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Abstract. Low-level jets (LLIJs) can be defined as wind corridors of anomalously high wind speed values lo-
cated within the first kilometre of the troposphere. These structures are one of the major meteorological systems
in the meridional transport of moisture on a global scale. In this work, we focus on the southerly Great Plains
low-level jet, which plays an important role in the moisture transport balance over the central United States. The
Gulf of Mexico is the main moisture source for the Great Plains low-level jet (GPLLJ), which has been identified
as a key factor for rainfall modulation over the eastern and central US.

The relationship between moisture transport from the Gulf of Mexico to the Great Plains and precipitation has
been well documented in previous studies. Nevertheless, a large uncertainty still remains in the quantification of
the moisture amount actually carried by the GPLLJ. The main goal of this work is to address this question. For
this purpose, a relatively new tool, the regional atmospheric Weather Research and Forecasting Model with 3-D
water vapour tracers (WRF-WVT; Insua-Costa and Miguez-Macho, 2018) is used together with the Lagrangian
model FLEXPART to estimate the load of precipitable water advected within the GPLLJ. Both models were
fed with data from ERA Interim. From a climatology of jet intensity over a 37-year period, which follows a
Gaussian distribution, we select five cases for study, representing the mean and 1 and 2 standard deviations
above and below it. Results show that the jet is responsible for roughly 70 %—80 % of the moisture transport
occurring in the southern Great Plains when a jet event occurs. Furthermore, moisture transport by the GPLLJ
extends to the north-east US, accounting for 50 % of the total in areas near the Great Lakes. Vertical distributions
show the maximum of moisture advected by the GPLLJ at surface levels and maximum values of moisture flux
about 500 m above, in coincidence with the wind speed profile.

shown the strong influence of the GPLLJ as a modulator of

It is well known that the Great Plains low-level jet (here-
after, GPLLJ) plays an important role in the balance of the
moisture transport over the central United States (Stensrud,
1996; Schubert et al., 1998). The atmospheric moisture is
transported by the GPLLJ from tropical and subtropical lat-
itudes (particularly the Gulf of Mexico and the Caribbean
Sea) into the Great Plains (Helfand and Schubert, 1995; Mo
et al., 1997), where the jet is often responsible for noctur-
nal deep convective activity (Higgins et al., 1997; Pu et al.,
2016). In the last decades, a large number of authors have

climate and rainfall over this region and even further east
(Mo et al., 1995, 1997; Wu and Raman, 1998; Byerle and
Paegle, 2003); for instance, throughout May and June it is
estimated that at least one-third of the moisture penetrating
into the continental US is carried by the GPLLJ (Helfand and
Schubert, 1995).

Among the mechanisms which have been proposed as
triggers of the GPLLJ are included a combination of in-
ertial oscillations (Blackadar, 1957) and orographic forc-
ing (Wexler, 1961; Byerle and Paegle, 2003; Pan et al.,
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2004; Ting and Wang, 2006). In particular, the mechanism of
Blackadar (1957) suggests that inertial oscillations near the
friction layer can induce the formation of the GPLLJ (Wu
and Raman, 1998). Nevertheless, orographic effects are also
understood as a key factor in the maintenance of the GPLLJ.
In this regard, Ting and Wang (2006) proved that, when the
interaction with the orography is removed from numerical
simulations, the GPLLJ vanishes, together with an impor-
tant amount of the summer precipitation over the central and
southerly US.

The GPLLJ is a phenomenon confined within the first
kilometres of the troposphere and is closely related to the
warm season (Bonner, 1968). Moreover, it is characterised
by a strong diurnal oscillation, with a peak in strength dur-
ing night hours (Augustine and Caracena, 1994). A long-term
climatology of GPLLJ can be found in the work of Walters et
al. (2008). The GPLLJ is a phenomenon extremely localised
in time and space, and its role in the continental moisture
balance is difficult to study solely from observations.

