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ABSTRACT
The extinct giant shark Otodus megalodon is the last member of the predatory
megatoothed lineage and is reported from Neogene sediments from nearly all
continents. The timing of the extinction of Otodus megalodon is thought to be
Pliocene, although reports of Pleistocene teeth fuel speculation that Otodus
megalodon may still be extant. The longevity of the Otodus lineage (Paleocene to
Pliocene) and its conspicuous absence in the modern fauna begs the question:
when and why did this giant shark become extinct? Addressing this question requires
a densely sampled marine vertebrate fossil record in concert with a robust
geochronologic framework. Many historically important basins with stacked
Otodus-bearing Neogene marine vertebrate fossil assemblages lack well-sampled and
well-dated lower and upper Pliocene strata (e.g., Atlantic Coastal Plain). The fossil
record of California, USA, and Baja California, Mexico, provides such an ideal
sequence of assemblages preserved within well-dated lithostratigraphic sequences.
This study reviews all records of Otodus megalodon from post-Messinian marine
strata from western North America and evaluates their reliability. All post-Zanclean
Otodus megalodon occurrences from the eastern North Pacific exhibit clear evidence
of reworking or lack reliable provenance; the youngest reliable records of Otodus
megalodon are early Pliocene, suggesting an extinction at the early-late Pliocene
boundary (∼3.6 Ma), corresponding with youngest occurrences of Otodus megalodon
in Japan, the North Atlantic, and Mediterranean. This study also reevaluates a
published dataset, thoroughly vetting each occurrence and justifying the
geochronologic age of each, as well as excluding several dubious records. Reanalysis
of the dataset using optimal linear estimation resulted in a median extinction date
of 3.51 Ma, somewhat older than a previously proposed Pliocene-Pleistocene
extinction date (2.6 Ma). Post-middle Miocene oceanographic changes and cooling
sea surface temperature may have resulted in range fragmentation, while alongside
competition with the newly evolved great white shark (Carcharodon carcharias)
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during the Pliocene may have led to the demise of the megatoothed shark.
Alternatively, these findings may also suggest a globally asynchronous extinction
of Otodus megalodon.

Subjects Evolutionary Studies, Paleontology
Keywords Otodus megalodon, Otodus, Otodontidae, Extinction, Lamniformes, Miocene, Pliocene,
California, Baja California, North Pacific

INTRODUCTION
The giant predatory shark Otodus megalodon has been reported from Miocene and some
Pliocene sediments from all continents except Antarctica, indicating a near worldwide
distribution (Cappetta, 2012). Although some controversy exists regarding the generic
allocation of this species (Purdy et al., 2001; Ehret, Hubbell & MacFadden, 2009a;
Ehret et al., 2012, and references therein; Cappetta, 2012), Otodus megalodon appears to
represent the terminal chronospecies of a Paleocene to Pliocene lineage including Otodus
obliquus and earlier species formerly placed within Carcharocles such as Otodus
angustidens, generally characterized by steadily increasing body size through time
(Ward & Bonavia, 2001; Ehret, Hubbell & MacFadden, 2009a; Cappetta, 2012; Ehret et al.,
2012). Otodus megalodon is estimated to have attained a body length of 16–18 m (Gottfried,
Compagno & Bowman, 1996; Pimiento & Balk, 2015), representing one of the largest
sharks to ever exist, and one of a few marine superpredators of the Miocene, alongside
macrophagous sperm whales (Bianucci & Landini, 2006; Lambert et al., 2010) and the less
well known giant shark Parotodus benedeni (Kent, 1999; Kent & Powell, 1999; Purdy et al.,
2001). Although aspects of the morphology, evolution, and paleoecology of Otodus
megalodon and other members of the Otodus lineage have been investigated, including
phylogenetic affinities (Applegate & Espinosa-Arrubarrena, 1996; Gottfried & Fordyce, 2001;
Nyberg, Ciampaglio & Wray, 2006; Ehret, Hubbell & MacFadden, 2009a; Ehret et al., 2012),
body size (Gottfried, Compagno & Bowman, 1996; Gottfried & Fordyce, 2001;
Pimiento & Balk, 2015), tooth histology (Bendix-Almgreen, 1983), vertebral morphology and
growth (Gottfried & Fordyce, 2001; MacFadden et al., 2004), physiology (Ferrón, 2017),
and reproductive behavior and habitat preference (Purdy et al., 2001; Pimiento et al., 2010),
until recently (Pimiento & Clements, 2014; Pimiento et al., 2016) little attention has
been directed at causes for the extinction or timing of its extinction. A recent study (Pimiento
& Clements, 2014) utilized an optimal linear estimation (OLE) analysis of geochronologic
data for Otodus megalodon records to estimate a late Pliocene (terminal Piacenzian;
2.58 Ma) extinction for Otodus megalodon. However, the dataset utilized by Pimiento &
Clements (2014) contains problematic occurrence data (incorrect identifications, lack
of provenance, poor stratigraphic control, etc.). Examples of these problems, illuminated
below, indicate that rigorous reevaluation of the provenance of late Neogene Otodus
megalodon specimens worldwide and their geochronologic age is warranted.

In many regions, the lack of continuous fossiliferous strata of late Neogene age,
prominence of specimens with poor or dubious provenance, and stratigraphic uncertainty
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make assessing the age and stratigraphic occurrence of Otodus megalodon records difficult
(see Pimiento & Clements, 2014: table S2 for records they excluded from their analysis
for these reasons). The stratigraphic record of the eastern North Pacific (ENP),
primarily in California and Baja California, includes fossiliferous marine strata with
abundant marine vertebrates and excellent age control, essentially preserving a nearly
continuous marine fossil record from the middle Miocene through Pleistocene
(Boessenecker, 2013a, 2016). Other regions with abundant Neogene marine vertebrate
assemblages including fossils of Otodus megalodon either lack well-sampled Pliocene
intervals (e.g., Peru; the youngest assemblages such as Sacaco and Sud-Sacaco are
late Messinian in age (Ehret et al., 2012; Di Celma et al., 2017) or lack well-sampled
upper Pliocene intervals (Neogene marine deposits of the Atlantic coastal plain;
e.g., Ward, 2008). We review reported occurrences of Otodus megalodon from
the densely-sampled and well-dated Miocene and Pliocene lithostratigraphic units in
California and Baja California (Messinian-Gelasian equivalent), historically renowned for
extensive Cenozoic marine vertebrate assemblages (Jordan, 1922; Jordan & Hannibal,
1923; Mitchell, 1966; Barnes, 1977, 1998; Repenning & Tedford, 1977; Domning, 1978;
Welton, 1979; Warheit, 1992; Deméré, Berta & Adam, 2003; Boessenecker, 2011b, 2013a,
2016), and report several new specimens (Fig. 1; Table 1). We further reevaluate some
specimens of questionable provenance that appear to be reworked from underlying strata,
or are not well documented geographically and/or stratigraphically. This review invited
a reappraisal of the Otodus megalodon occurrence dataset published by Pimiento &
Clements (2014). We thoroughly vetted the geochronologic age control for each occurrence
(Appendix 1) using some of the criteria, methods, and reporting standards recommended
and/or utilized by earlier studies (Parham et al., 2012; Boessenecker & Churchill, 2015;
Boessenecker, Boessenecker & Geisler, 2018). We excluded several dubious records from
their dataset, revised the geochronologic range for most, and added several additional
records and performed an OLE analysis with the revised data set in order to estimate the
timing of extinction of Otodus megalodon (Table 2; Appendix 1 and 2).

MATERIALS AND METHODS
We examined collections from several institutions (CAS, LACM, RMM, SDNHM, and
UCMP; see below) housing large collections of Neogene marine vertebrate fossils
from the Pacific coast of North America. From these collections we identified a total of
145 Otodus megalodon teeth in lower Miocene through Pliocene deposits. This study
(Fig. 1; Table 1) only focuses on those specimens of Messinian (latest Miocene) or younger
age (n = 46) and does not consider specimens predating the Messinian stage
(Langhian, Serravallian, Tortonian; n = 99). Teeth of Otodus megalodon were
examined for evidence of reworking (e.g., abrasion, enameloid cracking,
phosphatization, fragmentation; e.g., Boessenecker, Perry & Schmitt, 2014), and details of
provenance (collector, collection date, locality description, similarity of preservation
with other material from the same locality) to evaluate the likelihood of specimens
being taphonomically autochthonous or parautochthonous vs. allochthonous, or
mistakenly attributed to an incorrect locality. Because this study relied upon existing

Boessenecker et al. (2019), PeerJ, DOI 10.7717/peerj.6088 3/47

http://dx.doi.org/10.7717/peerj.6088/supp-1
http://dx.doi.org/10.7717/peerj.6088/supp-1
http://dx.doi.org/10.7717/peerj.6088/supp-1
http://dx.doi.org/10.7717/peerj.6088
https://peerj.com/


collections of fossil specimens in museum collections and did not involve field study,
no permits for field collection were required.

Global Otodus megalodon occurrence
We re-evaluated the entire dataset published by Pimiento & Clements (2014: table S1;
text S1; Table 2; Appendix 1 and 2). Age justifications by these authors included limited
references to the peer-reviewed stratigraphic literature and in some cases relied solely
upon paleontological articles without examination of more recent published geological
studies providing refined geochronologic data. Paleontological studies frequently
re-cite the paper first reporting a fossil occurrence without citing subsequent geological
refinements, but since stratigraphy is not static, it is critical to exhaustively search for
stratigraphic and geochronologic data published afterward (Parham et al., 2012). We have
audited the dataset by identifying the intraformational stratigraphic position of
each occurrence (if applicable) and exhaustively citing relevant, up-to-date publications
with geochronologic dates, favoring microfossil age correlations and absolute dates
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Figure 1 Map of California and Baja California showing genuine late Miocene and Early Pliocene
records of Otodus megalodon, and dubious Late Pliocene and Pleistocene records.

Full-size DOI: 10.7717/peerj.6088/fig-1
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Table 1 Measurements (in mm), age, and occurrence of Otodus megalodon teeth examined during this study.

