert vk into Pk−1 getting Pk. Then add a box to Qk−1 in the position where
the new box is in Pk and put uk in this box.

This procedure allows us to define a product or composition of tableaux mentioned in the previous
subsection. Suppose S and T are two tableaux, then S · T is defined as follows. If T consists of only one
box, then the product of S and T is the result of row insertion into S. If T contains more than one box,
then we row insert them one by one into S starting from the bottom left box and moving left to right along
each row and upwards along the rows.

In this paper, we will need this procedure (in the algorithm DualSchur step 4) to create an SSYT V
from another SSYT U with the content permuted. In order to describe it for any permutation, we only need
to show it for a single transposition. As noted above, an SSYT consists of horizontal strips each having the
same number. Now suppose that the transposition is (k, k+1) i.e., if the original SSYT U contains nk boxes
numbered k and nk+1 boxes numbered k + 1, then the new SSYT V should contain nk+1 boxes numbered
k and nk boxes numbered k + 1. This is done by using the product defined above. It turns out [11] that we
can write U = A ·B ·C, where A is a SSYT that contains only boxes numbered 1 through k, B is an SSYT
that contains boxes numbered k and k + 1 and C is an SSYT that contains the remaining numbers. Since
B contains only two labels, it must be of the form

k k k k l l

l l s t

where l = k + 1 for brevity in the figure and the overhang consists of s boxes numbered k and t boxes
numbered l. When we swap the number of ks and ls, we obtain a similar diagram where the overhang
contains t ks and s ls. Denote this diagram by B′.

k k k k l l

l l
t s

Now the new SSYT V is obtained by composing A ·B′ · C using the RSK algorithm.

2.5 Gelfand-Tsetlin bases
An alternate way of representing the basis vectors of the unitary group is the so called Gelfand-Tsetlin (GT)
patterns. GT patterns are useful in certain applications, although one can easily convert an SSYT to a GT
pattern and vice versa. The power of GT patterns comes from the fact that in the GT basis, one can write
the matrix elements of the Lie algebra SU(d) as derived by Gelfand and Tsetlin [13]. The formulae in this
section can be found in the book by Vilenkin and Klimyk [40].

A GT pattern M is a triangle of numbers such as the one below.

M =


m1,d m2,d . . . md,d

m1,d−1 . . . md−1,d−1
. . .

...

m1,2 m2,2
m1,1

 . (2.13)

These numbers satisfy the in betweenness condition

mk,l ≥ mk,l−1 ≥ mk+1,l , 1 ≤ k < l ≤ d . (2.14)
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The numbers in the first row of the GT pattern correspond to the number of boxes in each row of the
corresponding SSYT. The number of boxes in the SSYT with the number l in row k is mk,l −mk,l−1. The
total number of boxes with the number l is therefore the difference of the row sums

∑
k(mk,l − mk,l−1)

(where mk,l = 0 if k > l). More systematically, in order to convert a GT pattern to an SSYT, we start from
bottom-most row of the GT pattern and create a partial SSYT with one row of m1,1 boxes labelled 1. Next,
we add m1,2−m1,1 boxes to this row labelled 2 and put m2,2 boxes in the second row labelled 2. Continuing
in this way, we add m1,l −m1,l−1 boxes to the first row labelled l, m2,l −m2,l−1 boxes in row two labelled
l etc. The in-betweenness conditions guarantee that the skew tableau with boxes labelled l is a horizontal
strip i.e., a skew tableau with at most one box in each of its columns. Now, to convert from an SSYT to a
GT pattern, we can use the fact that the number of boxes labelled l in the kth row is mk,l −mk,l−1 and fill
in the kth diagonal.

The generators of the Lie algebra of SU(d) are defined as follows.

J
(l)
0 = 1

2(El,l − El+1,l+1) , (2.15)

J
(l)
+ = El,l+1 , (2.16)

J
(l)
− = El+1,l , (2.17)

where Ek,l is the matrix with a one in the (k, l)th position and zeros everywhere else and 1 ≤ l ≤ d− 1. The
matrix elements of these generators can be expressed in the GT basis. The action of these elements on a
basis vector corresponding to a GT pattern |M〉 is given by

J
(l)
0 |M〉 =

[
l∑

k=1
mk,l −

1
2(

l+1∑
k=1

mk,l+1 +
l−1∑
k=1

mk,l−1)
]
|M〉 , (2.18)

〈M + δk,l|J (l)
+ |M〉 =

(
−

Πl+1
k′=1(mk′,l+1 −mk,l + k − k′)Πl−1

k′=1(mk′,l−1 −mk,l + k − k′ − 1)
Πl
k′=1,k′ 6=k(mk′,l −mk,l + k − k′)(mk′,l −mk,l + k − k′ − 1)

)1/2

,

〈M − δk,l|J (l)
− |M〉 =

(
−

Πl+1
k′=1(mk′,l+1 −mk,l + k − k′ + 1)Πl−1

k′=1(mk′,l−1 −mk,l + k − k′)
Πl
k′=1,k′ 6=k(mk′,l −mk,l + k − k′ + 1)(mk′,l −mk,l + k − k′)

)1/2

.

Here δk,l is a triangle of numbers like a GT pattern with zeros everywhere and a one in the kth diagonal and
lth row. It is not a valid GT pattern on its own. In the above formulae, only those M ± δk,l are considered
that are valid GT patterns.

2.6 Schur-Weyl duality
Schur-Weyl duality refers to the fact that the actions of the symmetric group and the unitary group on V ⊗n

are full centralizers of each other. A good description of Schur-Weyl duality can be found in the book by
Goodman and Wallach [15]. In terms of representations, this can be written as follows. Suppose we pick the
representation of the symmetric group on V ⊗n and block diagonalize it to obtain irreps as follows

V ⊗n ∼=
⊕
λ

Wλ ⊗ Vλ , (2.19)

where λ runs over all the irreps of the symmetric group, Vλ is the irrep space of the irrep λ and Wλ is
the multiplicity space on which the symmetric group acts trivially. Now consider the following action of
the unitary group: U⊗n i.e., the diagonal action where the same unitary acts on each copy of the vector
space V . This action clearly commutes with the action of the symmetric group. This means that in terms
of representations, Wλ is a representation of the unitary group for each λ. Schur-Weyl duality essentially
asserts that Wλ is not just a representation, but rather an irreducible representation of the unitary group.
Stated in yet another way, the same unitary transformation that block diagonalizes the symmetric group
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representation into irreps also block diagonalizes the unitary group representation into irreps. In order to
write this in terms of a basis, let us first pick a basis for V as {|1〉, . . . , |d〉}. Then a basis for V ⊗n is the set
{|i1, . . . , in〉}, where ik ∈ [d]. The basis after block diagonalization can be written as |λ, i, j〉, where λ labels
the symmetric (or unitary) group irrep, i is an index for a basis of the symmetric group irrep and j indexes
the unitary group irrep basis. In terms of this, the (strong) Schur transform can be defined as the unitary
transformation that changes the basis from the computational one i.e., |i1, . . . , in〉 to the block diagonal one
|λ, i, j〉.