Nevertheless, a large number of studies have documented
the relationship between the major moisture transport and
the GPLLJ. Higgins et al. (1996) studied the moisture bud-
get over the central US in May employing NASA/DAO and
NCEP/NCAR datasets, together with station observations, to
evaluate the limitations of these products. Although both re-
analyses overestimate daily mean precipitation rates, they ac-
curately capture the basic temporal and structural character-
istics of the GPLLJ. From the data, these authors calculated
an increase in atmospheric moisture transport from the Gulf
of Mexico during night-time of more than 50 %. In a later
work, Higgins et al. (1997) observed a well-defined noctur-
nal maximum of precipitation over the Great Plains in spring
and summer by analysing station data. Linked to low-level
jet (LLJ) events, they particularly found an excess of 25 %
in the region in nocturnal rainfall during summer when com-
pared with the diurnal precipitation, associated with a rain-
fall decrease over the Gulf of Mexico. Additionally, Higgins
et al. (1997) reported significant differences in precipitation
pattern in coincidence (or not) with LLJ events. When an
LLJ event occurs, the observations show an enhanced pre-
cipitation over the north-central United States and the Great
Plains region, together with a decrease along the Gulf of
Mexico and the western Atlantic. On the other hand, Mo
and Juang (2003) found regional correlation at a distance be-
tween evaporation and precipitation, reflected in evaporation
anomalies over the Great Plains along the trajectory of the
GPLLJ, which are associated with downstream precipitation
anomalies.

Otherwise, extreme rainfall events in the central US are
related to an increase in moisture convergence downwind of
the GPLLJ (Mo et al., 1997). A decisive factor that triggers
heavy rains and floods is the presence of moisture advected
by the GPLLJ from the Gulf of Mexico and the Caribbean
Sea. Moore et al. (2012) reported the physical processes re-
lated to the floods in May 2010, when a persistent southerly
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LLJ associated with an atmospheric river (AR) enhanced the
transport of moisture from the Gulf of Mexico into the heavy
rainfall region. Thus, important socioeconomic impacts fol-
low enhanced GPLLJ events, which modulates a large per-
centage of the local extreme precipitation events and flood-
ing in warmer months (Mo et al., 1995, 1997; Beljaars et
al., 1996; Trenberth and Guillemot, 1996; Arritt et al., 1997;
Nakamura et al., 2013; Nayak et al., 2016). All these re-
sults are consistent with the large-scale atmospheric mois-
ture transport and support the marked influence of the GPLLJ
over the central-eastern US, which has been shown to trig-
ger more than 60 % of the spring local precipitation over the
Great Plains region (Wang and Chen, 2009).

During the last decades, the GPLLJ has experienced a
strengthening, accompanied by a northward migration caus-
ing a displacement of rainfall in the same direction. As a re-
sult, more frequent droughts have been observed in the south-
ern Great Plains (Barandiaran et al., 2013). Moreover, an in-
crease in the number and intensity of GPLLJ events is also
forecasted for future projections, which reveal an intensifica-
tion of the GPLLJ during the spring season associated with
global warming (Cook et al., 2008; Tang et al., 2017). As
a result, increasing amounts of moisture transport and rain-
fall are expected, particularly from April to July, over the
central US (Harding and Snyder, 2014). The same projec-
tions forecast a slight weakening of the GPLLJ from August
to December, which could translate into increasing drought
conditions.

The knowledge about the GPLLJ, together with the in-
sights on the relationship between the moisture transported
by the GPLLJ and local precipitation patterns, has increased
considerably during the last decades. However, there are still
unanswered questions about the quantification of such water
vapour transport and especially about the estimation of the
ratio of land to oceanic moisture sources associated with the
GPLLJ. This estimate of the oceanic input to the moisture
transport associated with the GPLLJ is essential to predict
and understand the behaviour of the GPLLJ in future scenar-
i0s.

In this work, a new tool, the regional atmospheric Weather
Research and Forecasting Model with 3-D water vapour
tracer diagnostics (WRF-WVT, Insua-Costa and Miguez-
Macho, 2017), is used to quantify the total amount of to-
tal precipitable water (TPW) transported by the GPLLJ. To
show the differences between the transport of moisture on
jet and non-jet days, a 37-year climatology of maximum jet
intensity is obtained following the methodology of Rife et
al. (2010). The structure of this work is as follows: in Sect. 2
we provide the methodology used, in Sect. 3 we show the
results obtained, and finally in Sect. 4 we discuss the conclu-
sions.
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2 Data and methods