Specimen Formation Age Occurrence Crown width Crown height

LACM 29064 Tirabuzón Fm. Zanclean, 5.33–3.6 Ma Autochthonous 48.55 –

LACM 29065 Tirabuzón Fm. Zanclean, 5.33–3.6 Ma Autochthonous 42.9 45.1

LACM 29066 Tirabuzón Fm. Zanclean, 5.33–3.6 Ma Autochthonous – –

LACM 29067 Tirabuzón Fm. Zanclean, 5.33–3.6 Ma Autochthonous – –

LACM 29069 Tirabuzón Fm. Zanclean, 5.33–3.6 Ma Autochthonous – –

LACM 29070 Tirabuzón Fm. Zanclean, 5.33–3.6 Ma Autochthonous – –

LACM 29071 Tirabuzón Fm. Zanclean, 5.33–3.6 Ma Autochthonous – –

LACM 29072 Tirabuzón Fm. Zanclean, 5.33–3.6 Ma Autochthonous – –

LACM 29073 Tirabuzón Fm. Zanclean, 5.33–3.6 Ma Autochthonous 22.3* 18.15*

LACM 29074 Tirabuzón Fm. Zanclean, 5.33–3.6 Ma Autochthonous 31.7 32.45

LACM 29075 Tirabuzón Fm. Zanclean, 5.33–3.6 Ma Autochthonous 28.3* 29.5*

LACM 29076 Tirabuzón Fm. Zanclean, 5.33–3.6 Ma Autochthonous 33.4 36.75

LACM 29077 Tirabuzón Fm. Zanclean, 5.33–3.6 Ma Autochthonous – –

LACM 29078 Tirabuzón Fm. Zanclean, 5.33–3.6 Ma Autochthonous – –

LACM 10141 “Palos Verdes” Ss. Pleistocene Poor provenance – –

LACM 10152 San Diego Fm. Pliocene Autochthonous – –

LACM 103448 San Diego Fm. Pliocene Autochthonous – –

LACM 115989 Capistrano Fm. Messinian-Zanclean, 5.6–3.7 Ma Autochthonous – –

LACM 129982 Capistrano Fm. Messinian-Zanclean Autochthonous – –

LACM 131149 San Mateo Fm. Zanclean, 5.33–4.6 Ma Autochthonous or
parautochthonous

57.6* 73.8

LACM 148311 Fernando Fm. Pliocene-Pleistocene Autochthonous – –

LACM 148312 Fernando Fm. Pliocene-Pleistocene Autochthonous 57.1* –

LACM 156334 San Diego Fm. Pliocene Autochthonous 67.5 –

LACM 159028 Palos Verdes Ss. Pleistocene Poor provenance 101.5 97.1

SDNHM 23056 San Mateo Fm. Zanclean, 5.33–4.6 Ma Autochthonous or
parautochthonous

– –

SDNHM 23959 San Mateo Fm. Zanclean, 5.33–4.6 Ma Autochthonous or
parautochthonous

90.07 82.6

SDNHM 24448 San Mateo Fm. Zanclean, 5.33–4.6 Ma Autochthonous or
parautochthonous

77.39* 74.1

SDNHM 29742 San Diego Fm. Zanclean, ∼4.2 Ma Autochthonous or
parautochthonous

86.71* 96.89

SDNHM 53167 Capistrano Fm. Messinian-Zanclean, 5.6–3.7 Ma Autochthonous 103.86 89.83

SDNHM 73462 Niguel Fm. Pliocene Allochthonous – –

SDNHM 77343 San Mateo Fm. Zanclean, 5.33–4.6 Ma Autochthonous or
parautochthonous

– –

SDNHM 77430 San Mateo Fm. Zanclean, 5.33–4.6 Ma Autochthonous or
parautochthonous

27.53 23.82

UCMP 219502 Purisima Fm. Messinian, 6.9–5.33 Ma Autochthonous or
parautochthonous

114.1* 112.2

Notes:
Measurements after Pimiento et al. (2010).
* Denote incomplete measurements; specimens without measurements are incomplete tooth fragments. Note that SDMHN 23959 consists of four partial teeth; a
measurement is provided for the only tooth complete enough to measure.

Boessenecker et al. (2019), PeerJ, DOI 10.7717/peerj.6088 5/47

http://dx.doi.org/10.7717/peerj.6088
https://peerj.com/


Table 2 Summary of corrected ages of Otodus megalodon occurrences used in the Optimal Linear Estimation analysis.

Locality Formation Country Age (Pimiento & Clements) Corrected age

Kingsford Mine Bone Valley Fm. USA 10.3–4.9 Ma 10.3–4.9 Ma

Payne Creek Mine Bone Valley Fm. USA 5.3–3.6 Ma 10.3–4.9 Ma

Four Corners Mine Bone Valley Fm. USA 5.3–3.6 Ma 5.8–4.9 Ma

East Coast Aggregates Tamiami Formation USA 5.3–3.6 Ma 4.2–3.9

Lee Creek Mine Yorktown Formation USA 5.3–3.6 Ma 4.9–3.92

Elsmere Canyon Towsley Formation USA 5.3–3.6 Ma 10.0–5.3 Ma

Lawrence Canyon San Mateo Formation USA 10.3–4.9 Ma 5.33–4.6

San Juan Capistrano Capistrano Formation USA 11.6–3.6 Ma 5.6–3.7 Ma

Santa Cruz Purisima Formation USA N/A 6.9–5.33

La Joya San Diego Formation USA 3.6–2.6 Ma 4.2–3.6 Ma

Garnet Canyon Imperial Formation USA N/A 6.43–4.187 Ma

Bolinas Santa Cruz Mudstone USA 5.3–2.6 Ma 7.6–6.5 Ma

Kambul Carrillo Puerto Formation Mexico N/A 10.3–4.6 Ma

Corkscrew Hill Tiburazon Formation Mexico 5.3–2.6 Ma 6.76–3.6 Ma

Casa el Jebe Codore Formation Venezuela N/A 5.33–3.6

El Yacural Paraguana Formation Venezuela 5.33–3.6 Ma 5.33–3.6 Ma

Punta la Gorda Onzole/Borbon Formation Ecuador 5.33–2.6 Ma 5.33–3.4 Ma

Punta la Colorada Onzole/Borbon Formation Ecuador 5.33–2.6 Ma 5.33–3.4 Ma

Punta Mansueto Chagres Formation Panama N/A 8.29–5.12

Sunlands Pumping Station Loxton Sands Australia 4.3–3.4 Ma 7.2–3.4 Ma

Dutton Way Whaler’s Bluff Formation Australia 5.3–3.6 Ma 5.33–3.6 Ma

Beaumaris Black Rock Sand Australia 5.0–3.4 Ma 6.0–4.9 Ma

Fossil Rock Stack Grange Burn Formation Australia 5.0–4.0 Ma 5.4–3.5 Ma

Pipiriki Matemateaonga Formation New Zealand 4.8–3.6 Ma 5.5–4.7 Ma

Patutahi Quarry Tokomaru Formation New Zealand N/A 7.2–3.7 Ma

Bonares-Case del Pin Arenas de Huelva Formation Spain 5.33–3.6 Ma 5.33–3.6 Ma

Can Picafort Son Mir Sequence Spain 5.3–2.6 Ma 5.33–3.6 Ma

Vale de Zebro Esbarrondadoiro Formation Portugal N/A 8.58–4.37 Ma

Santa Margarida Esbarrondadoiro Formation Portugal N/A 8.58–4.37 Ma

Continental Shelf Unknown Portugal N/A 6.1–4.4 Ma

Cre Outcrop Touril Complex Portugal 5.3–3.6 Ma 5.33–3.6 Ma

Castell’Arquato Unknown Italy 5.3–2.6 Ma 5.33–4.0 Ma

Miano Unknown Italy 5.3–2.6 Ma 5.33–4.0 Ma

Colli Piacentini Unknown Italy 5.3–2.6 Ma 5.33–4.0 Ma

Maiatico Unknown Italy 5.3–2.6 Ma 5.33–4.0 Ma

Tra Lorenzana E Lari Unknown Italy 5.3–2.6 Ma 5.33–4.0 Ma

Pienza Unknown Italy 5.3–2.6 Ma 5.33–4.0 Ma

Siena Unknown Italy 5.3–2.6 Ma 5.33–4.0 Ma

Colline Pisane Unknown Italy 5.3–2.6 Ma 5.33–4.0 Ma

Boso Peninsula Senhata Formation Japan N/A 6.3–5.12 Ma

Kita-Daito-Jima Daito Limestone Japan 3.6–0.8 Ma 4.7–3.3 Ma

Choshi Na-Arai Formation Japan N/A 5.33–4.36 Ma

Sendai-Iwate area Tatsunokuchi Formation Japan N/A 5.6–3.9 Ma
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(87Sr/86Sr ratios, radiometric dates from interbedded ash/tuff/basalt, etc.) whenever
possible; in some cases, only member- or formation-level stratigraphic control is available.
In order to preserve our reasoning for future evaluation this information is presented
in Appendix 2 of this study. In addition, we excluded occurrences where any one or more
of the following types of problems existed (see Appendix 2): (1) lack of sub-epochal age
control (e.g., “middle Miocene-Pliocene” or “Pliocene”); (2) lack of minimum age
control, (3) all available voucher specimens residing in a private collection; (4) specimens
lacking clear provenance (e.g., “specimen probably collected from locality : : : ”;
(5) misidentified specimens that are not identifiable as Otodus megalodon; (6) occurrence
with revised minimum date falling entirely within the Miocene; (7) occurrences where
the estimated age is based on the occurrence of Otodus megalodon, leading to a case of
circular reasoning; and (8) unpublished occurrence data where the stratigraphy and
geochronology cannot be evaluated by the reader.

Optimal linear estimation analysis
Once we evaluated and revised a dataset of age occurrence data for Otodus megalodon,
we them treated them as historic sightings for implementation of an OLE model, as
performed by Pimiento & Clements (2014) in their earlier study. Our revised dataset of late
occurrences of Otodus megalodon comprises 43 data points, and includes fossils from
around the world (Appendix 1). OLE has been found to be an accurate way of assessing
extinction times in the fossil record, as last known occurrences generally follow a
Weibull extreme value distribution (Clements et al., 2013; Solow, 2005; Wang &
Marshall, 2016).

To run our analysis, OLE was implemented in R, using a modified version of the
same code provided by Pimiento & Clements (2014; see Appendix 3) and same overall
parameters. We implemented 10,000 simulations, bootstrapping from a uniform
distribution for each simulation. The value reported below in results represents the modal
estimate of extinction, with the full range of extinction dates recovered also reported.

Geochronologic framework
The traditional threefold division of the Pliocene and Pliocene-Pleistocene boundary set
at 1.806 Ma (Gradstein et al., 2004) has recently been modified by the inclusion of the
Gelasian stage within the Pleistocene and designation of the Zanclean and Piacenzian
stages as early and late Pliocene (respectively), and a new Pliocene-Pleistocene boundary at
2.566 Ma (Gibbard et al., 2009; Gradstein et al., 2012), which we follow herein. Stages of
international usage are generally referred to throughout (e.g., Messinian, Zanclean,
Piacenzian, Gelasian) to alleviate confusion between late Pliocene sensu lato (=Gelasian
stage) and late Pliocene sensu stricto (=Piacenzian stage); references to North American
Land Mammal Ages (NALMAs; e.g., Clarendonian, Hemphillian, Blancan) and local
New Zealand stages (e.g., Opoitian) are also made. Note that other recent studies in
Pliocene-Pleistocene marine vertebrate paleontology followed the compromise of Hilgen
et al. (2012) in maintaining the Gelasian as the late Pliocene (Boessenecker, 2011b,
2013a, 2013b).
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RESULTS
Systematic paleontology

Chondrichthyes Huxley, 1880

Lamniformes Berg, 1958

Otodontidae Glikman, 1964

Otodus Agassiz, 1838

Otodus megalodon Agassiz, 1843

Referred material
LACM 59836, 59837, 115989, 129982, and SDNHM 53167, Capistrano Formation
(LACM localities 4437, 5792, 61520, and SDNHM locality 3842); LACM 148311, 148312,
and 149739, Fernando Formation (LACM localities 7321 and 7481); RMM A597-1,
A597-9A, A597-9B, and A597-12, Lomita Marl (no locality number); LACM 59065 and
SDNHM 73462, Niguel Formation (LACM locality 65187 and SDNHM locality 4080,
respectively); LACM 10141, LACM 11149, LACM 159028, Palos Verdes Sand and
unnamed Pleistocene strata (LACM locality 1066 and 7971); UCMP 219502, Purisima
Formation (UCMP locality V-99875); LACM 10152, LACM 103448, LACM 156334, and
SDNHM 29742, San Diego Formation (LACM localities 1080, 1095, 4875, and SDNHM
locality 3253); LACM 131149, SDNHM 23056, 23959 (four teeth with same number),
24448, 77430, and 77343, “upper” San Mateo Formation (Lawrence Canyon local fauna;
LACM locality 4297 and SDNHM locality 3161); CAS 72799.00, Santa Cruz Mudstone
(no locality number); and LACM 29065–29067, 29069–29070, and 29073–29078,
Tirabuzón Formation (LACM locality 6579).