The label i of the unitary group irrep is essentially a GT pattern or equivalently a SSYT and the label
j is a SYT since it corresponds to the Young-Yamanouchi basis element of the symmetric group. The GT
basis of the unitary group irrep λ consists of a highest weight given by (λ1, . . . , λd) and the highest weight
vector is represented by the SSYT of shape λ and content is also λ i.e., its first row contains all ones, second
row is all twos etc. In fact, the weight of any basis vector is the content of the SSYT. Therefore, all the basis
vectors corresponding to SSYTs of a fixed content µ are degenerate and the multiplicity of this weight space
is Kλ,µ. The correspondence between the Kostka number Kλ,µ and the multiplicity of the weight space with
content µ can be shown combinatorially (see for instance the book by Stanley [38]).

2.7 Permutation modules of the symmetric group
Now, let us look at so called permutation modules of the symmetric group, which are useful in understanding
the structure of the Sn representation on the space V ⊗n. For a more careful treatment, see the book
by Sagan [36]. First, define the type of any n-tuple E = (e1, e2, . . . , en) with ei ∈ [d] to be an n-tuple
T (E) = (t1, . . . , tn), where ti is the number of occurrences of i in E. Clearly,

∑
i ti = n and so corresponding

to any E is a partition µ(E). Given a type T , denote by W (T ), the set of all n-tuples of that type.
This set can be obtained by starting with the tuple E0(T ) = (1, . . . , 1, 2, . . . , 2, . . . , n, . . . , n), where there
are ti elements labeled i and then applying all possible permutations to it. Now, a permutation module
corresponding to T is the representation of Sn on the vector space with basis as the set W (T ). This basis
comprises of vectors of the form |E〉 = |e1, e2, . . . , en〉, where T (E) = T . Let µ = µ(T ) denote the associated
partition i.e., the tuple obtained by arranging the non-zero elements of T in decreasing order.

It turns out that the representation of Sn described above is an induced representation. It is induced
from the trivial representation of a particular subgroup to the full group Sn. This subgroup is denoted YT
and called a Young subgroup. The Young subgroup is the stabilizer of E0 i.e., all possible permutations of
Sn that preserve E0. So the permutation module is P (T ) = ↑SnYT 1. It turns out that the representation of
Sn on V ⊗n is just the direct sum of the permutation modules P (T ), where the sum is over all possible types
T . These permutation modules are reducible in general and decompose into irreps λ of Sn. However, not
all irreps appear in this decomposition. Only those λ which dominate µ(T ) (in a certain ordering defined
below) appear in the decomposition. Their multiplicities are called Kostka numbers and are denoted Kλµ.
The dominance order on the irreps or Young diagrams is the following. A Young diagram or a partition λ
is said to dominate µ if λ1 + · · ·+ λk ≥ µ1 + · · ·+ µk for all k ≥ 1.

Let us now look at the structure of the multiplicity space of any irrep in a permutation module. We
would like to understand this space and its basis since, in the dual version of the Schur transform, this space
leads to the irrep space of the unitary group. As mentioned earlier, the dimension of the multiplicity of λ in
the permutation module of the partition µ is Kλµ. This space has a basis in terms of semi-standard Young
tableau (SSYT) of shape λ and content µ (both of which are partitions of n) i.e., a Young diagram of shape
λ filled with µ1 ones, µ2 twos etc., such that the numbers are strictly increasing in the columns and weakly
increasing in the rows. As a special case, when λ = µ, we have Kλ,λ = 1. In other words, there is only one

SSYT with content and shape given by the same Young diagram. For λ = (2, 2), it is
1 1
2 2 and it turns

out that such SSYTs lead to highest weight vectors in the Gelfand-Tsetlin basis of the unitary group.
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3 Quantum Fourier transforms
3.1 Precision of quantum transforms
The precision of a unitary operator can be defined as follows. Given a target unitary V , U is called an
approximation to a precision ε if

sup
|ψ〉6=0

||(U − V )|ψ〉||
|||ψ〉||

≤ ε, (3.1)

where |||ψ〉|| is the norm of the state |ψ〉. It can be shown [27] that a computation consisting of a sequence
of L ε-approximate unitaries followed by a measurement that has a error probability δ has an overall error
probability ≤ δ + 2Lε.

When one has a m×m unitary matrix whose entries can be efficiently computed, one can use the Solovay-
Kitaev theorem to ε-approximate it by a sequence of gates from a universal gate set using O(m2 logc(m2/ε))
elementary operations. For a constant sized m, this is efficient in log(1/ε). As we will see below, the QFT
over the symmetric group Sn can be done in time O(poly(n, log(1/ε)).

3.2 QFT over the symmetric group
Although implicit in steps of Beals’ algorithm [6], the dependence on the precision ε is not written explicitly.
Here we show that it is poly(log(1/ε)). We briefly explain the steps in Beals’ algorithm for a quantum
Fourier transform over C(Sn) and the labeling of the Fourier basis used in it. The algorithm proceeds
by reducing each element of the symmetric group into a product of adjacent transpositions. The set of
adjacent transpositions {(12), (23), . . . , (n− 1n)} generate the group and hence any element can be written
as a product of adjacent transpositions. Beals’ algorithm uses subgroup adapted bases, strong generating
sets with small adapted diameter (techniques that have been generalized to several other groups in [33]).
By inductively constructing the Fourier transform on the subgroup tower {Sn, Sn−1, . . . , S1}, the algorithm
converts from the group basis |g〉 to the basis |λ, i, j〉. The indices i and j label the multiplicity space and
irrep space, which are of the same dimension since this is the regular representation. Therefore, they are
both labeled by SYTs defined above.

They can also be labeled by paths in the Bratelli diagram, which is a rooted tree with nodes at each level
n corresponding to all the inequivalent irreps of Sn. In this tree, there are edges between a node or irrep at
level n (say ρ) and a node or irrep at level n− 1 (say σ) if σ is contained in the restriction of ρ to Sn−1. The
multiplicity of this edge is equal to the multiplicity of σ in ρ. We will use this algorithm as a subroutine
below. We will denote a QFT over Sn as QFT(Sn) in the following and a QFT over any Young subgroup
YT by QFT(YT ).