2.1 Detection of the Great Plains low-level jet

To objectively detect days with LLJ over the Great Plains, we
applied the night-time index proposed in Rife et al. (2010),
hereafter named NLLJ. This index is based on the tempo-
ral variation in the wind’s vertical structure and the fact that
LLJs are most intense at local midnight. Because both the
frequency and intensity of GPLLIJ are mostly associated with
the warm season, we develop a 37-year climatology for the
month of July (representative of the boreal summer). Accord-
ing to the NLLJs characteristics, and with the aim to define
the index, two conditions should be met to consider a GPLLJ
detection:

1. The wind speed is higher at local midnight than at mid-
day.

2. The local midnight wind speed is higher at the surface
( ~ 500 m) than above it (~ 4 km).

The index is calculated at each grid point over an area cen-
tred over the US using 6-hourly ERA-Interim reanalysis data
(Dee et al., 2011) with a 0.25° horizontal resolution. Because
the jet core is located within of the first kilometre of the
troposphere, it is necessary to take into account the eleva-
tion of the land, so sigma coordinates are used. The GPLLJ-
climatology is developed for 37 years, from 1980 to 2016,
and the NLLJ index can be defined as follows:

NLLJ = ()
2 2
aoy [(uh — k) — (wd — i) P+ [(od — v82) — (o} — 1)

where u and v are the zonal and meridional wind com-
ponents, respectively. L1 represents the winds at the sur-
face at the 53 sigma level (elevation near the jet core),
approximately 500 m above ground level (a.g.l.), while L2
corresponds to the wind at the 42 sigma level (around
4000 ma.g.l.). Numbers 00 and 12 refer to local midnight
and local noon, respectively. A and ¢ are binary multipliers
representing the temporal and vertical variation in the wind.
In particular, A relates to the daily variation in the wind at
500 m, and ¢ refers to the wind’s vertical variation between
500 m and 4 km at midnight (Rife et al., 2010):
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2.2 |dentification of moisture sources associated with
the Great Plains low-level jet

For the objective identification of moisture sources asso-
ciated with the GPLLJ, the Lagrangian backward trajecto-
ries from the FLEXPART v9.0 model are used (Stohl et al.,
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2005a). This model provides a large number of air parcel tra-
jectories from which it is possible to calculate the evapora-
tion minus precipitation budget, tracking all changes in the
specific humidity of air parcels.

FLEXPART has been widely and successfully used to
track moisture paths for the study of the atmospheric branch
of the hydrologic cycle in different parts of the world (e.g.
Vazquez et al., 2016; Hu et al., 2018; Sori et al., 2018). Fur-
thermore, this tool is able to infer the moisture sources for
precipitation falling in a target region when backward trajec-
tories are considered (e.g. Stohl et al., 2008; Drumond et al.,
2010; Gimeno et al., 2012; Wegmann et al., 2015; Ramos et
al., 2016).

In this work we use the outputs of a global experiment
in which FLEXPART v9.0 tracks approximately 2 million
particles (air parcels) with constant mass distributed on the
globe every time step during a 37-year period (1980-2016).
These air parcels are advected by the 3-D wind field, and
the variables of interest of each particle (position, height,
specific humidity and temperature among many others) are
saved at each time step. We perform a FLEXPART simula-
tion fed with ERA-Interim reanalysis data at a 1° x 1° hori-
zontal resolution on 61 vertical levels from sea level hPa and
6 h time intervals (00:00, 06:00, 12:00 and 18:00 UTC). The
model is run with a 3 h time step, and linear interpolation is
used to obtain data with this frequency from ERA-Interim.
The backward trajectories are followed for 10 days, which is
the average lifetime of water vapour in the atmosphere (Nu-
maguti, 1999).

The changes in specific humidity (g) of each air parcel
along its path can be expressed as follows:

dp

e—p=m ar’ “)
where m is the mass of a particle (which remains constant in
the simulation), ¢ is the specific humidity, ¢ the time step and
e — p (evaporation minus precipitation) represents the wa-
ter flux associated with the particle. To obtain the instanta-
neous values of the £ — P balance (E denotes evaporation
and P the precipitation rate per unit area) in a given area (in
this case, over one of 1° x 1° in latitude and longitude), it is
necessary to integrate the moisture changes for all particles
present in the atmospheric column over such an area (Stohl
and James, 2004, 2005b). Thus, following this methodology,
in a backward experiment, a moisture source is defined as
those regions where E — P is positive (E — P) > 0, which
implies that evaporation exceeds precipitation, while a mois-
ture sink is defined as a region where (E — P) < 0, meaning
that precipitation is greater than evaporation.