Diagnosis
Crowns broad, triangular, and erect, being broader and more vertical in anterior teeth and
with increasing posterior inclination distally; labial crown face relatively flat or mildly
convex, often showing short vertical infoldings of the enameloid at base of crown,
lingual crown face moderately convex; crown enameloid relatively thick; chevron-shaped
band of thinner enameloid on lingual crown face between base of crown and root
(lingual neck), thicker in medial section becoming thinner laterally and showing fine
vertical striations; cutting edge with fine, even, rounded serrations along entire margin,
averaging 12–17 serrations per centimeter (cm); lateral cusplets lacking in adult teeth; root
is labiolingually thick with two laterally divergent but apicobasally shallow lobes,
usually similar in size and not extending much laterally beyond the lower margin of the
crown; labial root face is relatively flat while the lingual root face is laterally convex
and thicker in the center with a pronounced nutritive foramen medially.

Taxonomic note

The taxonomy of the megatoothed sharks is a topic that has been subject to much
controversy and debate. In the original description of the species, Agassiz (1843)
referred Otodus megalodon to the genus Carcharodon based on superficial morphological
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similarities in tooth shape and the presence of serrations. Jordan & Hannibal (1923)
recognized a difference between the extant great white shark (Carcharodon carcharias) and
the fossil serrated-edged megatoothed sharks, erecting the genus Carcharocles for the
latter. However, this taxonomic change was not adopted into the literature until the late
1980s (Cappetta, 1987). Other generic names proposed for Otodus megalodon include
Procarcharodon Casier, 1960 andMegaselachusGlikman, 1964. Usage of Carcharodon and
Procarcharodon were challenged in the literature based on tooth morphology, the fossil
record, and taxonomic priority (Cappetta, 1987; Ehret, Hubbell & MacFadden, 2009a;
Ehret et al., 2012; Pimiento et al., 2010). Instead, Carcharocles is broadly accepted
for the generic assignment of Otodus megalodon in many recent studies (Ehret, Hubbell &
MacFadden, 2009a; Ehret et al., 2012; Pimiento & Clements, 2014; Boessenecker, 2016;
Pimiento & Balk, 2015; Pimiento et al., 2010, 2016, 2017; Collareta et al., 2017).
Some recent publications have proposed uniting all megatoothed shark taxa included
within Otodus and Carcharocles in the genus Otodus. In this scenario, all non-serrated
forms would belong to the genus Otodus, whereas Eocene-Oligocene serrated forms
C. auriculatus and C. angustidens are designated to the subgenus Carcharocles, and
C. chubutensis and C. megalodon belong to their own subgenusMegaselachus (Zhelezko &
Kozlov, 1999; Cappetta & Carvallo, 2006; Cappetta, 2012). Recently, Shimada et al. (2017)
further argued from a cladistic standpoint that Carcharocles should be synonymized
withinOtodus in order to make the latter genus monophyletic. We follow the reassignment
of Isurus hastalis (or alternatively, Cosmopolitodus hastalis) to the genus Carcharodon
(Ehret et al., 2012) for similar reasons, and thus adopt the reassignment of Carcharocles to
Otodus. Because subgenera are generally not used as a taxonomic convention in
vertebrate paleontology, we do not use the subgeneric taxonomy of Cappetta (2012).

Occurrence data
Pliocene-aged teeth of Otodus megalodon have been recovered or reported from
several formations in California and Baja California (Fig. 1), including the Lomita Marl,
Capistrano, Fernando, Niguel, Purisima, San Diego, San Mateo, and Tirabuzón
Formations, the ages of which are summarized below. These specimens exhibit a
combination of morphological characters including: a large overall size and labiolingual
thickness, triangular shape, fine serrations, V-shaped chevron on the lingual surface
between the crown and root, and loss of lateral cusplets at the base of the crown.
These characters, when observed together, indicate that the specimens undoubtedly belong
to Otodus megalodon. The only other sharks that could be confused with Otodus
megalodon during the late Miocene and early Pliocene are those belonging to Carcharodon
(C. hubbelli and C. carcharias), which have significantly smaller and labiolingually
flatter teeth lacking V-shaped chevrons and have coarser serrations. Therefore, we are
confident in assigning these specimens to Otodus megalodon. Additionally, we found that
relatively few Otodus megalodon teeth from ENP Neogene sediments are present in museum
collections; for example, a total of 145 teeth from lower Miocene through Pliocene west
coast deposits are represented in LACM, SDNHM, and UCMP collections, primarily from
California. In comparison, Purdy et al. (2001:131) referred 82 specimens in addition to
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“several hundred isolated teeth” from the Pungo River Limestone and Yorktown Formation
at the Lee Creek mine alone, and countless additional teeth exist in other collections and from
other stratigraphic units from the Atlantic coastal plain. Intense collecting at ENP
localities like the Sharktooth Hill Bonebed suggests that this is not simply a case of collection
bias and likely reflects genuine rarity (whether biogenic or taphonomic) ofOtodus megalodon
teeth from Pacific coast deposits. An alternative hypothesis is a geochronologically
earlier extinction of Otodus megalodon in the Pacific basin than the Atlantic.

Capistrano Formation
Stratigraphy: A thick section of late Neogene mudrock exposed in Orange County,
California, are divided into the Monterey/Temblor Formation (early late Miocene) and the
Capistrano Formation (latest Miocene to early Pliocene). In southern Orange County,
the Capistrano Formation is between 300 and 650 m thick, and includes a basal turbidite
unit composed of breccia, sandstone, and siltstone, and an upper micaceous siltstone unit
(Vedder, 1972; Ingle, 1979). The Oso Member of the Capistrano is a coarse clastic
tongue within the finer grained parts of the Capistrano (not formally named as member)
interpreted as the distal deposits of a delta within a shallow embayment (Vedder, Yerkes &
Schoellhamer, 1957; Barboza et al., 2017).

Occurrence: Specimens recovered from the Capistrano Formation (latest Miocene—
early Pliocene) include LACM 59836, 58937, 115989, 129982, and SDNHM 53167 (Fig. 2).
SDNHM 53167 is an incomplete upper left anterior tooth and represents the largest
specimen from the Capistrano Formation (Figs. 2A and 2B). The other specimens from the
Capistrano Formation represent both anterior and posterolateral teeth and range from
nearly complete (LACM 129982, Figs. 2C and 2D; LACM 115989, Figs. 2G and 2H) to
highly fragmented (LACM 59837, Figs. 2E and 2F; LACM 59836, Figs. 2I and 2J). SDNHM
53167 was collected from the upper siltstone unit of the Capistrano Formation
(SDNHM locality 3842) from a horizon approximately 30 m below a bed which yielded
diatoms of the earliest Pliocene Thalassiosira oestruppi zone (T.A. Deméré, 2012, personal
communication; Deméré & Berta, 2005), dated at approximately 5.6–3.7 Ma in age
(Barron & Gladenkov, 1995; Barron & Isaacs, 2001).

Age Conclusion: This occurrence of Otodus megalodon can be best summarized as
latest Miocene to earliest Pliocene in age (latest Messinian to Zanclean equivalent,
5.6–3.7 Ma). Other specimens from the Capistrano Formation (LACM 58936, 59837,
115989, 129982) were collected from unknown horizons within the Capistrano Formation.
A record of Otodus megalodon was listed by Pimiento & Clements (2014: table S1)
from the Capistrano Formation and dated to 11.6–3.6 Ma, without explanation or an
accompanying Paleobiology Database entry. Specimens reported from the Oso Member of
the Capistrano Formation by Barboza et al. (2017) are 6.6–5.8 Ma in age (Messinian)
based on the occurrence of the extinct horse Dinohippus interpolatus.

Fernando Formation
Stratigraphy: The Fernando Formation of Eldridge & Arnold (1907) is a poorly defined unit
of Pliocene marine sediments in the Ventura and Los Angeles basins of southern
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California (Eldridge & Arnold, 1907; Woodring, Bramlette & Kew, 1946; Vedder, 1972;
Squires, 2012). The Fernando Formation unconformably overlies several Miocene units,
including the terrestrial Sycamore Canyon Member of the Puente Formation and the
marine Capistrano and Monterey Formations (Vedder, 1972) in Orange County.
The Fernando Formation was defined only on biostratigraphic age and includes numerous
lithologies (Eldridge & Arnold, 1907; Squires, 2012). Because of confused relationships
with other late Neogene marine rocks in southern California (e.g., Pico, Towsley,
and Repetto Formations) and poor exposure, the stratigraphy and age of various outcrops
assigned to the Fernando Formation remains uncertain.

Occurrence: Eldridge & Arnold (1907) listed a single occurrence of Otodus megalodon
(as Carcharodon rectus, a junior synonym of Otodus megalodon) from the Shatto
Estate locality; however, no photograph, specimen number, or repository information
was given and thus it is not possible to unambiguously interpret this record. Eldridge &
Arnold (1907) also reported the shark I. planus (as Oxyrhina plana) in addition to
numerous mollusks indicating a late Pliocene to Middle Pleistocene age (C.L. Powell II,
2013, personal communication). I. planus is only represented in upper Oligocene
through lower upper Miocene sediments (Chattian-Tortonian equivalent; Boessenecker,
2011b:14). The lack of reliable provenance casts doubt on the validity of this record
and the reported presence of I. planus suggests a Miocene age; this record is not
considered further.

Figure 2 Otodus megalodon teeth from the Capistrano Formation. SDNHM 53167 in lingual (A) and
labial (B) view; LACM 129982 in lingual (C) and labial (D) view; LACM 59837 in lingual (E) and labial
(F) view; LACM 115989 in lingual (G) and labial (H) view; LACM 59836 in lingual (I) and labial (J) view.

Full-size DOI: 10.7717/peerj.6088/fig-2
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Three teeth are recorded from the Fernando Formation (Fig. 3), including
two specimens (LACM 148311 and 148312) from Eagle Glen in Riverside County
(LACM locality 7321) and a single specimen (LACM 149739) from nearby LACM locality
7481. LACM 148311 and 148312 are fragmentary with thin and abraded enameloid,
and the serrations have been eroded away. LACM 149739 is now missing, though an
existing photograph shows this specimen is fragmented yet exhibits unabraded
cutting edges.

Conclusion: Owing to poor understanding of the lithostratigraphy and age of the
Fernando Formation at this locality, the age of these specimens—whether reworked or
not—is equivocal, and the age of the Fernando Formation is best summarized as Pliocene
to Pleistocene. Accordingly, this record was excluded from the OLE.

Imperial Formation
Stratigraphy: The Imperial Formation is a thick succession of fossiliferous mudrocks
deposited on the west side of the Salton Trough in Imperial County, California, and

Figure 3 Otodus megalodon teeth from the Fernando Formation. LACM 148312 in lingual (A) and
labial (B) view; LACM 148311 in lingual (C) and labial (D) view.

Full-size DOI: 10.7717/peerj.6088/fig-3
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exposed best in the vicinity of the Coyote, Fish Creek, and Vallecito Mountains
(Powell, 1988; Winker & Kidwell, 1996; Dorsey et al., 2011). The Imperial Formation was
upgraded to group rank and subdivided into the Latrania and Deguynos members by
Winker & Kidwell (1996), though we follow Powell (2008) in not recognizing this as
the redefined units have not been formally described. The Fish Creek-Vallecito section
of the Imperial Formation, the underlying Split Mountain Group (Miocene), and
the overlying Palm Springs Group (Pliocene-Pleistocene) has been the focus of
extensive stratigraphic studies investigating regional tectonics, magnetostratigraphy,
biostratigraphy, and the formation of the Colorado River (Dorsey et al., 2011).
The Imperial Formation has long been considered Pliocene (Hanna, 1926; Durham, 1954),
and recent magnetostratigraphic work on the Fish Creek-Vallecito section indicates
that the Imperial Formation spans chrons C3An.1r to C3n.1n, indicating an age of
6.43–4.187 for the entire unit (Dorsey et al., 2011).