The main steps in the algorithm can be summarized as proceeding from S1 to Sn along the tower,

1. Embed an irrep of Sk into an irrep of Sk+1.

2. Apply the unitary ρ(t), where ρ is an irrep of Sk+1 and t is a transversal i.e., an element of Sk+1/Sk.

3. Sum over all cosets of Sk in Sk+1.

Each of these steps involves applying a unitary transform that is sparse (as shown in [6]) with only a constant
number of non-zero entries that can be calculated efficiently. Using standard results described in the previous
subsection, we can approximate the QFT in poly(log(1/ε)).

3.3 Fourier transform over induced representations
As mentioned earlier, the usual Fourier transform is a unitary operator, which changes the basis from the
basis of group elements {|g〉 | g ∈ G} to the block diagonal form given in (2.1). In this subsection, we
use this transform to construct a Fourier transform for induced representations i.e., a transform that block
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diagonalizes induced representations. It turns out that the Fourier transform for induced representations
allows us to construct the dual Schur transform.

Suppose we have an induced representation from H to G of an irreducible representation σ of H i.e.,
we have ↑GH σ. The computational basis for this space can be written as |t, v〉, where t is an element of
the transversal and v is a basis vector in the representation space of σ. This induced representation is in
general reducible as a representation ofG and can be decomposed as a sum of irreducible representations. The
multiplicity of each irreducible representation ρ in the decomposition is equal to, using Frobenius reciprocity,
the multiplicity of σ in the restriction of ρ to H. We now describe how one can perform this transform.

The change of basis we want to implement is from the basis labeled |t, v〉 to a block diagonal basis labeled,
say |λ, i, j〉. Here λ labels the irreps that appear in the decomposition and i and j are the multiplicity and
the irrep space basis vectors.

1. First, we append an ancilla register of size |H|/dim(σ) (which is an integer) to the initial state so that
we have a register of size H (excluding the transversal register). We now embed |v〉 into this register
of size H as |σ, u, v〉, where u labels the multiplicity space of dimension dim(σ).

2. Next, perform the inverse QFT over H to get the group basis |h〉. So including the transversal register,
we have |t, h〉. Now, write this as |g〉. For the symmetric group, it turns out that this is easy since
both t and h are specified in terms of adjacent transpositions. However, if the group basis for certain
groups is defined in a complicated way, then this transform might be non-trivial.

3. Now perform the QFT over G to obtain the basis |λ, i, j〉. The label i is the multiplicity index, which
runs over the entire dimension of λ. However, for an induced representation, it would run over a
smaller set in general. Similarly for the irrep label. If the irrep and the multiplicity index labels can
be ordered in such a way that the ones that occur in the decomposition are higher in the ordering,
then we can easily return the ancilla register and obtain a clean transform. For the goal of block
diagonalization, this ordering is not so important. However, we will see that this can be done for the
case of the symmetric group.

3.4 Quantum Fourier transform over permutation modules
As explained above, permutation modules are induced representations from the trivial representation of
some Young subgroup YT to Sn. The Young subgroup YT can be regarded as the stabilizer group of some
n tuple E = (e1, . . . , en) of type T with entries ei ∈ [d]. This representation space is spanned by all possible
permutations of E. In order to construct the Fourier transform over this space, we first re-write these vectors
in a way that reflects the structure of the induced representation. In other words, we choose a transversal
and think of elements of the transversal |t〉 as basis vectors. Now, we can use the algorithm to construct
Fourier transforms over induced representations. For clarity, we make the steps involved more explicit here.

• First, take an ancilla of size |YT | (more precisely, m = dlog |YT |e qubits) with all the qubits in the
state |0〉. Here |YT | stands for the number of elements in the subgroup YT . The state |0〉m is taken to
be the label of the trivial irrep of YT .

• Then perform the inverse Fourier transform over YT to obtain the equal superposition over all the
elements of YT . This can now be thought of as a subspace of C(Sn) spanned by equal superpositions
over elements of cosets of YT in Sn.

• On this space, we can perform the quantum Fourier transform over Sn. This produces the basis |λ, i, j〉
with i and j labeled by SYTs.

The set of irreps λ that appear in the decomposition are the ones that dominate the Young diagram corre-
sponding to YT . Similarly, the multiplicity space, although embedded inside a space of dimension dλ, does
not have support on all the vectors. It will be supported only on Kλµ many vectors. This space is the
multiplicity of the trivial representation of the subgroup YT when λ is restricted to YT .
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While the algorithm above does an essential block diagonalization, we would ideally like to have the
multiplicity index label basis vectors of the right subspace rather than have it label the basis of a larger
space. In order to do this, we need to change the basis inside multiplicity spaces to correspond to the trivial
space under the action of the subgroup YT . This follows from Frobenius reciprocity as mentioned earlier.
It turns out this is also important to get to the Gelfand-Tsetlin basis in the dual Schur transform that we
construct in the next section. To perform this base change in the multiplicity spaces, we can use generalized
phase estimation (GPE) [18]. GPE is a generalization of Kitaev’s phase estimation technique [28]. In this
technique, one can block diagonalize any representation ρ(g) if one can perform ρ(g) with g as control. The
main reason why we need the GPE is to organize the multiplicity space into a basis that consists of vectors
that transform trivially under YT . We can use this primitive to re-organize the multiplicity space.

The action of YT and Sn in the multiplicity space is the so called right regular representation R. This acts
on Young tableau according to the Young orthonormal representation since for the right action of Sn, the

multiplicity space is an irrep. The result of performing GPE on the basis vector
1 2
3 4 (say) for YT = S2×S2

would be to stabilize it. In other words, performing (12) or (34) does not affect the vector. This would then

correspond to the SSYT
1 1
2 2 . Some vectors do not appear in the multiplicity space of the trivial irrep of

YT in GPE. For example, the vector
1 3
2 4 would be taken to zero by the action of YT . These statements

are proved later in generality. In order to attain this change of basis, we need to perform GPE. At the end
of GPE, instead of standard Young tableau labeling the basis vectors of the multiplicity space, we would
have λ(YT )|T 〉, where T is a SYT. Here

λ(YT ) = 1
|YT |

∑
g∈YT

λ(g) , (3.2)

and λ(g) is the representation corresponding to the partition λ evaluated at the group element g.
In order to have a controlled application inside the multiplicity space, we can first apply a controlled

right multiplication and then apply the quantum Fourier transform. We can just combine GPE with the
algorithm described above to get a decomposition of the multiplicity space. However, for completeness, we
explicitly list out all the steps below. The algorithm for GPE and its performance guarantee are as follows
[18].

GPEρ(G)
Inputs: A quantum state |ψ〉 in the representation space of ρ of a group G.
Blackbox: The ability to perform controlled multiplication in the representation ρ.
Outputs: The outcome λ of an irrep of G with probability pλ = 〈ψ|Πλ|ψ〉.
Runtime: 2TQFT (G) + TCρ , where TQFT (G) is the time to perform a QFT over the group G and
TCρ is the time to perform controlled multiplication in the representation ρ.