In our study, backward trajectories were followed from the
area composed of points with values of the NLLJ above the
75th percentile to find the main moisture source.
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2.3 The regional atmospheric Weather Research and
Forecasting Model with 3-D water vapour tracer
diagnostics

The mesoscale WRF-WVT (Miguez-Macho et al., 2013;
Insua-Costa and Miguez-Macho, 2018) is used to quantify
the amount of total precipitable water (TPW) transported by
the GPLLJ. In order to analyse the moisture transport associ-
ated with the GPLLJ avoiding the effects of other synoptic-
scale transport events, we tag the moisture passing north-
ward through a narrow wall located on the northern edge of
the moisture source region identified using the FLEXPART
model. When a particle of water (whether in liquid, solid or
gas state) crosses the wall, it is labelled for further analysis
inside the simulation domain. We consider all water travers-
ing the wall to be advected by the GPLLIJ.

The horizontal resolution of the simulations is 20 km, and
the vertical column is divided into 38 levels. The simu-
lation covers a time window of 11 days, starting 7 days
prior to the day of interest. The model parameterisations
together with the WRF-WVT are set using the planetary
boundary layer (PBL) Yonssei University (YSU) parameter-
isation (Hu et al., 2013; Shin and Hong, 2011), the Kain—
Fritsch schemes for convection (Kain, 2004), the Dudhia one
for short-wave radiation (Dudhia, 1989), the Rapid Radia-
tive Transfer Model (RRTM) scheme for long-wave radiation
(Mlawer et al., 1997), and the WRF Single-Moment 6-Class
Microphysics Scheme (WSM6) (Hong and Lim, 2006).

In addition, we apply spectral nudging of waves longer
than 1000 km above the boundary layer, with a relaxation
time of 1h, to avoid the distortion of the large-scale circula-
tion. This configuration has been validated and successfully
applied several times with the WRF-WVT in midlatitudes
(e.g. Eiras-Barca et al., 2017). Spectral nudging ensures that
the large-scale circulation is well captured in the simulations.
ERA-Interim data provide lateral boundary and initial condi-
tions for the runs (Dee et al., 2011). The variables of interest
for the analysis of the GPLLJ event are computed as follows.
Integrated water vapour (IWV), Eq. (5) is obtained by ver-
tical integration of the specific humidity (g) in pressure (p)
levels, where g represents the gravitational force. The instant
flux of moisture (o) is calculated as stated in Eq. (6), and the
conversion between g and the water vapour mixing ratio ob-
tained from WREF is performed using Eq. (7), where u and v
are the horizontal components of the wind field.

top
5
IWVijhH=—r+ (i, j,k)dp, Q)
w0 )
surface
U(l,],k):lq(u,v)|, (6)
q:wL_H,withw«l—)q%w. @)
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Table 1. Case studies objectively selected based on the frequency
distribution of the NLLJ index to carry out WRF-WVT simulations.
u is the mean of the distribution and o its standard deviation. Note:
the frequency distribution is calculated at the point of maximum
intensity of the NLLJ at 32.75° N, 99° W (black cross in Fig. 1a)
using the ERA-Interim reanalysis dataset.

NLLJ Stat.
Simulation  Gaussian  value Date weight
0 0.00 12 July 2012 0
1 u—20 1.49 19 July 1999  0.0623
2 w—o 5.54 23 July 1983 0.2445
3 I 10.19 11 July 1992  0.3864
4 n+o 14.54 28 July 2002  0.2445
5 n+20 18.89 14 July 2016  0.0623