Occurrence: A single tooth (USNM 324542) of “Carcharodon arnoldi” was reported by
Hanna (1926) from the Imperial Formation at Garnet Cañon (USGS locality 3922) in the
Coyote Mountains of Imperial County, California, near the type locality of the extinct
walrus Valenictus imperialensis (Mitchell, 1961). This specimen is clearly a tooth of Otodus
megalodon owing to its large size and clearly preserved V-shaped dental band. It is
unclear whether this came from the lower (Latrania) or upper (Deguynos) member of
the formation.

Conclusion: By extrapolating magnetostratigraphy from the better studied Fish-Creek
Vallecito section, this occurrence of Otodus megalodon is latest Miocene to early Pliocene
(6.43–4.187 Ma).

Lomita Marl
Stratigraphy: The Lomita Marl consists mostly of unconsolidated calcareous mudrocks
and sandstones exposed in the western Los Angeles basin in the vicinity of Torrance and
Lomita northeast of the Palos Verdes Hills, Los Angeles County, California (Grant & Gale,
1931; Woodring, Bramlette & Kew, 1946; Fig. 1). The Lomita Marl is, in part, a lateral
and temporal equivalent of the Timms Point Silt and the San Pedro Sand (Woodring,
Bramlette & Kew, 1946). Glauconite K/Ar dates of 3.0 Ma reported by Obradovich (1965)
suggest a Pliocene age, though most modern workers consider the Lomita Marl to be
middle Pleistocene in age based on aminostratigraphy and magnetostratigraphy
(Ponti, 1989; Dupré et al., 1991; Lajoie et al., 1991).

Occurrence: Otodus megalodon is represented from this unit by teeth of “Carcharodon
branneri” Jordan, 1922 (RMM A597-1, A597-12) and “Carcharodon leviathan” Jordan,
1922 (RMM A597-9A, A597-9B), both junior synonyms of Otodus megalodon; these
specimens were collected in a quarry that exposed the unconformable contact between the
Miocene Monterey Formation and Pleistocene Lomita Marl. These specimens are
fragmented, abraded, with polished enameloid and phosphatic matrix adhering in cracks.
Mount (1974) noted that several marine vertebrate fossils appear to be reworked from
underlying Miocene rocks, supported by the preservation of these specimens
(Boessenecker, Perry & Schmitt, 2014).
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Conclusion: These specimens appear to have been reworked or anthropogenically
mixed with middle Pleistocene sediment approximately 650–350 Ka in age (See Purported
Pleistocene and Holocene records of Otodus megalodon).

Niguel Formation
Stratigraphy: The Niguel Formation is a unit of unconsolidated conglomerates, sandstones,
and siltstones exposed in the San Joaquin Hills in Orange County, California, deposited
along the southeastern margin of the Los Angeles Basin and unconformably overlying the
Capistrano Formation and other strata (Vedder, 1972). At SDNHM locality 4080, the Niguel
Formation unconformably overlies the lower-middle Miocene “Topanga” Formation
(T.A. Deméré, 2013, personal communication). The base of the Niguel Formation is a
conglomerate lag deposit (Vedder, 1972). The Niguel Formation is rich in fossils and
mollusks indicating a Pliocene age (Vedder, 1972) possibly between 3.3 and 3.15 Ma (Powell,
Stanton & Liff-Grier, 2008). Based on fossils and lithostratigraphy, Ehlig (1979) considered
the Niguel Formation to be late Pliocene to Pleistocene in age, estimating it to be one to
three Ma (Kern & Wicander, 1974; Powell, Stanton & Liff-Grier, 2008).

Occurrence: An abraded tooth fragment identifiable as Otodus megalodon (SDNHM
73462) was collected from the basal conglomerate, along with teeth of other sharks
including Carcharhinus sp., Carcharodon carcharias, C. hastalis, Galeocerdo sp.,
Hemipristis sp., I. planus, and Myliobatis sp. Also recovered from this locality were tooth
fragments of Desmostylus sp., earbones of a delphinid dolphin and a balaenid mysticete,
and a pharyngeal tooth plate of the sheepshead fish Semicossyphus. Another Otodus
megalodon specimen, LACM 59065 from Capistrano Highlands (LACM locality 65187),
likely represents an upper anterior tooth (Figs. 4A and 4B) and exhibits longitudinal
cracks, abraded cutting edges, and a fragmented root.

Although certain marine vertebrates from SDNHM locality 4080 such as Carcharodon
carcharias and Delphinidae indet. are consistent with a Pliocene age for the Niguel

Figure 4 Otodus megalodon tooth from the Niguel Formation. LACM 59065 in lingual (A) and labial
(B) view. Full-size DOI: 10.7717/peerj.6088/fig-4
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Formation, several other taxa are typical of older Miocene age. For example, the youngest
records of desmostylians occur in the Tortonian equivalent Santa Margarita Sandstone
in Santa Cruz County, and the Monterey Formation in Orange County, California
(Mitchell & Repenning, 1963; Barnes, 1978, 2013; Domning, 1978). Other Miocene
vertebrates from this locality include C. hastalis and I. planus; C. hastalis is replaced by
C. hubbelli at approximately 8–7 Ma (Ehret et al., 2012), whereas confirmable records of
I. planus are Tortonian and older (Boessenecker, 2011b:14).

Conclusion: The taphonomic condition of these Otodus megalodon specimens and
presence of strictly Miocene marine vertebrates, and the occurrence of these specimens
in the basal conglomerate of the Niguel Formation all indicate they were reworked
from the early to middle Miocene “Topanga” Formation. Accordingly, this record was
excluded from the OLE.

Purisima Formation
Stratigraphy: The Purisima Formation comprises a series of lightly consolidated
sandstones, mudrocks, and diatomites of latest Miocene and Pliocene age representing
shoreface to offshore sedimentation, and is exposed mostly west of the San Andreas fault in
the vicinity of Santa Cruz, Halfmoon Bay, and Point Reyes in central and Northern
California (Cummings, Touring & Brabb, 1962;Norris, 1986; Powell, 1998; Powell et al., 2007;
Boessenecker, Perry & Schmitt, 2014). The Purisima Formation is richly fossiliferous,
including fossils of sharks, bony fishes, marine birds, and marine mammals
(see Boessenecker, 2011b, 2013b; Boessenecker, Perry & Schmitt, 2014, and references therein).

Occurrence: A single nearly complete upper anterior tooth of Otodus megalodon
(UCMP 219502; Fig. 5) was reported by Boessenecker (2016) from the basal bonebed of the
Miocene to Pliocene Purisima Formation near Santa Cruz, California (UCMP locality
V99875). Only the root lobes and a small portion of the crown base are missing,
and longitudinal enameloid cracks are evident lingually and labially. The basal meter of the
Purisima Formation is composed of glauconitic sandstone and a matrix-supported
conglomerate with abundant vertebrate skeletal elements mantling an erosional surface
with ∼1 m of relief, unconformably overlying the upper Miocene Santa Cruz Mudstone
(Clark, 1981; Boessenecker, Perry & Schmitt, 2014). Glauconite from the base of the
Purisima Formation has yielded a K/Ar date of 6.9 ± 0.5 Ma (Clark, 1966; Powell et al.,
2007). A tuff bed approximately 30 m above the base of the Purisima Formation has
been tephrochronologically correlated with 5.0 ± 0.3 Ma tephra in the Pancho Rico
Formation (Powell et al., 2007).

Conclusion: This locality (UCMP locality V99875) can be summarized as 6.9–5.3 Ma
in age, or latest Miocene (Messinian equivalent).

San Diego Formation
Stratigraphy: The San Diego Formation comprises approximately 85–90 m of
unconsolidated Pliocene and Pleistocene sandstones, mudrocks, and conglomerates of
terrestrial and marine origin deposited via extensional tectonics within a graben in
the vicinity of San Diego, California between Pacific Beach and northern Baja California
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(Deméré, 1982, 1983;Wagner et al., 2001; Vendrasco et al., 2012). The San Diego Formation
is informally divided into two members: a “lower” sandstone member that is entirely marine
in origin, and an “upper” sandstone and conglomeratic member that is marine and
terrestrial (Deméré, 1982, 1983). Although earlier studies concluded that the San Diego
Formation was approximately 3–1.5 Ma in age (late Pliocene to early Pleistocene: Deméré,
1983), more recent estimates based on paleomagnetism and correlation with patterns of
eustatic sea level change suggest an early Pliocene age (Zanclean equivalent) for parts
of the “lower” member of the San Diego Formation (Wagner et al., 2001). Furthermore,
Vendrasco et al. (2012) reported the San Diego Formation to ranges in age from
4.2 to 1.8 Ma.

Occurrence: A single upper right anterior or anterolateral tooth missing part of the root
and crown (SDNHM 29742; Figs. 6A and 6B) was reported from the basal San Diego
Formation near La Joya in Baja California (SDNHM locality 3253; Ashby & Minch, 1984).
The tooth is almost equilateral, with a slight curvature to the right. A V-shaped chevron,
fine serrations, and three small nutrient foramina are present on the lingual surface

Figure 5 Otodus megalodon tooth from the Purisima Formation. UCMP 219502 in lingual (A) and
labial (B) view. Full-size DOI: 10.7717/peerj.6088/fig-5
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of the root. Three additional specimens (Figs. 6C–6H) are recorded from LACM
collections from San Diego County: LACM 156334 (LACM locality 1095), a broken
tooth with thinned and longitudinally cracked enameloid, abraded surfaces and broken
edges; LACM 10152 (LACM locality 4875), a broken but unabraded tooth with
longitudinally cracked enameloid; LACM 103448 (LACM locality 1080), a fragment of
enameloid shell missing the orthodentine core. These other specimens are less
complete than SDNHM 29742 are not stratigraphically located within the San Diego
Formation.

Conclusion: The only specimen with precise stratigraphic data (SDNHM 29742) was
collected from the basal unconformity of the San Diego Formation. This occurrence
can be summarized as approximately 4.2 Ma in age (early Pliocene); a minimum age of

Figure 6 Otodus megalodon teeth from the San Diego Formation. SDNHM 29742 in lingual (A) and
labial (B) view; LACM 156334 in lingual (C) and labial (D) view; LACM 10152 in lingual (E) and labial
(F) view; LACM 103448 in lingual (G) and labial (H) view. Full-size DOI: 10.7717/peerj.6088/fig-6
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3.6 Ma is provided by magnetostratigraphy of strata higher up in the San Diego Formation
(Wagner et al., 2001).