1. Take an ancilla register consisting of dlog |G|e qubits and create an equal superposition over
elements of G.

2. Perform Cρ =
∑
g |g〉〈g| ⊗ ρ(g).

3. Perform a QFT(G) to the ancilla register.

4. Measure the irrep label of the ancilla register.

The black box in the above algorithm can be made explicit in the following algorithm. The representation
ρ turns out to be the usual right regular representation and can be efficiently implemented. The overall
algorithm to block diagonalize permutation modules is the following. This algorithm is potentially applicable
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GPE

|YT 〉C QFT (YT )

|YT 〉B |ψ〉A R(g) QFT (Sn)

Figure 1: Circuit diagram of QFTPermMod. Here |YT 〉 stands for an equal superposition over the elements of the
subgroup YT , the registers B and C contain the state |YT 〉, register A contains an arbitrary state |ψ〉 with support
on the transversal. The dotted red box shows the part that is GPE.

to other problems where one needs to block diagonalize induced representations and could be of independent
interest. In the following, we will use GPE as a unitary module without the measurement step (step 4
above). The algorithm QFTPermMod described next is essentially the quantum part of the algorithm
DualSchur described in the next section. To make things clear, we have included a block diagram of the
algorithm QFTPermMod in Fig. 1.

QFTPermMod(YT )
Inputs: A quantum register A with the computational basis given by elements of the transversal
of YT in Sn.
Outputs: Quantum registers |λ, i, j〉 corresponding to the block diagonalization of the induced
representation of the trivial irrep of YT to Sn.
Runtime: O(poly(n, log ε−1)).

1. Take an ancilla register B consisting of dlog |YT |e qubits and create equal superposition over
elements of YT .

2. Perform GPER(YT ) on register AB where R is the right regular representation of Sn.

3. Perform a QFT(Sn) on the registers AB.

Theorem 1. The above algorithm QFTPermMod performs a block diagonalization of the permutation
module in time O(poly(n, log ε−1)).

Proof. The proof can be broken into three parts.

1. We show that for states of the form
∑
t at|t〉, performing GPE and measuring the irrep of YT would

always give the trivial irrep.

2. We show that when the trivial irrep of YT appears in the measurement, the computational basis of the
multiplicity space is rotated from SYTs to (the normalized version of) λ(YT )|T 〉, where T is a SYT.

3. Then we show that the states λ(YT )|T 〉 are in one-to-one correspondence to SSYTs whenever the states
are non-zero.

Part (i)
To show that we always get the trivial irrep of YT for states of the form

∑
t at|t〉, where t is the transversal

of YT in Sn, we track the state through the steps of the algorithm.

1. Suppose we had the state
∑
t at|t〉A, where t is an element of the transversal of YT in Sn. We take an

ancilla register B consisting of log |YT | qubits to get
∑
t at|t〉A|0〉B .
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2. Perform inverse QFT over YT on the B register to obtain an equal superposition over group elements
of YT . This allows us to view the registers A and B together as the group basis of Sn. This step takes
O(polylog |YT |) time since the QFT over YT can be done efficiently for Young subgroups (as they are
direct products of symmetric groups). We now have the state

∑
t,h bt|t〉A|h〉B . Here h runs over all the

elements of YT and bt = at/
√
|YT |.

3. Perform GPE, which consists of the following steps. This takes O(polylog |YT |+ poly(n)) time since
controlled R operations can be done in poly n time and there are two QFTs over YT .

• Take a register C of log |YT | qubits initialized to |0〉 and obtain an equal superposition over YT in it.
This gives us the state ∑

t,h1,h2

ct|t〉A|h1〉B |h2〉C , (3.3)

where h1 and h2 run over all elements of YT and ct = bt/
√
|YT |.

• Conditioned on the register C, perform a controlled right multiplication on the group basis of Sn in
registers AB i.e., perform ∑

h∈YT

|h〉〈h|C ⊗R(h)AB , (3.4)

where R is the right multiplication in Sn. This gives the state∑
t,h1,h2

ctR(h2)AB (|t〉A|h1〉B) |h2〉C . (3.5)

This state can be rewritten as ∑
t,h1,h3

ct (|t〉A|h3〉B) |h−1
1 h3〉C , (3.6)

where we have replaced h1h2 as h3.
• Perform QFT(YT ) on C. This gives us the following state

∑
µ,k,l,h1,h3,t

√
dµ

|YT |
[µ(h−1

1 h3)]k,l ct |t, h3〉AB |µ, k, l〉C , (3.7)

where µ runs over all the irreps of YT and k and l run over its dimension. The sum over h1 forces µ
to be the trivial irrep of YT . Thus, for states of the form

∑
t at|t〉, we will always get the trivial irrep

when we measure µ.

Part (ii)
If we had done a QFT over Sn and not performed GPE before that, we would have had the basis of the
multiplicity space labeled by SYTs. Here we show that, after performing GPE and when µ (the irrep label
of YT ) is trivial, the basis of SYTs is rotated to λ(YT )|T 〉, where T is a SYT of shape λ. Starting with a
state of the form |th1〉 and performing GPE would give us the state

∑
µ,k,l,h2

√
dµ

|YT |
[µ(h2)]k,lR(h2)|t, h1〉AB |µ, k, l〉C , (3.8)

Next we perform a QFT over Sn on this state to get the following state

∑
h2,λ,µ,T1,T2,k,l

√
dµdλ

|YT |n! [λ(th1)]T1,T2 [µ(h2)]k,l(|λ〉 ⊗ λ(h2)|T1〉 ⊗ |T2〉)AB |µ, k, l〉C , (3.9)
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where T1 and T2 are SYTs. Since the right regular representation acts only on the first register, we have the
λ(h2) acting only on |T1〉. When µ is trivial the basis state |T1〉, which corresponds to a SYT gets taken to
λ(YT )|T1〉.

Part (iii)
We show next that λ(YT )|T 〉 can be identified with semistandard Young tableau of shape λ and content
defined by YT . In other words, if YT = SX1 × SX2 × · · · × SXk for some k, then the content is |X1| 1s, |X2|
2s etc. Also note that the sets Xi consist of consecutive integers. The SSYT associated with λ(YT )|T 〉 is
the one where all the integers in Xi are replaced by i. This is a valid SSYT if no two integers in Xi are in
the same column or equivalently, every column has at most one element of Xi. If we isolate the boxes in the
SYT labeled by elements of Xi and they have the property above, such a skew Young diagram is called a
horizontal strip as described in section 2.3.

