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Acute lymphoblastic leukemia is the most common pediatric cancer. Fortunately, survival

rates exceed 90%, however, infectious complications remain a significant issue that can

cause reductions in the quality of life and prognosis of patients. Recently, numerous

studies have linked shifts in the gut microbiome composition to infection events in various

hematological malignances including acute lymphoblastic leukemia (ALL). These studies

have been limited to observing broad taxonomic changes using 16S rRNA gene profiling,

while missing possible differences within microbial functions encoded by individual

species. In this study we present the first combined 16S rRNA gene and metagenomic

shotgun sequencing study on the gut microbiome of an independent pediatric ALL cohort

during treatment. In this study we found distinctive differences in alpha diversity and beta

diversity in samples from patients with infectious complications in the first 6 months of

therapy. We were also able to find specific species and functional pathways that were

significantly different in relative abundance between samples that came from patients with

infectious complications. Finally, machine learning models based on patient metadata

and bacterial species were able to classify samples with high accuracy (84.09%), with

bacterial species being the most important classifying features. This study strengthens

our understanding of the association between infection and pediatric acute lymphoblastic

leukemia treatment and warrants further investigation in the future.
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INTRODUCTION

Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer (Canadian Cancer and
Statistics Advisory Committee, 2018). Recently, numerous studies have linked the gut microbiome
to affecting treatment outcomes and infection status in multiple different types of cancers such as
acute myeloblastic leukemia (Galloway-Peña et al., 2016), non-Hodgkin’s lymphoma (Montassier
et al., 2016), hematopoietic stem cell transplant patients (Taur et al., 2014), as well as acute
lymphoblastic leukemia (Hakim et al., 2018). In all of these clinical scenarios, treatment involves
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harsh chemotherapeutics that can cause disruption of the
structural integrity of the gut barrier, which has been proposed to
allow the passage of gut bacteria into the blood and throughout
the body (Berg, 1995). The gut microbiome and the immune
system also share an intimate relationship, as disruptions in the
microbial community have been linked to inflammation and
reduced immune function (Belkaid and Hand, 2014).

Earlier studies on the gut microbiome and pediatric acute
lymphoblastic leukemia have found significant differences
between individuals with ALL and healthy controls at base
line (Rajagopala et al., 2016; Bai et al., 2017). Bai et al. found
significant differences in alpha diversity between ALL patients
that were not exposed to antibiotics and healthy controls as well
as differences in beta diversity regardless of antibiotic use. Similar
findings were presented earlier by Rajagopala et al. where they
were able to classify baseline samples as either coming from an
individual diagnosed with ALL or a healthy sibling control based
on their gut microbiome composition.

Building on this classification ability, it has been suggested that
the gutmicrobiome could be used to predict infection in pediatric
acute lymphoblastic leukemia patients. Hakim et al., showed that
in a cohort of patients treated at the St. Jude Children’s Research
Hospital compositional signatures of the gut microbiome could
be used to predict infections during treatment (Hakim et al.,
2018). More specifically they found that a higher abundance of
Proteobacteria at baseline was predictive of febrile neutropenia
and that domination of the gut by either Enterococcaceae or
Streptococcaceae increased the risk of infection throughout
therapy. Possible differences in microbial functions and species
within this cohort were not identified due to technical restrictions
from using only 16S rRNA gene sequencing.

Clear microbial associations between the gut microbiome
and treatment complications remain to be discovered. We
hypothesize that changes in the composition of gut microbial
communities are associated with infectious complications during
chemotherapy treatment. Herein, we present the first study
to examine the gut microbial communities of pediatric acute
lymphoblastic leukemia throughout the first 6 months of
chemotherapy using both 16S rRNA gene sequencing and whole
metagenomic shotgun sequencing. Through this examination we
identify multiple significant differences in both taxonomic and
functional profiles between samples from pediatric ALL patients
with and without infectious complications throughout the first 6
months of therapy.