San Mateo Formation
Stratigraphy: The San Mateo Formation is a thin package of unconsolidated sandstones
and conglomerates, which crop out in the vicinity of Oceanside in San Diego County,
California. It is considered a temporal equivalent of the Oso Member of the Capistrano
Formation (Barnes et al., 1981;Domning & Deméré, 1984), and Vedder (1972) refers to it as
a coarse clastic tongue within the Capistrano Formation. It consists of a lower unit
composed of massive, fine-grained sandstones with occasional muddy lenses, sparse
pebbles and cobbles, and an upper unit of complexly bedded sandstones and
conglomerates; a sharp erosional surface at the base of the upper unit divides the formation
(Barnes et al., 1981; Domning & Deméré, 1984). Fossil assemblages from the lower
and upper units have been termed the San Luis Rey River and Lawrence Canyon local
faunas, respectively (Barnes et al., 1981). Domning & Deméré (1984) interpreted the
lower unit to represent middle or inner shelf deposition, and the upper unit to represent
the distal margin of a submarine fluvial delta system. A diverse marine vertebrate
assemblage including sharks, bony fish, marine birds, and marine mammals is now known
from the San Mateo Formation at Oceanside (Barnes et al., 1981; Domning &
Deméré, 1984; Long, 1994). Due to the lack of macroinvertebrates or microfossils, age
estimates for the San Mateo Formation have been established based on vertebrate
biochronology, including terrestrial mammals and mancalline auks (Domning & Deméré,
1984). Barnes et al. (1981) considered both the lower and upper units to be correlative with
the Hemphillian NALMA. However, Domning & Deméré (1984) reported that the
presence of Aepycamelus indicated the lower unit is slightly older, perhaps late
Clarendonian to early Hemphillian in age (approximately 10–7 Ma; Tedford et al., 2004),
and correlated the upper unit with the late Hemphillian NALMA (7 Ma to 4.9–4.6 Ma;
Tedford et al., 2004). Based on the presence of mancalline auks found in other rocks
of early Pliocene age (and the lack of late Pliocene mancalline taxa as from the San Diego
Formation), Domning & Deméré (1984) indicated an early Pliocene age for the upper unit
of the San Mateo Formation.

Occurrence: The San Mateo Formation has yielded a number of partial Otodus
megalodon teeth including: SDNHM 23056, 23959 (several teeth in a lot), 24448, 77430,
77343, and LACM 131149 (Fig. 7). One specimen catalogued in the lot SDNHM 23959
(Figs. 7I and 7J) and another tooth (SDNHM 24448, Figs. 7C and 7D) represent the
most complete teeth recovered from the San Mateo Formation. SDNHM 23959 represents
an upper right anterolateral tooth consistent with Otodus megalodon despite missing the
apex, having worn and chipped mesial and distal cutting edges, and broken root lobes.
SDNHM 24448 represents an upper left posterolateral tooth (Figs. 7C and 7D).
The specimen is missing a portion of the right root lobe and is missing some enameloid
on the lingual surface of the crown.

Conclusion: Teeth of Otodus megalodon occur in both the lower and upper units of the
San Mateo Formation (Domning & Deméré, 1984; Barnes & Raschke, 1991), and
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occurrences from the upper unit are here summarized as earliest Pliocene in age
(5.33–4.6 Ma).

Santa Cruz Mudstone
Stratigraphy: At the type section west of Santa Cruz (Santa Cruz County) of the Santa Cruz
Mudstone is a monotonous succession of jointed, indurated, and siliceous mudrocks
(siltstone and porcelanite), which conformably overlies the Santa Margarita Sandstone and
is in turn unconformably overlain by the Purisima Formation. In the vicinity of Point
Reyes, thick, massively bedded, indurated, and fractured siliceous mudrocks were
originally considered by Galloway (1977) to represent both the Monterey and Drakes Bay
formations, but were remapped by Clark et al. (1984) as the somewhat younger Santa Cruz

Figure 7 Otodus megalodon teeth from the San Mateo Formation. LACM 131149 in lingual (A) and
labial (B) view; SDNHM 24448 in lingual (C) and labial (D) view; SDNHM 23959 in lingual (E) and
labial (F) view; SDNHM 77343 in lingual (G) and labial (H) view; SDNHM 23959 in lingual (I) and labial
(J) view; SDNHM 23959 in lingual (K) and labial (L) view; SDNHM 23959 in lingual (M) and labial
(N) view. Full-size DOI: 10.7717/peerj.6088/fig-7
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Mudstone. Near Bolinas, foraminifera representative of the Delmontian California benthic
foraminiferal Stage (∼7–5 Ma; Barron & Isaacs, 2001) has been recorded, in addition to a
diatom flora typical of Diatom Zone X (Clark et al., 1984), which was later refined to
subzone A of the Nitzschia reinholdii zone by Barron (in Zeigler, Chan & Barnes, 1997),
equivalent to 7.6–6.5 Ma (Barron & Isaacs, 2001). Fossil bivalves from the Santa
Cruz Mudstone at Bolinas indicate deposition at about >500 m depth (Zeigler, Chan &
Barnes, 1997). Fossil vertebrates from the Santa Cruz Mudstone include the baleen whale
Parabalaenoptera baulinensis (Zeigler, Chan & Barnes, 1997), the sea cow Dusisiren
dewana (initially reported as Dusisiren species D by Domning, 1978), a herpetocetine
baleen whale (Boessenecker, 2011a:8), and a number of unpublished marine
mammals (R.W. Boessenecker, 2015, personal observation) including a phocoenid
porpoise (cf. Piscolithax), an albireonid dolphin, fragmentary odobenid and otariid bones,
and earbones of indeterminate balaenopterid mysticetes.

Occurrence: A single tooth of Otodus megalodon was reported from “Bolinas Bay” by
Jordan (1907: figure 15) as the holotype specimen of “Carcharodon branneri.”
Unfortunately, searches for additional locality information at CAS were unsuccessful.
Specimens reported by D.S. Jordan in various publications were originally curated at
Stanford University, the collections of which were later transferred to CAS; it is possible
that some of these specimens were never transferred to CAS (S. Mansfield, 2013,
personal communication; D. Long, 2013, personal observation). Ransom (1964) published
township and range coordinates for this locality, suggesting that the type was collected
near the west shore of the Bolinas Lagoon in the vicinity of the Bolinas County Park.
However, this area is covered by Quaternary alluvium with nearby exposures of sparsely
fossiliferous Pliocene to Pleistocene Merced Formation. It is more likely that the
original locality information is correct, and that the type specimen was collected from
exposures (or as float) of the Santa Cruz Mudstone along the northwestern shore of
Bolinas Bay (Jordan & Hannibal, 1923; also see Jordan, 1907) or possibly from as far west
as Duxbury Reef (where the majority of twentieth and twenty-first century vertebrate
collections from this unit have been made). This specimen was erroneously assigned to
the Purisima Formation by Pimiento & Clements (2014: table S2) and assigned an age of
5.3–2.6 Ma without explanation; the Purisima Formation does not crop out anywhere
within 25 km of Bolinas (Clark et al., 1984). Bones of fossil marine mammals are often
collected as float from these beaches.

Conclusion: If this specimen was collected from the Santa Cruz Mudstone near Bolinas,
then it likely represents an older 7.6–6.5 Ma record. Because this record falls within the
Messinian, it was included within the OLE.

Tirabuzón Formation

Stratigraphy: The Tirabuzón Formation consists of unconsolidated fossiliferous sandstone
exposures in the vicinity of Santa Rosalia along the eastern side of the northern Baja
California Peninsula (Applegate, 1978; Applegate & Espinosa-Arrubarrena, 1981;
Wilson, 1985). Formerly mapped as the Gloria Formation, it was renamed the Tirabuzón
Formation by Carreno (1982) after abundant spiral burrows of the ichnogenus
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Gyrolithes which leant the locality the name “Corkscrew Hill.” Paleodepth estimates
for this unit range from 200 to 500 m (outer shelf to slope) based on foraminifera
(Carreno, 1982) to 55–90 m (middle shelf) based on ichnology (Wilson, 1985).
The Tirabuzón Formation unconformably overlies the upper Miocene Boleo Formation,
and is in turn unconformably overlain by the lower to upper Pliocene Infierno Formation
(Holt, Holt & Stock, 2000). Holt, Holt & Stock (2000) reported an 40Ar/39Ar date of
6.76 ± 0.9 Ma from an andesitic interbed within the Boleo Formation, constraining a
lower limit for the age of the Tirabuzón Formation. The age of the Tirabuzón Formation
was considered Pliocene by Applegate (1978) and Applegate & Espinosa-Arrubarrena
(1981), and approximately 4–3 Ma (Zanclean equivalent) by Barnes (1998). Mollusks
reported from the overlying Infierno Formation indicate a maximum age of early
Pliocene for that unit (Johnson & Ledesma-Vasquez, 2001), therefore constraining a
minimum age of early Pliocene for the Tirabuzón Formation. Shark and marine mammal
fossils have previously been reported from the Tirabuzón Formation near Santa Rosalia,
including 34 shark taxa (including Otodus megalodon), an indeterminate otariid,
two balaenopterid mysticetes, a small pontoporiid dolphin (aff. Pontoporia), an
indeterminate phocoenid, two delphinids (Delphinus or Stenella sp., and aff.
Lagenorhynchus sp.), two kogiids (aff. Kogia sp. and cf. Scaphokogia sp.), and an
indeterminate physeterid (Applegate, 1978; Applegate & Espinosa-Arrubarrena, 1981;
Barnes, 1998).

Occurrence: Small teeth of Otodus megalodon are relatively abundant in the Tirabuzón
Formation (Fig. 8), and include 14 partial teeth: LACM 29064–29067, and 29069–29078.
Most of these teeth, except for smaller fragments, exhibit the characteristic V-shaped
chevron and most still retain their fine serrations. The most complete specimens are
two left posterolateral upper teeth, LACM 29065 (Figs. 8I and 8J), missing portions of the
root lobes, and LACM 29076 (Figs. 8G and 8H), missing the apex of the crown and parts of
the root lobes.

Conclusion: This occurrence of Otodus megalodon in the Tirabuzón Formation
is estimated to be late Miocene to early Pliocene (Messinian-Zanclean equivalent;
6.76–3.6 Ma).

Revisions to the Pimiento & Clements (2014) dataset
Prior to conducting the OLE we thoroughly vetted every fossil occurrence in the dataset
published by Pimiento & Clements (2014: table S1; Table 2). We encountered a number of
issues requiring adjustments. Much of their dataset (88% of occurrences) consists of
dates binned to stages (e.g., assigned the boundary dates of a particular stage or epoch).
This is standard practice for paleobiological analyses (Pimiento et al., 2016) like
richness counts, but it artificially expanded the age range (e.g., older maxima and younger
minima) for occurrences where finer geochronological age control is available in the
literature. This artificially inflated the number of Piacenzian-stage occurrences of Otodus
megalodon which actually have older (e.g., Zanclean) minimum dates (n = 13 occurrences
from Pimiento & Clements, 2014; Table 2). In other cases, we updated out-of-date
geochronologic data; out of occurrences we did not exclude, we were able to update 25 out
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of 32 occurrences (78% of the dataset) originally reported by Pimiento & Clements (2014)
based upon stratigraphic and geochronologic studies not cited by these authors (Table 2).

We excluded 10 out of the original 42 occurrences which satisfied one or more
rejection criteria (see Materials and Methods, Appendix 2). Several occurrences did not
possess subepochal age control (criterion 1), and we excluded any occurrence data for

Figure 8 Otodus megalodon teeth from the Tirabuzón Formation. LACM 29067 in lingual (A) and labial (B) view; LACM 29064 in lingual (C)
and labial (D) view; LACM 29077 in lingual (E) and labial (F) view; LACM 29076 in lingual (G) and labial (H) view; LACM 29065 in lingual (I) and
labial (J) view; LACM 29074 in lingual (K) and labial (L) view; LACM 29069 in lingual (M) and labial (N) view; LACM 29073 in lingual (O) and
labial (P) view; LACM 29075 in lingual (Q) and labial (R) view; LACM 29072 in lingual (S) and labial (T) view.