We now only need to show that for every Xi that if the boxes numbered with elements of Xi form a
horizontal strip, then λ(YT )|T 〉 is non-zero and it is zero otherwise. To show this, we focus on a single
Xi and show that if there are two elements of Xi in the same column, then λ(Xi)|T 〉 = 0. This is done
next in lemma 2. Finally, the claim of the dependence on ε follows from the fact the each of the steps
in the algorithm (including the group multiplications and quantum Fourier transforms) can be done with
O(polylog ε−1) elementary gates based on the results described in section 3.1 and 3.2.

Lemma 2. Let A be a set of consecutive integers {a1, . . . ak}, SA be the symmetric group of size |A|!
permuting the elements of A. Let |T 〉 be a SYT of shape λ with entries that include the set A. Let λ(SA) =∑
π λ(π), where π runs over elements of SA. Assume that T contains two elements of A in the same column.

Then, λ(SA)|T 〉 = 0, where λ(π) is the Young orthogonal representation on SYTs.

Proof. Since the elements of A are consecutive integers, we can assume without loss of generality that there
are two elements of A that appear in the same column and in consecutive rows. Let the elements be i and j
with j > i. We first show that if j = i+ 1, then λ(SA)|T 〉 = 0 and then reduce the general case to this one.

So assume now that i and i+1 are in the same column (they have to be in consecutive rows). The action
of the transposition (i, i + 1) is λ((i, i + 1))|T 〉 = −|T 〉. Therefore, λ(e + (i, i + 1))|T 〉 = 0, where e is the
identity element. It is easy to see that for any set K = {i1, i2 . . . ir}, the symmetric group algebra element
that is a sum of all possible permutations of the elements of K can be written as follows.

SK = ((ir, i1) + · · ·+ (ir, ir−1)) . . . ((i3, i1) + (i3, i2) + e) ((i2, i1) + e) (3.10)

While this factorization is dependent on the ordering of the elements, the overall group algebra element SK
is independent of it. Using this and writing A = {i, i+ 1, i+ 2, . . . , ak, a1, a2, . . . , i− 1}, we obtain

SA = S′A ((i, i+ 1) + e) , (3.11)

where in S′A, we collect the rest of the terms i.e., S′A is a product of sums of transpositions coming from the
factorization above. It is now easy to see that SA|T 〉 = 0 if T contains i and i+ 1 in the same column. For
the general case, assume inductively that when i and j − 1 are in the same column, then SA|T 〉 = 0. Now,
suppose that i and j are in the same column and in consecutive rows.

Consider the element k, where k is the largest element between i and j such that k is in a different row
from j and all elements between k and j are in the same row as j. For example, if j − 1 is in a different
row from j, then k = j − 1. This, in particular, means that k and k + 1 are in different rows. If they are in
the same column, then we are done. So assume that they are not in the same column. Then we have Let
(k, k+ 1) be a transposition and let |(k, k+ 1)T 〉 be the SYT with k and k+ 1 interchanged. Since they are
not in the same row or column, (k, k + 1)T is also a SYT. We have

(k, k + 1)|T 〉 = aTk |T 〉+ bTk |(k, k + 1)T 〉 , (3.12)
(k, k + 1)|(k, k + 1)T 〉 = bTk |T 〉 − aTk |(k, k + 1)T 〉 , (3.13)
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where aTk is the inverse of the Manhattan distance in T between k and k + 1 and bTk =
√

1− (aTk )2. Using
these equations, we have

|T 〉 = (Ae+B(k, k + 1))|(k, k + 1)T 〉 , (3.14)

where Ak = 1
bT
k

and Bk = aTk
bT
k

. Therefore, we have

SA|T 〉 = SA(Ake+Bk(k, k + 1))|(k, k + 1)T 〉 = (Ake+Bk(k, k + 1))SA|(k, k + 1)T 〉 , (3.15)

where the last equality follows from the fact that both e and (k, k+ 1) commute with SA. Now note that in
(k, k + 1)T , k + 1 and k + 2 are not in the same row or column. Continuing this process we get

SA|T 〉 =(Ake+Bk(k, k + 1))(Ak+1e+Bk+1(k + 1, k + 2)) . . . (Aj−1e+Bj−1(j − 1, j))
SA|(j − 1, j) . . . (k, k + 1)T 〉 . (3.16)

It is easy to see that |(j − 1, j) . . . (k, k + 1)T 〉 is a SYT where i and j − 1 are in the same column and
consecutive rows. By the induction hypothesis, we have SA|(j − 1, j) . . . (k, k + 1)T 〉 = 0.

4 Dual algorithm for the Schur transform
We are now ready to describe our dual algorithm for the Schur transform using the above tools. It involves
essentially two main steps. The first is a block diagonalization into permutation modules and the second is
a block diagonalization of each permutation module into irreps using the above transform. The algorithm is
as follows.

DualSchur(n, d, ε)
Inputs: A quantum register A with the computational basis given by n-tuples |e1, . . . , en〉, where
ej ∈ [d].
Outputs: Quantum registers |λ, i, j〉, where λ is the irrep label of the symmetric or unitary groups,
i is the irrep label of the symmetric group in the Young orthonormal basis and j is the irrep register
of the unitary group in the Gelfand-Tsetlin basis.
Runtime: O(poly(n, log d, log ε−1)).

1. Map the entries of any basis vector that are greater than n to entries inside n and keep
track of this mapping. For example, |e〉 = |e1, . . . , en〉 is now |pe, ẽ〉, where ẽ is a vector with
entries in [n] and pe is the map.

2. Convert |ẽ〉 to |T , t〉, where T is the type and t is the transversal element of the subgroup
YT in Sn.

3. Conditioned on T , apply QFTPermMod to |t〉 and obtain the basis |λ, i, j〉, where j is an
SSYT with entries in [d] and i is an SYT.

4. The basis at this point is |λ, i, (T , j)〉. Use RSK to convert the pair (T , j) to a SSYT as
described in section 2.4.

Theorem 3. Given an n fold tensor product of d dimensional Hilbert spaces and accuracy ε, the quantum
algorithm DualSchur runs in time O(poly log d, n, log 1/ε) and performs the strong Schur transform i.e.,
performs the change of basis from the computational basis to the block diagonal basis |λ, i, j〉, where λ is the
symmetric or unitary group irrep, i labels the Young-Yamanouchi basis vector in the symmetric group and j
labels the Gelfand-Tsetlin basis vector in the unitary group irrep.

Proof. To prove the runtime claim, we describe the steps in more detail with an example and bound the run
time.
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1. Given a basis vector in the computational basis, first we map the entries of the vector that are greater
than n to entries inside n and keep track of the map. So a basis vector |e〉 = |e1, . . . , en〉 becomes
|pe, ẽ〉, where ẽ is a vector with entries in [n] and pe is the map. This map need not be global and
can be specific to the vector |e〉. This can be done in poly(n) steps. As a running example, let us
consider n = 5, d = 10 and take the vector |5, 5, 10, 3, 9〉. In the first step, this gets mapped to
|10→ 1, 9→ 2〉 ⊗ |5, 5, 1, 3, 2〉. This can be done in O(poly(n, log d)) steps.