3 Results

3.1 Characterisation of the Great Plains low-level jet

As previously mentioned, the NLLJ index was calculated at
each grid point over the North American region for the month
of July over the period 1980-2016. July was found to be the
month with maximum LLJ events (Fig. S1 in the Supplement
shows the monthly distribution of the GPLLJ days of detec-
tion). Figure 1a shows the climatological NLLJ index and the
wind field at 500 hPa. The black cross indicates the point of
maximum intensity of the index (8.8 m s1). At this point,
located at 32.75° N, 99° W, along the 37-year analysed and
for July a total of 931 LLJ days are identified; that is, 81 %
of all days have a positive value of the index. At the point of
maximum intensity shown in Fig. 1a, Fig. 1b displays the fre-
quency distribution of the NLLJ for the period 1980-2016. A
clear peak around 11 ms~! is observed together with Gaus-
sian behaviour (Jarque—Bera test p value =0.0055, which
provides a confidence level close to 99.5 %; red line). The
latter has been used to select the five case studies to be anal-
ysed with WRF-WVT and listed in Table 1. The five case
studies were selected based on the Gaussian adjustment ap-
plied to the study. These five events correspond to u, i + 20
and u £+ o (where p is the mean of the distribution and o
its standard deviation), and they provide a general perspec-
tive of the LLJ’s behaviour. Selecting these case studies from
the population of LLJ events decreases the computational ex-
pense. Since each case study WRF-WVT simulation spans
11 days, a condition of persistence of the index value for at
least 2 days after the main jet day is applied. Additionally, we
perform a sixth simulation with a non-jet day (simulation 0 in
the Table 1). This non-jet day is selected from the developed
climatology as the longest non-jet period, in order to avoid
overlaps in moisture transport with jet days.
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Figure 1. (a) Mean NLLIJ index (shaded) and 500 m winds (arrows, in m s_l) at local midnight in July (boreal summer) for 1980-2016,
calculated from ERA-Interim reanalysis. The black cross at 32.75° N, 99° W shows the point of maximum NLLJ in the climatology. The
magenta contour line surrounds the region containing points above the 75th percentile. (b) Frequency distributions of the GPLLJ for the
months of July from 1980 to 2016 (blue bars). The red curve corresponds to the Gaussian fit (see Table A2). Note: the frequency distributions
are calculated at the point of maximum intensity of the NLLJ (at 32.75° N, 99° W; black cross in a).

3.2 Moisture transport associated with the Great Plains
low-level jet

In order to detect the main climatological oceanic source of
moisture for the GPLLJ, we used the FLEXPART trajectories
outputs for 1980-2016. The area encompassed in the 75th
percentile of the NLLJ index values (magenta line in Fig. 1a)
was selected as the target region for the backward experi-
ment (as explained in the methodology). Figure 2 shows the
source of moisture in red colour, obtained as the 75th per-
centile of the (E — P > 0) field. This area covers the southern
Gulf of Mexico and extends into the Caribbean Sea, between
60-98° W and 12-28° N. Figure S2 in the Supplement shows
the individual sources of moisture for each case in study.

Although the flow originating in the source of moisture
is advected at low levels as a result of the strong intensity
of the trade winds, a 3-D-label wall (at 29-30° N and from
94.5 to 100° W) was used in the WRF-WVT simulations (or-
ange line in Fig. 2). The position of the sentinel wall was se-
lected in the region where oceanic moisture associated with
the GPLLJ makes landfall. The wall remained constant in
the WRF-WVT simulations. The thin wall was used instead
of the entire source regions in order to avoid overlaps in
the labelling of moisture caused by secondary, synoptic-scale
mechanisms.

Figure 3 shows the ratio of precipitable water transported
by the GPLLJ to total precipitable water (TPW acers = TPW)
for the six case studies analysed. As mentioned earlier,
TPW acers represents the TPW that has crossed the “wall”
highlighted in orange in Fig. 2, which we assume corre-
sponds to moisture advected by the GPLLJ. Following the
same behaviour of the GPLLJ itself, the moisture flux is ini-
tially in the northward direction and veers east as it pene-
trates into the Great Plains for all events with positive NLLJ
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Figure 2. Highlighted in red are moisture sources obtained with
FLEXPART from backward trajectories originating in the region
outlined in magenta in Fig. 1a. The orange line over the continent
marks the position from where precipitable water is tagged in WRF-
WVT, corresponding to the northern edge of the FLEXPART source
region. All water vapour and condensate crossing through that line
is considered as moisture advected by the GPLLJ for further analy-
sis.

index values. As expected, the non-jet event with an NLLJ
value equal to zero (Sim 0) does not show significant mois-
ture fluxes. For the jet events, ratios are close to 1 in regions
near the tagging wall and extend for hundreds of kilometres
northward, with significant values above 60 %. Percentages
between 70 % and 80 % are observed in the Great Plains. The
large geographical reach of the moisture associated with the
GPLLJ is evidenced in this figure, showing that for certain
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Figure 3. Ratio of tagged precipitable water transported by the GPLLIJ to total for the six case studies analysed.