METHODS

Patient Demographics
A total of 44 samples were collected from 16 patients treated
at the IWK Health Center in Halifax, Nova Scotia, Canada.
The ages of participants ranged from (0.75–11.12 years of age),
with a mean age of 40.78 months and a total of 11 males
and 5 females (Table 1). All females in the study suffered an
infectious complication within the first 6 months of treatment.
All samples were collected within 6 months of therapy with the
exception of one baseline sample that was collected 2 days prior
to the start of treatment (Supplementary Figure 1). The median

number of samples collected from each patient was 2 with a range
between 1 and 7 (Supplementary Figure 1). Nine patients faced
an infectious complication within the first 6 months of treatment
and 19 samples were collected from them in total. The other
seven patients did not face infectious complications within the
first 6 months of treatment and 25 samples were collected from
them in total (Table 1). Baseline samples were classified as the
first sample from a patient within the first 10 days of the start
of therapy.

All patients/guardians provided informed written consent to
participate in this study. Clinical data and stool samples were
collected in accordance with protocols approved by the IWK
Health Center Research Ethics Board (REB).

Infectious complications (IC) were defined as any microbially
or clinically-defined infection and/or clinically-documented
febrile neutropenia event. Samples from IC patients were later
stratified into groups that were taken after the initial infectious
complication (post) and before the initial infectious complication
(pre). Samples were further classified based on whether the
sample was taken before a blood stream infection event,
gastrointestinal infection event or febrile neutropenia event.

Antibiotic exposure was defined as the administration of
intravenous or oral antibiotics within 2 weeks prior to sample
collection, excluding prophylactic Septra which was prescribed
ubiquitously to patients throughout the study, as per standard
of care. Antibiotic exposure was further categorized into
exposure to anti-fungal medications (such as pentamidine
and caspofungin), vancomycin, piperacillin tazobactam, and
other uncommonly used antibiotics such as metronidazole
and ceftazidime.

Fecal Sample Collection
Stool samples were frozen at −20◦C for transport to the
laboratory and stored at−80◦Cuntil use. Total DNAwas purified
from each sample using the Norgen Stool DNA Isolation Kit
(cat#27600, Norgen Biotek, Canada).

16S rRNA Gene Sequencing
16S rRNA gene sequencing was performed by the Integrated
Microbiome Resource at Dalhousie University. Briefly, the V4-
V5 16S rRNA gene region was amplified using the high-
fidelity Phusion polymerase (cat#M0530L, New England Biolabs)
and 16S rRNA V4-V5 fusion primers (Comeau et al., 2017).
The amplified 16S V4-V5 regions were then sequenced using
an Illumina MiSeq producing 300 bp paired-end reads. Of
the total of 44 samples, 41 were sequenced via 16S rRNA
amplicon sequencing, and all 44 were sequenced using shotgun
metagenomics. Of the 41 samples sequenced via 16S rRNA
amplicon sequencing 4 were removed by quality filters leaving
a total of 37 samples. The three samples only sequenced by
metagenomic shotgun sequencing was due to loss of the sample.
This led to a total of 11 baseline samples being sequenced by 16S
rRNA gene sequencing.

Metagenomic Shotgun Sequencing
Metagenomic shotgun sequencing was performed by the
Integrated Microbiome Resource at Dalhousie University.
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TABLE 1 | Patient and sample data divided between age group, sex, and whether the patient did (IC) or did not have infectious complication (NIC) within the first 6

months of treatment.

Diagnosis Acute lymphoblastic leukemia: total patients = 16, Samples = 44

Age group Ages 0–4 Ages 5–8 Ages 9–11

Patients = 9, samples = 27 Patients = 4, samples = 7 Patients = 3, samples = 10

Male Patients = 5, samples = 17 Patients = 4, samples = 7 Patients = 2, samples = 8

Male IC Patients = 1, samples = 3 Patients = 2, samples = 2 Patients = 1, samples = 2

Male NIC Patients = 4, samples = 14 Patients = 2, samples = 5 Patients = 1, samples = 6

Female Patients = 4, samples = 10 Patients = 0, samples = 0 Patients = 1, samples = 2

Female IC Patients = 4, samples = 10 Patients = 0, samples = 0 Patients = 1, samples = 2

Female NIC Patients = 0, samples = 0 Patients = 0, samples = 0 Patients = 0, samples = 0

Briefly, extracted DNA was prepared into a sequencing library
using the Illumina Nextera XT kit (cat#FC-131-1096, Illumina,
USA). The prepared sequencing library was then sequenced on
an Illumina Nextseq 550 producing 150 base pair paired end
reads with a median read depth of (3,372,240) per sample. A
total of 13 baseline samples were sequenced by metagenomic
shotgun sequencing.