2. Compute the type of the vector ẽ and the symmetric group element (as a product of a set of transpo-
sitions) needed to convert the standard basis vector i.e., where the entries appear in ascending order
to ẽ. The basis vector |e〉 is converted to |pe, T , t〉, where T is the type and t is the transversal element
of the subgroup YT in Sn. For the example, we would have the standard basis vector as |1, 1, 2, 3, 4〉,
the type is (1, 1, 1, 0, 2) i.e., one 1, one 2, one 3, zero 4 and two 5s. The transversal as a product of
transpositions would be (15)(52)(53). This takes poly(n) time.

3. Recall that the register with |t〉 can be viewed as the induced representation of YT in Sn i.e., a
permutation module. Conditioned on the type T , we can apply the Fourier transform for permutation
modules to obtain the basis |pe, T , λ, i, j〉. This step takes poly(n, log ε−1) time.

4. Rewriting this as |λ, (pe, T , i), j〉, we can convert pe, T , i into a SSYT by using the information in pe
and T and rewriting the basis i, which consists of SSYT of shape λ and content T , to match the GT
basis (we prove below that this is gives the GT basis).

The claim of the dependence on ε follows from the fact the each of the steps in the algorithm can be done
with O(polylog ε−1) elementary gates based on the results described in section 3.1 and 3.2. This shows that
the overall runtime is O(poly(log d, n, log ε−1)).

To prove the theorem, we now need to prove that the basis obtained in the last step (labeled by SSYTs)
is exactly the GT basis. The (unnormalized) basis states can be written in the form (from Eq. 3.9)

|λ, pe, T , i, j〉 =

√
dλ

|G|/|YT |
∑
g

[λ(gYT )]i,j |gYT 〉 , (4.1)

where G is the symmetric group Sn, YT is a Young subgroup of the form (Sµ1 × Sµ2 × . . . Sµk) for some
k ≤ d. This follows from the next lemma.

Lemma 4. Let G be the symmetric group Sn and YT be a Young subgroup corresponding to the type T .
Consider the unnormalized basis states written as

|λ, pe, T , i, j〉 =

√
dλ

|G|/|YT |
∑
g

[λ(gYT )]i,j |gYT 〉 , (4.2)

where the sum over g is over the cosets of YT in G. When T runs over all possible types and pe runs over
all possible subsets of n letters from the alphabet {1, . . . , d}, the above set of vectors form the Gelfand-Tsetlin
basis.

Proof. In order to prove this, we will verify that this basis is the subgroup adapted basis of the tower of
subgroups U(d) ⊃ U(d − 1) ⊃ · · · ⊃ U(1). Equivalently, we will show that this basis makes the following
decomposition block diagonal.

Vλ ↓U(d)
U(d−1)'

⊕
µ

Vµ , (4.3)

where Vλ is the irrep of the unitary group U(d) that corresponds to the shape λ and Vµ is an irrep of U(d−1)
that corresponds to the shape µ. The direct sum runs over all the shapes µ that differ from λ by a horizontal
strip. The shapes µ are all obtained from λ by considering the various SSYTs that constitute the basis of
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the irrep space of the unitary group and removing the horizontal strips labelled d. This corresponds to all
unitaries in U(d) that fix the label d.

The (unnormalized) basis states can be written in the form

|λ, i, j〉 =

√
dλ

|G|/|H|
∑
g

[λ(gH)]i,j |gH〉 , (4.4)

where G is the symmetric group Sn, H is a Young subgroup of the form (Sµ1×Sµ2× . . . Sµk) for some k ≤ d.
To avoid clutter, we replace YT above by H. We will call the tuple µ, which can be permuted to a valid
Young diagram, the content corresponding to H since it is the content of the SSYTs that we obtain. The
sum over g runs over elements of the transversal of H in G. With the embedding of the permutation module
into the group algebra of Sn done in the previous section, we can interpret |H〉 as the computational basis
state |11 . . . 1 2 . . . 2 . . . k . . . k〉 where there are µ1 1s, µ2 2s etc. The state |gH〉 as the basis state which is
permuted according to the transversal element g. In the proof of theorem 1, it was also shown the action of
H on the SYT j leads to a SSYT. In order to show the above block diagonalization, we need to show that
the action of U(d−1) leaves the horizontal strip labeled d intact. The action of the Lie algebra of U(d−1) is
generated by the operators J (l)

0 , J
(l)
+ and J

(l)
− for l = 1, 2, . . . , d− 2. These operators were defined in section

2.5. We show that these operators acting on any |λ, i, j〉 leave the horizontal strip labeled d intact. In other
words, they give superpositions of states of the form |λ, i, j′〉, where j′ is a SSYT of shape λ and whose
horizontal strip labeled d is the same as the one in j.

To show this, let us look at the action of J (l)
+ for some l in [d − 2]. The action of J (l)

− is the Hermitian
conjugate and so it suffices to look at J (l)

+ . We work with the unnormalized states given above.

J
(l)
+ |λ, i, j〉 = J

(l)
+

√
dλ

|G|/|H|
∑
g

[λ(gH)]i,j |gH〉 =

√
dλ

|G|/|H|
∑
g′

cg′ |g′H ′〉 , (4.5)

where g′ runs over the transversal of H ′ in G and H ′ is the Young subgroup that differs from H in the
number of ls and l + 1s with one more l and one less l + 1 than H i.e., if the content corresponding to H
is µ = (µ1, . . . , µk), then that of H ′ is µ′ = (µ1, . . . , µl + 1, µl+1 − 1, . . . , µk). The coefficient cg′ can be
calculated to be

cg′ = [λ(g′JH)]i,j , (4.6)

where the operator J is defined as

J =
σl−1+1∑
m=σl+1

(σl + 1,m) , (4.7)

where σl = µ1 + · · · + µl and similarly σl+1. This shows that the new SSYT is a sum SSYTs obtained by
taking a SYT j and applying H and an element of J . This means that from the SSYT j̃, we get a sum that
involves SSYTs obtained by replacing some box labeled l + 1 by l as long as it gives a valid SSYT (since if
two boxes labeled l are in the same column, then by lemma 2, that SSYT is taken to zero).