GPLLJ events, it can occasionally explain more than 50 % of
TPW even in the north-east US. It is necessary to highlight
that higher values in the index do not necessarily mean larger
flows of moisture, as can be observed, for example, when
Sim 3 and Sim 5 are compared. Figure S3 in the Supplement
shows a comparison of accumulated precipitation at 11 days
of WRF simulations versus Climate Prediction Center (CPC)
gauge-analysis observations (Chen et al., 2008).

As previously stated, the aim of this work is to study the
general behaviour of the GPLLJ associated with its mois-
ture transport. In the first simulated case of GPLLJ (Fig. 3
— Sim 1) it is observed that most of the precipitable wa-
ter is concentrated on the Great Plains, exceeding ratios of
80 % out of the total. In the second GPLLJ event simulated
(Fig. 3 — Sim 2), the precipitable water extends north-east of
the US and to the south of the Great Lakes and the GPLLJ,
where it explains close to the 50 % of precipitable water. The
third simulated case corresponds to the average behaviour of
the GPLLJ (Fig. 3 — Sim 3) and shows the influence of the
GPLLJ in the north-east of the US with ratios near 50 % on
the US east coast. Nevertheless, in areas along the path of the
GPLLJ, the advection of precipitable water is close to 80 %.
In the fourth and fifth simulations of GPLLJ (Fig. 3 — Sim 4
and 5), the plume of precipitable water is concentrated over
the Great Plains. However, the water precipitable ratio is re-
duced as latitude increases, but values are still close to 50 %
in the north-eastern areas of the US.

Figure 4 shows the statistically weighted mean of the ra-
tio shown in Fig. 3 for the five case studies with NLLJ > 0
considered in the analysis. The weights associated with each
event are stated in the last column of Table 1, and the objec-
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Weighted mean of tracers TWP in GPLJ events

Ratio

Figure 4. Statistically weighted ratio of precipitable water trans-
ported by the GPLLJ for the five case studies with NLLJ >0 consid-
ered in the analysis in Fig. 3. Weights applied are stated in Table 1.

tive criteria to assign them can be found in Appendix Al. The
aim of using weights in the analysis is to give greater impor-
tance to the event representing the mean value of the NLLJ
and less relevance to the events in the tail of the distribution.
Notwithstanding the limited number of simulations used in
the analysis, this procedure allows us to interpret Fig. 4 as a
“climatology” of the moisture transport associated with the
GPLLIJ. Roughly 80 %—90 % of the precipitable water in its
core zone of influence over the Great Plains, in Texas and
Oklahoma, is carried by the GPLLJ when a jet event occurs.
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Figure 5. Tracer total precipitable water (TPW, gkg_l) and posi-
tions of the cross sections along the central axis of the GPLLJ shown
in Figs. 6 and 7, at latitudes 32° N (1), 35° N (2) and 38° N (3) for
the main jet event of 11 July 1992.

With increased distance from that area, the ratio of precip-
itable water transported by the GPLLJ decreases; however,
the contribution of moisture from the Gulf of Mexico to TPW
is still more than 50 % as far north as the Great Lakes.