16S rRNA Sequence Analysis
Sequences were processed using QIIME2 (Bolyen et al., 2018) and
the Deblur plugin (Amir et al., 2017). Paired end sequences were
stitched together using the Microbiome Helper script (Comeau
et al., 2017) run_pear.pl, which wraps PEAR (Zhang et al., 2014).
Paired sequences were then imported into a QIIME2 artifact and
filtered based on read quality and length using QIIME2’s built
in quality-filter q-score-joined script. Filtered reads were then
processed with Deblur using a trim length of 300 base pairs
to obtain amplicon sequence variants. In total 1,058 different
amplicon sequence variants were observed over a median read
depth of 6,527 reads and 37 samples. In order to acquire diversity
metrics, the samples were subsampled to 1,481 reads per sample.
Amplicon sequence variants were then analyzed using multiple
alpha diversity metrics (shannon, evenness, observed-ASVs,
faith’s phylogenetic diversity) and statistical significance between
samples from IC and NIC patients and other metadata variables
such as age at diagnosis were determined using a Wilcoxon Rank
Sum test. A classification model to determine samples from NIC
or IC patients was created using a logistic regression model built
in R (R Development Core Team, 2008) with faith’s phylogenetic
diversity, days since the start of therapy, treatment type, and
age at diagnosis as predictors. Weighted UniFrac distances and
Principal Coordination of Analysis ordination were generated
using QIIME2 and the APE R package (Paradis and Schliep,
2018). Differences between samples weighted UniFrac distances
were tested using the adonis2 function (PERMANOVA test)
from the vegan R package (Oksanen et al., 2018). Taxonomy
was assigned to ASVs using the rdp-classifier (Cole et al., 2014)
trained on the Greengenes 13_8 database (DeSantis et al., 2006).

Metagenomic Sequence Analysis
Metagenomic sequences were processed using the Microbiome
Helper operating procedures for metagenomic data. In brief,

contaminant reads were removed by mapping sequences to
the human and PhiX genomes using bowtie2 (Langmead
and Salzberg, 2012). The resulting reads were then classified
taxonomically using MetaPhlAn2 (Truong et al., 2015) and into
Metacyc pathways using HUMAnN2 (Franzosa et al., 2018).
Metacyc pathways and taxa that were significantly different in
abundance between NIC and IC patients and other metadata
variables presented in the study were determined using a
Wilcoxon rank sum test and corrected for false discovering using
Benjamini & Hochberg correction.

HUMAnN2 species stratified pathway output was then filtered
to only contain the pathways found to be significantly different.
Pathways that had a total contribution from all species of
<0.001% were removed. Species were then collapsed to their
respective genera for visualization purposes with any genera that
contributed to <0.01% of the total relative abundance of the
significant pathways being grouped into “Other.”

To determine the prevalence of antibiotic resistance genes
and virulence factor genes we aligned reads against the
Comprehensive Antibiotic Resistance Database (CARD) (Jia
et al., 2017) and the Virulence Factor Databases (VFDB)
respectively, (Chen et al., 2005) using DIAMOND with a
default cutoff e value of 0.001 and a maximum number
of one target sequence (Buchfink et al., 2014). Differences
between samples from NIC and IC patients in prevalence
of antimicrobial resistance genes and virulence factors
were tested using a Wilcoxon rank sum test. Differential
abundant antimicrobial resistance genes and virulence factor
genes were determined using a Wilcoxon rank sum test
with correction for false discovering using Benjamini &
Hochberg correction.

To get a sense of the importance of various features for
classification of samples we employed the use of random
forest modeling. The MetaPhlAn2 species table was combined
with metadata on the same samples and used as the features
for sample classification. A random forest model was then
constructed in R using the randomForest package (Liaw and
Wiener, 2002) with default hyperparameters and 10,001 trees.
The accuracy of the model was determined by examining
the out of bag error and feature importance was determined
by looking at the mean decrease in accuracy for each
classification feature.
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FIGURE 1 | Phylogenetic Diversity based on 16S rRNA gene sequencing is significantly different between samples from patients that face infectious complications (IC)

within the first 6 months of therapy and those that do not (NIC). Differences in alpha diversity between samples from IC and NIC patients that were sequences by 16S

rRNA gene sequencing at a read depth of 1481 (37 of 44 total samples). Significance was determined using a Wilcoxon rank sum test at an alpha value of 0.05

(represented by *). Each panel represents a different measure of alpha diversity; shannon diversity (A), number of amplicon sequence variants (B), evenness (C), and

Faith’s phylogenetic diversity (D). Points are colored by individual (Supplementary Figure 1).