Full-size DOI: 10.7717/peerj.6088/fig-8
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Otodus megalodon teeth where the finest age control possible was provided by a statement
in the literature like “this locality is mapped as Pliocene” or “middle Miocene to Pliocene”
without finer age control (Luanda Formation, Angola; Canímar Formation, Cuba;
Salada Formation, Mexico). Several occurrences reported by Pimiento & Clements (2014)
consist of unpublished records ofOtodus megalodon teeth from the Bone Valley Formation
in various mines in Florida, dated to early Pliocene; however, their stratigraphic
justification refers to unpublished data in the FLMNH online data base (criterion 8).
An early Pliocene age is entirely consistent with other exposures of the upper Bone Valley
Formation (Morgan, 1994). However, we excluded these occurrences because the
stratigraphic interpretation cannot be evaluated based upon the peer-reviewed literature
alone. Other occurrences simply lacked strong provenance (criterion 4); for example,
one specimen of Otodus megalodon reported by Keyes (1972) from New Zealand had
locality data on a label stating “probably from the upper Miocene beds Older Wanganui
Series of NZ Geological Survey from between Wanganui and N. Plymouth”; 180 km
of coastline separate these two cities. We excluded this record for its lack of provenance.
One purported Pliocene tooth of Otodus megalodon was reported from the Highlands
Limestone of Barbuda (Flemming & McFarlane, 1998); we excluded this record
because geological studies indicate this unit is actually middle Miocene in age (criterion 6)
Brasier &Mather, 1975, and references therein). In one case, teeth reported from the Bahia
Inglesa Formation of Chile (Long, 1993) lacked intraformational stratigraphic control
(criteria 1, 2, 4), and assignment to the Miocene or Pliocene section of the formation was
not possible. The age control for two other localities (Luanda Formation, Angola;
“Main Vertebrate spot,” Libya) was based on biochronology of the shark assemblage, with
a minimum age of early Pliocene being based on the presence of Otodus megalodon itself
(Antunes, 1978; Pawellek et al., 2012). We excluded these records because inclusion of
these records within the OLE would constitute circular reasoning (criterion 7).
Other occurrences were excluded because they appear to be misidentified teeth of
Carcharodon carcharias (Cameron Inlet Formation, Australia; Kemp, 1991: plate 30C;
criterion 5) or the specimens in question still reside in a private collection and therefore
cannot be evaluated by scientists (Tangahoe Formation, New Zealand; McKee, 1994;
criterion 3).

We were also able to add several occurrences to the dataset (Table 2; Appendix 1),
including some published after the publication of Pimiento & Clements (2014) and some
that they were unaware of (e.g., Carrillo Puerto Formation, Mexico; Tokomaru Formation,
New Zealand); at least one occurrence (Daito Limestone, Kita-daito-jima, Japan;
Table 2) originally excluded by Pimiento & Clements (2014) was found to have stronger age
control (Takayanagi et al., 2010) than previously acknowledged (Pimiento & Clements,
2014: text S1), and was included within the OLE.

Results of OLE analysis
The total range of estimates of extinction age for Otodus megalodon in the OLE analysis
vary from 4.1 to 3.2 Ma, with a modal extinction date of 3.6 Ma (Fig. 9). Approximately
50% of the extinction estimates indicate extinction between 4.1 and 3.6 Ma.
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Fewer than 2% of the extinction estimates occur before 3.91 Ma, while fewer than 2% occur
after 3.26 Ma. None of the extinction dates estimated occurred post Zanclean, with no
evidence of survival of Otodus megalodon into this period or to the present.

DISCUSSION
Purported Pleistocene and Holocene records of Otodus megalodon
The record of Otodus megalodon from the Lomita Marl (Jordan, 1922) is substantially
younger than many other records from California. However, as noted by Mount (1974),
numerous sharks and other marine vertebrates from the Lomita Quarry locality are
only found elsewhere in middle and late Miocene localities, such as Allodesmus (Jordan &
Hannibal, 1923: plate 9J) and Carcharodon hastalis (Jordan & Hannibal, 1923: plate 9E
and 9F). Furthermore, shark teeth including Otodus megalodon teeth were collected
by quarry manager S. M. Purple (Bailey, 1922; Mount, 1974), without accompanying
stratigraphic information, and it is unclear where in the Lomita Quarry these specimens
were collected. Hanna (in Jordan & Hannibal, 1923) notes that the base of the Lomita
Marl within the Lomita Quarry was a glauconitic sandstone with abundant abraded whale
bones, and that in addition to Miocene marine mammals and sharks, Pleistocene terrestrial
mammals and a single Pleistocene pinniped were present in the quarry. This curious
mixture of taxa suggests stratigraphic reworking of older fossil material; indeed, the
holotype specimen of the gastropod Mediargo mediocris was considered by Wilson
& Bing (1970:7) to be reworked from Pliocene sediments into the Lomita Marl.
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Figure 9 Inferred dates of extinction for Otodus megalodon using the Optimal Linear Estimation
(OLE) model. Data binned by 10,000 year increments. The histogram (blue) represents the % fre-
quency of a given date that was estimated for the extinction out of 10,000 simulations. The curve (orange)
represents increasing cumulative probability that Otodus megalodon was extinct at the given date.

Full-size DOI: 10.7717/peerj.6088/fig-9
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Woodring, Bramlette & Kew (1946) report that the Lomita Marl includes “beds of gravel
consisting chiefly or entirely of limestone pebbles and cobbles derived from the
“Monterey” Shale. Locally huge boulders of soft Miocene mudstone and Pliocene siltstone
are embedded in calcareous strata.” These specimens of Otodus megalodon (RMMA597-1,
A597-9A, and A597-9B) are fragmented, and strongly abraded with polished
enameloid, indicating reworking. Only RMM A597-12 showed little evidence of abrasion,
although taphonomic experiments on fossil teeth by Argast et al. (1987) noted that
abrasion is not a guaranteed outcome of transport or reworking. Lastly, anthropogenic
mixing of multiple strata during mining operations is also a possibility for seemingly older
taxa in younger beds. Dynamite was used for mining in the quarry, which apparently
“[brought] down bones of whales, sea lions, land animals, chipped flints, pieces of charcoal,
sea shells, shark’s teeth, arrowheads, all mixed together” (Bailey, 1922). The report
of Otodus megalodon from the Pleistocene Lomita Marl could be due to reworking
from the “Monterey” Formation, anthropogenic mixing from mining operations,
collection from underlying strata, poor record keeping, or any combination of the above.
In this context, teeth of Otodus megalodon from the Lomita Marl are considered to be
allochthonous (either by sedimentologic or anthropogenic reworking) and thus not
relevant to the consideration of the timing of the extinction of the species.

Three teeth of Otodus megalodon (LACM 10141, 11194, and 159028) are questionably
recorded from the upper Pleistocene Palos Verdes Sand and unnamed strata at Newport
Bay Mesa (Fig. 10). LACM 11194 is now missing, but was found by an unknown
collector prior to 1915 from the North Pacific Avenue and Bonita Avenue intersection in
northern San Pedro, California. The locality is now built over, but was mapped as
Palos Verdes Sand by Woodring, Bramlette & Kew (1946). LACM 10141, is a fragmentary
tip of a tooth with longitudinally cracked enameloid and abraded serrations (Figs. 10C and
10D), and was collected from unnamed strata along the Newport Bay Mesa formerly
considered to belong to the Palos Verdes Sand (collector and collection date unknown); it
is alternatively possible that this specimen was collected from an exposure (now covered)
of the Pliocene Fernando Formation (see Mount, 1969). LACM 159028 (Figs. 10A
and 10B) possesses the following dubious locality information: “Rosecranz Ave.
Long Beach, Orange Co.?” We note that Rosecrans Avenue is far from the Palos Verdes
Hills and from Long Beach, and that both Rosecrans Avenue and Long Beach are located
within Los Angeles County. It is also possible that this specimen is reworked from
the underlying Puente Formation (L.G. Barnes, 2015, personal communication).
Alternatively, some Pliocene rocks are known in the Coyote Hills near Rosecrans Avenue
(Powell & Stevens, 2000), and the specimen may have been collected there. It is not
possible to unambiguously recognize any of these specimens as genuine Pleistocene
records of Otodus megalodon given the lack of provenance. We also note the similarity in
preservation (chiefly color) between LACM 159028 and teeth of Otodus megalodon
from some localities at Sharktooth Hill (middle Miocene “Temblor” Formation,
Kern County). Kanakoff (1956) only listed C. carcharias from this unit. Furthermore, a
comprehensive study of the ichthyofauna by Fitch (1970) only recorded C. carcharias.
We hypothesize that LACM 11194 was a misidentified or mistranscribed specimen
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of C. carcharias and that the other two specimens originated from a separate locality.
Therefore, we conclude that no reliable records of Otodus megalodon exist for Pleistocene
deposits in the Los Angeles Basin.

Several studies have reported teeth of Otodus megalodon dredged from the seafloor and
considered to be Pleistocene or even Holocene in age (Tschernezky, 1959; Seret, 1987;
Roux & Geistdoerfer, 1988). Dredged specimens from the south Pacific were reported by
Tschernezky (1959) and Seret (1987), whereas Roux & Geistdoerfer (1988) reported
numerous specimens from the Indian Ocean seafloor off the coast of Madagascar.
Tschernezky (1959) and Roux & Geistdoerfer (1988) both attempted to determine the age of
the teeth by measuring the thickness of adhering manganese dioxide nodules and
applying published rates of MnO2 nodule growth. Tschernezky (1959) reported a range of
24,406–11,333 years for the MnO2 nodule formation for these teeth, and Roux &
Geistdoerfer (1988) reported specimens with nodules with the equivalent of 60–15 Ka of
MnO2 growth. However, both studies assumed a constant rate of nodule growth and
interpreted these dates as indicating a latest Pleistocene extinction of Otodus megalodon
(Tschernezky, 1959; Roux & Geistdoerfer, 1988). Tschernezky (1959) argued that even
if Otodus megalodon went extinct during the Middle Pleistocene ca. 500 Ka, his dredged
Otodus megalodon teeth should have had MnO2 coatings approximately 75 mm thick.
Because conditions favoring the formation and growth of MnO2 nodules are not
necessarily constant over geologic time (Purdy et al., 2001), these dates can only indicate
when these teeth were exposed to seawater and do not reflect geochronologic age.
It is probable that these specimens were concentrated on the seafloor through submarine

Figure 10 Otodus megalodon teeth of purported Pleistocene age. LACM 159028 in lingual (A) and
labial (B) view, supposedly from Palos Verdes Sand; LACM 10141 in lingual (C) and labial (D) view,
supposedly from unnamed strata at Newport Bay Mesa. Full-size DOI: 10.7717/peerj.6088/fig-10
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erosion, winnowing, depositional hiatus, or a combination thereof. Collections of
numerous resistant vertebrate hardparts from these dredgings (e.g., shark teeth and
cetacean ear bones) support this suggestion. A more parsimonious scenario is that these
specimens are Pliocene (or Miocene) in age and were deposited in areas of slow
sedimentation with intermittent erosion, concentrating nodules and resistant marine
vertebrate skeletal elements (typically teeth and cetacean skull fragments) on the seafloor.
Intermittent periods of favorable chemistry fostered the formation and growth of MnO2

nodules and coatings, and it is possible that these specimens have experienced
numerous burial-exhumation cycles (Boessenecker, Perry & Schmitt, 2014). Lastly, because
no extrinsic absolute or biostratigraphic age data exist for these specimens, the
maximum age of these specimens is ultimately unknown and cannot be considered to
represent post-Pliocene occurrences (Applegate & Espinosa-Arrubarrena, 1996;
Purdy et al., 2001).