Now we show that the action of J (l)
0 is as described in 2.5. To see this note that El,l acting on the

computational basis counts the number of ls in the basis vector, which means that it counts the number of
boxes labeled l in the SSYT basis. Therefore since J (l)

0 = (1/2)(El,l − El+1,l+1), the action of J (l)
0 on our

basis is (µl − µl+1)/2. Using the translation from SSYT to GT patterns described in section 2.5, for a GT
pattern M defined as

M =


m1,d m2,d . . . md,d

m1,d−1 . . . md−1,d−1
. . . ...
m1,2 m2,2

m1,1

 , (4.8)
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we have

µl =
l∑

k=1
(mk,l −mk,l−1) . (4.9)

Thus the action of J (l)
0 can be seen to be

J
(l)
0 |M〉 =

[
l∑

k=1
mk,l −

1
2(

l+1∑
k=1

mk,l+1 +
l−1∑
k=1

mk,l−1)
]
|M〉 . (4.10)

5 Conclusions
We have presented an efficient algorithm for a high dimensional Schur transform that runs in time O(poly(n,
log d, log 1/ε)). This improves exponentially in the dimension over the prior work of Bacon, Chuang and
Harrow [5]. As mentioned above, Harrow’s thesis [18] contains a way to make the unitary group approach
of [5] polynomial in log d. Our algorithm is novel in that it uses the representation theory of the symmetric
group rather than that of the unitary group. Another interesting feature is that it uses only the quantum
Fourier transform and generalized phase estimation (which is also based on the QFT) and essentially no
new tools. A potentially useful feature of this algorithm that could be a primitive for other problems is
the circuit for a Fourier transform over induced representations. Several permutation modules, which are
induced representations encode important problems that include element distinctness and collision finding.
The subroutines to block diagonalize permutation modules could provide Fourier analytic algorithms to these
problems and generalize to solve other problems which have permutational symmetry.

6 Acknowledgments
We would like to thank Aram Harrow for useful discussions and for explaining the algorithms in his thesis.
We would like to thank John Wright for useful discussions and for comments on an earlier draft. We would
also like to thank the anonymous referees of TQC for useful feedback. We are also grateful to the referees of
Quantum for several suggestions that helped improve the paper.

References
[1] Arne Alex, Matthias Kalus, Alan Huckleberry, and Jan von Delft. A numerical algorithm for the explicit

calculation of su (n) and sl (n, c) clebsch–gordan coefficients. Journal of Mathematical Physics, 52(2):
023507, 2011. DOI: 10.1063/1.3521562. 2

[2] Robert Alicki, Slawomir Rudnicki, and Slawomir Sadowski. Symmetry properties of product states
for the system of n n-level atoms. Journal of Mathematical Physics, 29:1158–1162, 1988. DOI:
10.1063/1.527958. 1

[3] D Bacon. Decoherence, control, and symmetry in quantum computers. PhD thesis, University of Cali-
fornia, Berkeley, 2001. 1

[4] Dave Bacon, Isaac L. Chuang, and Aram W. Harrow. Efficient quantum circuits for schur and clebsch-
gordan transforms. Phys. Rev. Lett., 97:170502, Oct 2006. DOI: 10.1103/PhysRevLett.97.170502. URL
http://link.aps.org/doi/10.1103/PhysRevLett.97.170502. 1

[5] Dave Bacon, Isaac L. Chuang, and Aram W. Harrow. The quantum schur and clebsch-gordan trans-
forms: I. efficient qudit circuits. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’07, pages 1235–1244, Philadelphia, PA, USA, 2007. Society for Industrial
and Applied Mathematics. ISBN 978-0-898716-24-5. URL http://dl.acm.org/citation.cfm?id=
1283383.1283516. 1, 1, 1, 1, 2, 2, 2, 6, 19, 19

19

https://doi.org/10.1063/1.3521562
https://doi.org/10.1063/1.527958
https://doi.org/10.1063/1.527958
https://doi.org/10.1103/PhysRevLett.97.170502
http://link.aps.org/doi/10.1103/PhysRevLett.97.170502
http://dl.acm.org/citation.cfm?id=1283383.1283516
http://dl.acm.org/citation.cfm?id=1283383.1283516


[6] Robert Beals. Quantum computation of fourier transforms over symmetric groups. In Proceedings of
the twenty-ninth annual ACM symposium on Theory of computing, pages 48–53. ACM, 1997. DOI:
10.1145/258533.258548. 2, 10, 10

[7] G Chiribella, Y. Yang, and C. Huang. Universal super-replication of unitary gates. Phys. Rev. Lett.,
114(120504), 2015. DOI: 10.1103/PhysRevLett.114.120504. 2

[8] Giulio Chiribella and Yuxiang Yang. Quantum superreplication of states and gates. Frontiers of Physics,
11(3):110304, 2016. DOI: 10.1007/s11467-016-0556-7. 2

[9] Matthias Christandl and Graeme Mitchison. The spectra of quantum states and the kronecker coeffi-
cients of the symmetric group. Communications in mathematical physics, 261(3):789–797, 2006. DOI:
10.1007/s00220-005-1435-1. 1

[10] Richard Dipper, Stephen Doty, and Jun Hu. Brauer algebras, symplectic schur algebras and schur-weyl
duality. Transactions of the American Mathematical Society, 360(1):189–213, 2008. DOI: 10.1090/S0002-
9947-07-04179-7. 1

[11] William Fulton. Young tableaux: with applications to representation theory and geometry, volume 35.
Cambridge University Press, 1997. DOI: 10.1017/CBO9780511626241. 6, 6, 7

[12] William Fulton and Joe Harris. Representation theory, volume 129. Springer Science and Business
Media, 1991. DOI: 10.1007/978-1-4612-0979-9. 3, 3, 4

[13] Israel M. Gelfand and Michael .L. Zetlin. Finite-dimensional representations of the group of unimodular
matrices. Dokl. Akad. Nauk Ser. Fiz., 71:825–828, 1950. 7

[14] Richard D Gill and Serge Massar. State estimation for large ensembles. Physical Review A, 61(4):
042312, 2000. DOI: 10.1103/PhysRevA.61.042312. 1

[15] Roe Goodman and Nolan R Wallach. Representations and invariants of the classical groups, volume 68.
Cambridge University Press, 2000. DOI: 10.1007/978-0-387-79852-3. 8

[16] J. Haah, A. W. Harrow, Z. Ji, X. Wu, and N. Yu. Sample-optimal tomography of quantum states.
IEEE Transactions on Information Theory, 63(9):5628–5641, Sep. 2017. ISSN 0018-9448. DOI:
10.1109/TIT.2017.2719044. 1

[17] Tom Halverson and Arun Ram. q-rook monoid algebras, hecke algebras, and schur–weyl duality. Journal
of Mathematical Sciences, 121(3):2419–2436, 2004. DOI: 10.1023/B:JOTH.0000024623.99412.13. 1

[18] Aram W. Harrow. Applications of coherent classical communication and the Schur transform to quantum
information theory. PhD thesis, Massachusetts Institute of Technology, 2005. URL http://arxiv.org/
abs/quant-ph/0512255. 1, 1, 2, 2, 12, 12, 19