Figure 5 shows the TPW and the cross sections for the
main GPLLJ event (11 July 1992). Figure 6 shows the ver-
tical distribution of tracer-specific humidity (gTr) and tracer
water vapour flux (¢TR) for cross sections at positions de-
picted in Fig. 5. Tracer moisture (Fig. 6a—c) has a maximum
at surface levels, while the moisture flux (Fig. 6d—f) max-
imises at 500 ma.g.l. where the LLJ core is located. A sig-
nificant presence of both tracer water vapour and tracer wa-
ter vapour flux is restricted to the first 2 kma.g.l. Overall, as
the latitude increases the water vapour plume from the Gulf
of Mexico tends to rise in the vertical column and expand
zonally along the GPLLJ path to the east of the US. Equiva-
lent conclusions can be obtained from the remaining events,
which are shown in the Supplement (Figs. S4-S7 in the Sup-
plement). Figure 7 shows the water vapour ratio gtR : g for
the vertical sections of Fig. 5 for the same event. The mois-
ture pattern behaviour is similar to Fig. 6; for regions close to
the Gulf of Mexico the moisture ratio is concentrated mostly
at lower levels (Fig. 7a) and extends on the horizontal axis as
it moves away from the source of moisture (Fig. 7b). Never-
theless, for remote regions the maximum moisture ratio con-
tinues at lower levels (Fig. 7c). The moisture flow has the
same pattern: high moisture ratios that remain at low levels
despite longitudinal distance (Fig. 7d—f). These results con-
firm that the GPLLIJ transports a great concentrated quantity
of moisture.
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4 Conclusions and discussions

A combination of Lagrangian and Eulerian methods was
used to identify and objectively quantify the moisture trans-
port associated with the GPLLJ. First, the FLEXPART
Langrangian model was used to locate the GPLLJ mois-
ture sources for the month of its maximum activity (July)
throughout the period 1980-2016. The target region used
in the FLEXPART simulation to find the main source of
moisture was defined based on the 75th percentile of the
GPLLJ index value previously calculated based on the Rife
et al. (2010) method. Once the Gulf of Mexico was identified
as the main source of moisture (E — P > 0) for the GPLLJ,
we use a new tool known as Eulerian 3-D WRF-WVT (Insua-
Costa and Miguez-Macho, 2018), which was applied to track
the moisture advected in six selected GPLLJ events based on
the distribution of the GPLLJ index used previously to de-
tect the GPLLJ (Rife et al., 2010). Consequently, this work
analysed the behaviour of the GPLLJ during the month of its
maximum activity (July) for the period 1980-2016, and we
select six representative cases for the WRF-WVT simulation.

The moisture transport analysis reveals the major role
played by the GPLLJ in the water cycle of central North
America, transporting large amounts of moisture from the
Gulf of Mexico as far as the north-east US. In particular, ad-
vection by the jet explains more than 80 % of the precipitable
water in the southern Great Plains when a jet event occurs,
which, in July, is most of the days. The Rocky Mountains
block the circulation of GPLLJ and force it to turn to the east
of the US, reaching even the eastern coast of the US. The
moisture transport associated with the GPLLJ is in a plume
of moisture, where the maximum transport occurs in the path
of the GPLLIJ. As expected, the ratio reduces as latitude in-
creases, but values are still close to 50 % in the north-eastern
areas of the US.

We note that the extension of the GPLLJ is dependent on
the synoptic conditions or land preconditioning, among other
factors, which may alter the ratio of the TPW. For exam-
ple, the presence of a well-developed high-pressure system
at higher latitudes of North America may block the advec-
tion of the GPLLJ moisture to this region. Dong et al. (2011)
related the drought of 2006 with an anomalous high over
the south-western US region and an anomalous low over the
Great Lakes. This pattern inhibited the advection of moisture
from the Gulf of Mexico, contributing to the extreme dry-
ness, and the lack precipitation was associated with a sup-
pressed cyclonic activity over the south-western US. On the
other hand, the 2007 flood events were initially preceded by
active synoptic weather patterns, linked to an active moisture
transport from the Gulf of Mexico by the GPLLJ. Neverthe-
less, the analysis of these multiple factors is beyond the scope
of this paper.

Higher values in the NLLJ index mean larger differences
between winds aloft and at the surface at the reference point,
but they do not necessarily mean stronger moisture transport.
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These results should be understood as a first approach to
the quantification of the large extent of GPLLJ moisture ad-
vection and its implications for the water budget in North
America. More simulations should be conducted, and other
months should be included in FLEXPART backward calcula-
tions to extend this work and produce a more comprehensive
analysis.

Data availability. No public data are derived from this research.
For further information on the WRF-WVT tool, please contact the
corresponding author.
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Appendix A

Table A1. Statistical weights in the analysis: events.

. _ e x=)?
Table A2. Gaussian fit y(x) = yg + A - exp( ).
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Simulation ~ Gaussian point
1 w—20
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Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/esd-10-107-2019-supplement.
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