Timing of the extinction of Otodus megalodon in the eastern
North Pacific
Although numerically less abundant than in deposits of the Atlantic Coastal Plain,
fossil teeth of Otodus megalodon have been reported from numerous middle Miocene
localities in California and Baja California (Jordan & Hannibal, 1923; Mitchell, 1966;
Deméré et al., 1984). Late Miocene occurrences of Otodus megalodon include the Almejas
(Barnes, 1992), Monterey (Barnes, 1978), “lower” San Mateo (Domning & Deméré, 1984),
Capistrano (Barboza et al., 2017; this study), and Purisima formations (Boessenecker,
2016; this study), Santa Cruz Mudstone (Jordan & Hannibal, 1923; this study), and Santa
Margarita Sandstone (Barnes, 1978; Domning, 1978). Pliocene occurrences in California
(reviewed above) are restricted to the Capistrano, Fernando, “upper” San Mateo,
basal San Diego, and Tirabuzón formations (Fig. 11). In the context of dubious provenance
or clear evidence of reworking for specimens younger than these, we do not consider
any post-early Pliocene records of Otodus megalodon to be reliable and putative
Quaternary specimens are particularly dubious. Several specimens of Otodus megalodon
are now recorded from the basal San Diego Formation, which is as old as 4.2 Ma
(Wagner et al., 2001; Vendrasco et al., 2012), and we interpret these records as earliest
Pliocene (Zanclean equivalent; Fig. 11). The lack of Otodus megalodon specimens
and abundant Carcharodon carcharias teeth in younger sections of the San Diego
Formation is paralleled in the Purisima Formation at Santa Cruz. Although Carcharodon
carcharias teeth are common within well-sampled bonebeds, no teeth of Otodus
megalodon have been discovered from the Pliocene section of either unit. However, teeth
of Otodus megalodon are rare within established Miocene marine vertebrate collections
relative to C. hastalis or C. carcharias (e.g., within the Sharktooth Hill Bonebed,
approximately 80+ specimens of C. hastalis are recorded vs. nine teeth of Otodus
megalodon in UCMP collections; accessed October 23, 2018). In summary,
specimens discussed herein are entirely latest Miocene or earliest Pliocene in age
(Messinian-Zanclean equivalent; Fig. 11). Qualitative assessment of the reliable
occurrences of Otodus megalodon in California and Baja California suggests extinction
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of this taxon during the early Pliocene, perhaps during the Zanclean stage or near the
Zanclean-Piacenzian boundary (ca. 4–3 Ma; Fig. 11).

A worldwide view of Otodus megalodon extinction
The fossil record of Otodus megalodon in other regions lends support to an early
Pliocene (Zanclean) extinction (Figs. 9 and 11). Previously described records of Pliocene
age possibly relevant to temporally constraining the extinction of Otodus megalodon
include occurrences from the eastern USA, Japan, Australia, New Zealand, western Europe
(Belgium, Spain, UK, Denmark), southern Europe (Italy), Africa (Libya), and South
America (Chile, Ecuador, Peru, Venezuela).

In deposits around the North Sea, Otodus megalodon has been reported from the
Miocene, Pliocene, and Pleistocene (Bendix-Almgreen, 1983; Donovan, 1988). A tooth
from the upper Miocene Gram Formation of Denmark was interpreted by
Bendix-Almgreen (1983:23–24) as representing the youngest record of Otodus megalodon
from the eastern North Atlantic. A tooth of Otodus megalodon from the Pliocene
to Pleistocene Red Crag Formation of eastern England was mentioned by
Donovan (1988), although the majority of marine vertebrate remains—marine mammals
in particular—show evidence of reworking including abrasion, polish, and
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phosphatization and furthermore typically consist of dense elements with relatively high
preservation potential (e.g., cetacean tympanoperiotics, teeth and tusks, and osteosclerotic
beaked whale rostra; Owen, 1844, 1870; Lydekker, 1887). This evidence suggests that
marine vertebrate material has been reworked from preexisting strata predating the
Red Crag Formation; indeed, the Red Crag unconformably overlies the Eocene London Clay
and the lower Pliocene Coralline Crag Formation (Zalasiewicz et al., 1988), and marine
vertebrate remains may date to the Eocene-Pliocene depositional hiatus (or erosional lacuna)
between the London Clay and overlying Red Crag Formation, or may have been reworked
from the Coralline Crag Formation. A single record from the Piacenzian of France is
cited byCappetta (2012) fromGervais (1852), but no geographic or stratigraphic information
is given by Gervais (1852:173) and this record cannot be evaluated.

In a review of the stratigraphic range of Pliocene to Pleistocene elasmobranchs from
Italy, Marsili (2008) indicated that Otodus megalodon disappeared from the record during
the Zanclean (∼4 Ma) and that no Piacenzian records existed, contra Pimiento &
Clements (2014: table S1). In their discussion of the shark fauna of Malta,Ward & Bonavia
(2001) considered Otodus megalodon to have become extinct in the early Pliocene
(but without further comment). Other early Pliocene (Zanclean equivalent) records of
Otodus megalodon from western Europe and the Mediterranean region include the Huelva
Formation of Spain (Garcia et al., 2009) and unnamed strata in the Sabratah Basin of
northwestern Libya (Pawellek et al., 2012). Elsewhere in Africa, Otodus megalodon is
recorded from the early Pliocene of Angola (Antunes, 1978).

In a summary of Mesozoic and Cenozoic ichthyofaunas from Japan, Yabumoto &
Uyeno (1995) reported that Otodus megalodon is widely known from Miocene strata
and occurs in the lower Pliocene, but not from younger upper Pliocene and Pleistocene
rocks. Subsequently, a review by Yabe, Goto & Kaneko (2004) reported widespread
occurrences of Otodus megalodon in the earliest Pliocene (Zanclean) and a few late early
Pliocene records (Piacenzian), and considered Otodus megalodon to have gone extinct
in the late early Pliocene or late Pliocene. Three post-Zanclean occurrences were listed by
Yabe, Goto & Kaneko (2004): one is uncertainly Piacenzian, another Zanclean or
Piacenzian, and one strictly Piacenzian in age. However, these specimens were not figured
by Yabe, Goto & Kaneko (2004) and it is unclear whether or not they are reworked.

An early Pliocene (Zanclean or Piacenzian) extinction of Otodus megalodon seems to be
reflected in the fossil record of Australia and New Zealand. Late Miocene occurrences of
Otodus megalodon are common from both landmasses (Keyes, 1972; Kemp, 1991;
Fitzgerald, 2004). Several early Pliocene records of Otodus megalodon have been reported
from Australia (Kemp, 1991; Fitzgerald, 2004), including a single specimen from the
lower Pliocene Cameron Inlet Formation (Zanclean-Piacenzian correlative; Kemp, 1991;
Fitzgerald, 2004). However, judging from Kemp’s (1991: plate 30C) illustration, this
specimen is a misidentified Carcharodon carcharias tooth owing to its small size, lack of a
preserved chevron, and relatively large serrations. Keyes (1972) reported several specimens
ranging in age from early Pliocene to Pleistocene age, but many of them have
tenuous provenance. For example, one such specimen (included in the analysis by
Pimiento & Clements, 2014) can only be pinpointed to a 180 km section of coastline.
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Only a single published Pliocene tooth of Otodus megalodon from New Zealand
has reliable provenance, a specimen collected from Patutahi Quarry on the North Island.
According to Keyes (1972), strata at the quarry correspond to the local New Zealand
Opoitian Stage (5.33–3.6 Ma); accordingly, this tooth represents the youngest
reliable record of Otodus megalodon from New Zealand.

In South America, Otodus megalodon is known continuously from at least the middle
Miocene to the lowermost Pliocene in the Pisco Basin of Peru (Muizon & De Vries, 1985;
Ehret et al., 2012). However, owing to the absence of well-sampled younger
marine vertebrate assemblages, it is unclear if this simply reflects an artifact of
preservation. Otodus megalodon has also been reported from the latest Miocene-early
Pliocene of Ecuador (Longbottom, 1979). Although Otodus megalodon has been reported
from the well-sampled uppermost Miocene to lower Pliocene Bahia Inglesa Formation
of Chile (Long, 1993), the exact age of this occurrence is imprecisely known
(Walsh & Hume, 2001; Walsh & Naish, 2002). On the Caribbean coast of South America,
Otodus megalodon is continuously known from middle Miocene through lower
Pliocene deposits, with the youngest specimens occurring in the lowermost Pliocene
(Zanclean-correlative; Aguilera, Garcia & Cozzuol, 2004).

Paralleling the record in Venezuela, abundant Miocene records of Otodus megalodon
exist in the western North Atlantic and Caribbean, with the youngest specimens
consistently being earliest Pliocene in age (Flemming & McFarlane, 1998; Purdy et al.,
2001; Ward, 2008). In deposits of the Atlantic coastal plain of the United States, teeth of
Otodus megalodon are abundant within the lower Pliocene Sunken Meadow Member of
the Yorktown Formation (Purdy et al., 2001; Ward, 2008), but absent from the upper
Pliocene Rushmere and Moore House members of the Yorktown Formation (Ward, 2008).
The extinction of Otodus megalodon was interpreted by Ward (2008) to have occurred
during the time recorded by the unconformity and depositional hiatus of uncertain
duration between the Sunken Meadow and Rushmere members. A number of possible
Pleistocene occurrences of Otodus megalodon from Florida are present in FLMNH
collections, but originate from temporally mixed fossil assemblages and quarry spoil piles
(D.J. Ehret, 2015, personal observation).

We interpret the absence of Otodus megalodon in the Rushmere and Moore House
members of the Yorktown Formation, upper San Diego Formation, and “upper” parts of
the Purisima Formation to be biochronologically real and reflect the genuine absence of
this taxon. Given the intense collecting of these localities by amateur and professional
paleontologists alike, collection bias is not likely a factor in determining the stratigraphic
occurrence of Otodus megalodon.

Results of the OLE analysis based upon our revised version of the dataset (Table 2;
Appendix 1) incorporating current stratigraphic and geochronologic data indicate that
Otodus megalodon was most likely extinct by 3.6 Ma and perhaps even as early as 4.1 Ma
(maximum) and certainly no later than 3.2 Ma (minimum; Figs. 9 and 11), strongly
indicating an extinction during the Zanclean stage or close to the Zanclean-Piacenzian
boundary (3.6 Ma). This global estimate compares well with the qualitative approach
for Otodus megalodon occurrence data in the ENP, and consistent identification of
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minimum ages near the Zanclean-Piacenzian boundaries is consistent with a globally
synchronous extinction at or around 3.6 Ma. We note that the separation between the
maximum and minimum inferred extinction dates (∼970,000 years; 4.1–3.2 Ma) from the
OLE are substantially narrower than those results (3.66 million years; 3.5 Ma–160 ky
in the future) reported by Pimiento & Clements (2014:2, Fig. 1). Pimiento and Clements, in
their results, focus on range of dates that result in a cumulative 50% probability of
extinction, which give a range of extinction dates from 3.5 to 2.6 Ma. If we follow this
reasoning, and focus on the cumulative 50% probability of extinction found in our study,
we still get a narrower range of possible extinction times, between 4.1 and 3.6 Ma,
or a range of 500,000 years, vs. the 900,000 of Pimiento & Clements (2014).

Perhaps more critical than the narrower range of modeled extinction dates is the earlier
shift in modal extinction date by nearly one million years relative to Pimiento & Clements
(2014). Geologically speaking, one million years seems trivial, but the difference
between the two reconstructed extinction dates is critical given that this extinction
occurred quite recently; an earlier date now poses problems for the supposed synchronicity
of Plio-Pleistocene marine mammal extinctions and/or faunal turnover (Pimiento et al.,
2017; but see Boessenecker, 2013a). Recently, Wang & Marshall (2016:4) noted that
the “poorly resolved ages of many of the fossil occurrences” of the Pimiento & Clements
(2014) dataset led a wide confidence interval in their OLE. Indeed, the results of
macroevolutionary studies of extinction timing are sensitive to the quality of available
dates (Price et al., 2018). Our finer resolution highlights the importance of carefully
vetting the provenance of each reported occurrence and thoroughly exploring the
geological literature for such fossil occurrences—critical for any study of biochronology
(Price et al., 2018) as well as selecting fossil calibrations for molecular clock dating
(Parham et al., 2012).