[19] Vojtech Havlicek and Sergii Strelchuk. Quantum schur sampling circuits can be strongly simulated.
Phys. Rev. Lett., 121(060505), 2018. DOI: 10.1103/PhysRevLett.121.060505. 2

[20] Masahito Hayashi. Optimal sequence of quantum measurements in the sense of stein’s lemma in quan-
tum hypothesis testing. Journal of Physics A: Mathematical and General, 35(50):10759, 2002. DOI:
10.1088/0305-4470/35/50/307. 1

[21] Masahito Hayashi and Keiji Matsumoto. Quantum universal variable-length source coding. Physical
Review A, 66(2):22311, 2002. DOI: 10.1103/PhysRevA.66.022311. 1, 1

[22] Masahito Hayashi and Keiji Matsumoto. Simple construction of quantum universal variable-
length source coding. Quantum Information &amp; Computation, 2(7):519–529, 2002. DOI:
10.1109/ISIT.2003.1228476. 1

[23] James and Kerber. The Representation Theory of the Symmetric Group. Encyclopedia of Mathematics
and its Applications. Cambridge University Press, 1984. DOI: 10.1017/CBO9781107340732. 4

[24] Julia Kempe, Dave Bacon, Daniel A Lidar, and K Birgitta Whaley. Theory of decoherence-free fault-
tolerant universal quantum computation. Physical Review A, 63(4):042307, 2001. DOI: 10.1103/Phys-
RevA.63.042307. 1

[25] Michael Keyl. Quantum state estimation and large deviations. Reviews in Mathematical Physics, 18
(01):19–60, 2006. DOI: 10.1142/S0129055X06002565. 1

[26] Michael Keyl and Reinhard F Werner. Estimating the spectrum of a density operator. Physical Review
A, 64(5):052311, 2001. DOI: 10.1103/PhysRevA.64.052311. 1

20

https://doi.org/10.1145/258533.258548
https://doi.org/10.1145/258533.258548
https://doi.org/10.1103/PhysRevLett.114.120504
https://doi.org/10.1007/s11467-016-0556-7
https://doi.org/10.1007/s00220-005-1435-1
https://doi.org/10.1007/s00220-005-1435-1
https://doi.org/10.1090/S0002-9947-07-04179-7
https://doi.org/10.1090/S0002-9947-07-04179-7
https://doi.org/10.1017/CBO9780511626241
https://doi.org/10.1007/978-1-4612-0979-9
https://doi.org/10.1103/PhysRevA.61.042312
https://doi.org/10.1007/978-0-387-79852-3
https://doi.org/10.1109/TIT.2017.2719044
https://doi.org/10.1109/TIT.2017.2719044
https://doi.org/10.1023/B:JOTH.0000024623.99412.13
http://arxiv.org/abs/quant-ph/0512255
http://arxiv.org/abs/quant-ph/0512255
https://doi.org/10.1103/PhysRevLett.121.060505
https://doi.org/10.1088/0305-4470/35/50/307
https://doi.org/10.1088/0305-4470/35/50/307
https://doi.org/10.1103/PhysRevA.66.022311
https://doi.org/10.1109/ISIT.2003.1228476
https://doi.org/10.1109/ISIT.2003.1228476
https://doi.org/10.1017/CBO9781107340732
https://doi.org/10.1103/PhysRevA.63.042307
https://doi.org/10.1103/PhysRevA.63.042307
https://doi.org/10.1142/S0129055X06002565
https://doi.org/10.1103/PhysRevA.64.052311


[27] A Yu Kitaev. Quantum measurements and the abelian stabilizer problem. arXiv preprint quant-
ph/9511026, 1995. 10

[28] Alexei Yu Kitaev, Alexander Shen, and Mikhail N Vyalyi. Classical and quantum computation, vol-
ume 47. American Mathematical Society Providence, 2002. DOI: 10.1090/gsm/047. 12

[29] Emanuel Knill, Raymond Laflamme, and Lorenza Viola. Theory of quantum error correction for general
noise. Physical Review Letters, 84(11):2525, 2000. DOI: 10.1103/PhysRevLett.84.2525. 1

[30] Robert Koenig and Graeme Mitchison. A most compendious and facile quantum de finetti theorem.
Journal of Mathematical Physics, 50(1):012105, 2009. DOI: 10.1063/1.3049751. 1

[31] Hari Krovi and Alexander Russell. Quantum fourier transforms and the complexity of link invariants
for quantum doubles of finite groups. Communications in Mathematical Physics, 334(2):743–777, 2015.
DOI: 10.1007/s00220-014-2285-5. 2

[32] Keiji Matsumoto and Masahito Hayashi. Universal distortion-free entanglement concentration. Physical
Review A, 75(6):062338, 2007. DOI: 10.1103/PhysRevA.98.032326. 1

[33] Cristopher Moore, Daniel Rockmore, and Alexander Russell. Generic quantum fourier transforms. ACM
Transactions on Algorithms (TALG), 2(4):707–723, 2006. DOI: 10.1145/1198513.1198525. 10

[34] Ryan O’Donnell and John Wright. Quantum spectrum testing. In Proceedings of the Forty-seventh
Annual ACM Symposium on Theory of Computing, STOC ’15, pages 529–538, New York, NY, USA,
2015. ACM. ISBN 978-1-4503-3536-2. DOI: 10.1145/2746539.2746582. URL http://doi.acm.org/10.
1145/2746539.2746582. 1

[35] Ryan O’Donnell and John Wright. Efficient quantum tomography. In Proceedings of the Forty-eighth
Annual ACM Symposium on Theory of Computing, STOC ’16, pages 899–912, New York, NY, USA,
2016. ACM. ISBN 978-1-4503-4132-5. DOI: 10.1145/2897518.2897544. URL http://doi.acm.org/10.
1145/2897518.2897544. 1

[36] Bruce Sagan. The symmetric group: representations, combinatorial algorithms, and symmetric func-
tions, volume 203. Springer Science &amp; Business Media, 2013. DOI: 10.1007/978-1-4757-6804-6. 4,
9

[37] Jean-Pierre Serre. Linear representations of finite groups, translated from the second french edition by
leonard l. scott. Graduate Texts in Mathematics, 42, 1977. DOI: 10.1007/978-1-4684-9458-7. 3

[38] Richard P Stanley. Enumerative Combinatorics, volume 1. Cambridge University Press, 2011. DOI:
10.1017/CBO9781139058520. 9

[39] G Vidal, JI Latorre, P Pascual, and Rolf Tarrach. Optimal minimal measurements of mixed states.
Physical Review A, 60(1):126, 1999. DOI: 10.1103/PhysRevA.60.126. 1
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