Possible causes for the extinction of Otodus megalodon
Determination of the timing of the extinction of Otodus megalodon is a necessary step in
identifying potential causal factors contributing to its demise (Pimiento & Clements, 2014;
Pimiento et al., 2016). Although testing various hypotheses in a quantitative manner
is beyond the scope of this article, some comments regarding potential biotic and physical
drivers are appropriate given the revised extinction date presented herein. Abiotic drivers
such as changes in climate, upwelling, currents, sea level, and paleogeography are
possible determinants in the decline of the otodontid lineage (Pimiento et al., 2016).
Physical events coincident with a “mid”-Pliocene extinction include: (1) a decrease
in upwelling in the ENP (Barron, 1998), (2) increased seasonality of marine
climates (Hall, 2002); (3) a period of climatic warming and permanent El-Niño like
conditions in the equatorial Pacific (Wara, Ravelo & Delaney, 2005; Fedorov et al., 2013),
(4) followed by late Pliocene global cooling (Zachos et al., 2001), (5) closure of the Panama
seaway and restriction of currents and east-west dispersal among marine organisms
(Collins et al., 1996; Haug et al., 2001; O’Dea et al., 2016; Jaramillo et al., 2017), and
(6) stable eustatic sea level during the early Pliocene, (7) followed by eustatic sea level fall
related to initial glaciation during the late Pliocene (Miller et al., 2005). Some of these
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changes in oceanic circulation and upwelling were regional, and therefore do not represent
likely causes in the extinction of Otodus megalodon (if the extinction was indeed globally
synchronous; e.g., Pimiento & Clements, 2014); however, these events may have been,
in part, responsible for range fragmentation. Long term cooling following the middle
Miocene Climatic Optimum (Zachos et al., 2001) may have reduced the geographic range
of this species (Purdy, 1996; Dickson & Graham, 2004; but see Pimiento et al., 2016; Ferrón,
2017). However, a robust analysis of worldwide geographic distribution in Otodus
megalodon found no change in the latitudinal distribution coincident with changes in
global climate (Pimiento et al., 2016).

The lack of evidence for a climatic or geographic driver of Otodus megalodon extinction
suggests that a biotic driver is probably responsible (Pimiento et al., 2016). Within the
ENP, many “archaic” marine mammal taxa became extinct during the early Pleistocene
(Gelasian stage, ∼2 Ma; Boessenecker, 2013a, 2013b), but the revised extinction of
Otodus megalodon (this study) seems to have pre-dated this (∼3.6 Ma). The appearance of
the modern marine mammal fauna appears to have occurred by the early Pliocene in
the North Atlantic and western South Pacific (Whitmore, 1994; Fitzgerald, 2005;
Boessenecker, 2013a), suggesting globally asymmetric origination of modern marine
mammal genera and species (Boessenecker, 2013a), in contrast with an apparently
synchronous extinction of Otodus megalodon (Pimiento & Clements, 2014; this study).
Many extant genera of cetaceans first appeared during the Pliocene (Fordyce & Muizon,
2001), apparently temporally coincident with the extinction ofOtodus megalodon, but with
uncertain relevance. Other biotic effects have been hypothesized to have affected or
been driven byOtodus megalodon. Recently described macrophagous sperm whales appear
to have been diverse worldwide in the middle and late Miocene, were similar in size to
Otodus megalodon, and were likely competing apex predators (Lambert et al., 2010).
A high diversity of small-bodied baleen whales during the middle Miocene is implicated in
supporting such an assemblage of gigantic predators (Lambert et al., 2010; Collareta et al.,
2017). Similarly, Lindberg & Pyenson (2006) noted that the extinction of Otodus
megalodon is roughly contemporaneous with the earliest fossil occurrences of killer whales
(Orcinus) in the fossil record, and perhaps competition with killer whales during the
Pliocene could have acted as a driver in the extinction of Otodus megalodon. However, the
Neogene fossil record of Orcinus is limited to two occurrences: an isolated tooth from
Japan (Kohno & Tomida, 1993), and the well-preserved skull and skeleton of Orcinus
citoniensis from the late Pliocene of Italy (Capellini, 1883). Furthermore, Orcinus
citoniensis was small in comparison to extant Orcinus orca (est. four m body length:
Heyning & Dahlheim, 1988) and possessed a higher number of relatively smaller teeth and
narrower rostrum (Bianucci, 1996), and was probably not an analogous macrophagous
predator. Because fossils of Orcinus are not widespread during the Pliocene, claims
of competition between Otodus megalodon and Orcinus are problematic. Furthermore, the
decline and loss of cosmopolitan macrophagous physeteroids (Tortonian-Messinian;
Lambert et al., 2010) appears to have predated the early Pliocene extinction of Otodus
megalodon by several million years.
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Evolutionary interactions with baleen whales have also been implicated for the Otodus
lineage (Collareta et al., 2017). Lambert et al. (2010) and Lambert, Bianucci & De Muizon
(2016) suggested that higher diversity of small-bodied mysticetes during the middle
Miocene drove the evolution of killer sperm whales; similarly, this could have driven body
size increases in Otodus megalodon. Cetacean diversity peaked in the middle Miocene
and began to decrease in the late Miocene (Lambert et al., 2010;Marx & Uhen, 2010), and
maximum body length amongst fossil mysticetes increased during the late Miocene and
Pliocene (Lambert et al., 2010), heralding the appearance of modern giants such as
Balaena, Balaenoptera, Eschrichtius, Eubalaena, and Megaptera. Despite the increase in
maximum body size among mysticetes and apparently coincidental extinction of
Otodus megalodon during the Pliocene, numerous small-bodied archaic mysticetes
persisted into the Pliocene (Bouetel & Muizon, 2006; Whitmore & Barnes, 2008; Collareta
et al., 2017) and even Pleistocene (Boessenecker, 2013a), complicating this relationship.
A modal extinction date of 3.6 for Otodus megalodon pre-dates the extinction of certain
dwarf mysticetes such as Balaenula (Piacenzian-Gelasian; Barnes, 1977), Herpetocetus
(Calabrian-Ionian; Boessenecker, 2013b) and various dwarf balaenopterids (Deméré, 1986;
Boessenecker, 2013a). Indeed, further study of rare late Pliocene marine mammals is
necessary to further elucidate potential competition with Otodus megalodon, extinctions,
and faunal dynamics (Pimiento et al., 2017).

Another potential biotic factor in the extinction of Otodus megalodon is the evolution
of the modern great white shark, Carcharodon carcharias (Pimiento et al., 2016).
It gradually evolved from the non-serrated Carcharodon hastalis during the late Miocene,
transitioning first into the finely serrated Carcharodon hubbelli approximately 8–7 Ma,
then evolved into the coarsely serrated C. carcharias approximately 6–5 Ma (Ehret,
Hubbell &MacFadden, 2009a; Ehret et al., 2012; Boessenecker, 2011b; Long, Boessenecker &
Ehret, 2014). However, in the western North Atlantic, C. carcharias is absent in the
early Pliocene Sunken Meadow Member of the Yorktown Formation (Purdy et al., 2001;
Ward, 2008), and in its place is C. hastalis (=I. hastalis and I. xiphodon in Purdy et al.,
2001). Carcharodon carcharias instead occurs higher in the Rushmere Member of
the Yorktown Formation (Müller, 1999). This suggests that the appearance of C. carcharias
in the Atlantic may have been delayed relative to the Pacific. Pawellek et al. (2012) reported
an earliest Pliocene fish assemblage on the Mediterranean coast of Libya that included
C. carcharias and Otodus megalodon; clarifying the timing of first appearance of
C. carcharias in ocean basins outside the Pacific is necessary, but beyond the scope of
this study. Nevertheless, the timing of Otodus megalodon extinction appears to overlap
with the final widespread global occurrence of C. carcharias in the early Pliocene.
It is critical to note that a single putative tooth of C. carcharias has been reported from
the middle Miocene Calvert Formation and has been identified as evidence supposedly
disproving the C. hastalis–C. hubbelli–C. carcharias transition (Purdy, 1996;
Gottfried & Fordyce, 2001), although Ehret et al. (2012) indicated this specimen is a
misidentified juvenile Otodus megalodon tooth.

The development of serrations in Carcharodon hubbelli suggests a refined ability to
prey upon warm-blooded prey relative to other large lamnid and carcharhinid sharks
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(Frazzetta, 1988; Ehret, Hubbell & MacFadden, 2009a; Ehret, MacFadden & Salas-Gismondi,
2009b; Ehret et al., 2012). Perhaps trophic competition with the newly evolved C. carcharias
contributed to the extinction of Otodus megalodon, in which adult C. carcharias would
have been in the same size range and likely would have competed with juvenile Otodus
megalodon. Owing to its global scope, the first appearance of modern C. carcharias during
the early Pliocene is a likely candidate for the driver behind the extinction of Otodus
megalodon. Further investigations regarding body size trends in the Otodus and
Carcharodon lineages, the C. hastalis–C. hubbelli–C. carcharias anagenetic lineage in the
Pacific basin and elsewhere (Fig. 11), and the timing of C. carcharias first appearances and
Otodus megalodon last appearances in the Atlantic and other ocean basins are necessary
to evaluating these hypotheses of extinction drivers of Otodus megalodon.

CONCLUSIONS
Fossil teeth of Otodus megalodon have been reported from Miocene, Pliocene, and
Pleistocene aged strata in California (USA) and Baja California (Mexico). Critical
examination of Pleistocene specimens and their stratigraphic context clearly indicate that
they are reworked, have poor provenance, or the specimens are missing (or some
combination thereof), making evaluation impossible. Specimens of late Pliocene age, such
as those from the Niguel Formation, also appear to be reworked from older strata. Early
Pliocene specimens from the Capistrano Formation, Imperial Formation, lowermost
San Diego Formation, upper San Mateo Formation, and Tirabuzón Formation appear to
represent the youngest autochthonous (or parautochthonous) records, whereas numerous
Otodus megalodon records of middle and late Miocene age have been reported. OLE
analysis of a revised global dataset of Otodus megalodon occurrences strongly suggests that
Otodus megalodon was extinct by the end of the early Pliocene (3.6 Ma), in remarkable
concordance with our qualitative result based on the record from the ENP. Extinction
ofOtodus megalodon at 3.6 Ma appears to pre-date Pliocene-Pleistocene faunal turnover of
marine mammals, and the extinction of Otodus megalodon may instead be related to late
Miocene-Pliocene range fragmentation, declining numbers of small-bodied mysticete
whales, and the evolution of modern Carcharodon carcharias. This study further dispels
publicly held opinions that Otodus megalodon may still be extant, and demonstrates that
Otodus megalodon did not survive to the end of the Pliocene. OLE results of Otodus
megalodon extinction generated from our revised dataset highlight the importance of
critically evaluating the locality provenance and stratigraphic control of individual fossil
occurrences. Testing these revised hypotheses by the reporting of additional unpublished
records of Otodus megalodon or clarifying the age of poorly constrained fossil
occurrences may result in further shifts and refinements to the modal, maximum, and
minimum extinction dates but absolutely requires careful assessment of geochronology
and provenance.
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