RESULTS

Microbiome Profiling Reveals Difference in
Phylogenetic Diversity Between NIC and IC
Patients, Subsequent Blood Stream
Infections, Age and Time of Treatment
We observed that samples that were taken from patients
that experienced an infectious complication within the first 6
months of therapy (IC) had lower phylogenetic diversity when
compared to samples taken from patients that did not face
an infectious complication within 6 months of therapy (NIC).
(Figure 1A; p = 0.014). However, measures in richness and
evenness were similar between samples from IC andNIC patients
(Figures 1B–D). To determine if a specific type of infection was
related to this difference in phylogenetic diversity, we looked
at how subsequent bloodstream and gastrointestinal infections
were related to phylogenetic diversity. Interestingly, we did
find that a lower Faith’s phylogenetic diversity was significantly
associated with subsequent bloodstream infections (p = 0.0469)
(Supplementary Figure 2). Following this analysis, we were

interested in looking at what other factors may be impacting
phylogenetic diversity in our patient cohort.

As it is well-known that the composition of the gut

microbiome changes with age, we examined how age at diagnosis

impacted phylogenetic diversity. This resulted in a significant
positive correlation (p= 0.0001, rho= 0.656) indicating that age

could be playing a role in the differences we see between samples

fromNIC and IC patients (Supplementary Figure 3). Examining
changes in alpha diversity over time on a per patient basis

was not possible due to highly variable sampling periods and
therefore we opted to look at overall changes in alpha diversity
over time. We found that the number of days after the start of
treatment was also significantly negatively correlated with Faith’s
Phylogenetic Diversity (p = 0.01327, rho = −0.403) indicating
that chemotherapy treatment may reduce overall gut diversity
(Supplementary Figure 4).

To test classification accuracies of samples coming from NIC
or IC patients while accounting for the above confounding
factors we built a logistic regression model based on Faith’s
phylogenetic diversity, treatment type, sample collection time,
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and age at diagnosis. Our model was able to classify samples that
were from IC or NIC patients with an area under the curve of
0.77, and a kappa value of 0.46 (Supplementary Figure 5). No
single predictor in the model was significant however, Faith’s
phylogenetic diversity was near our significant alpha value (p
= 0.0994). We could not build a model that accounted for
differences in sex due to all females being classified as IC patients
(Table 1). We, however, did not find a significant association
between sex and Faith’s phylogenetic diversity (p= 0.2149).

Inspecting other possible confounding factors lead us to
looking at the inevitably close relationship between the use
of antibiotics and infection events (due to strict adherence to
febrile neutropenia treatment protocols). Due to this relationship
we decided to determine how individual antibiotic exposures
were related to phylogenetic diversity of the gut microbiome.
We observed a significant decrease in phylogenetic diversity
and the usage of vancomycin (Wilcoxon rank sum test; p
= 0.039), while there were no significant associations with
the usage of piperacillin-tazobactam, antifungal medications,
or any other antibiotics including total antibiotic exposure
(Supplementary Figure 6). Furthermore, we found that all
antibiotics except for piperacillin-tazobactam were highly
associated with infectious complications (Fisher’s Exact test;
OR = 6.03, p = 0.0323), however, they were not significantly
associated to phylogenetic diversity (Wilcoxon rank sum test;
p = 0.2534). Despite this result it is difficult to tell the full
extent of the impact that antibiotic usage has on the gut
microbiome of patients within the cohort due to our small
sampling size and sparse usage of some medications such as
anti-fungal treatment.

Following our analysis on antibiotic exposure, we were
also interested in examining the differences between samples
that came from patients that never experience infectious
complications and samples that were pre or post their
first infectious complication event. We found no significant
differences between samples that were pre or post-infection, or
pre-infection and samples from patients that never experience
infectious complications (Supplementary Figure 7). We did,
however, find significant differences in phylogenetic diversity
between post infection samples and samples that came from
NIC patients (p= 0.0113) (Supplementary Figure 7). Antibiotic
exposure to antibiotics other than piperacillin tazobactam was
not significantly associated with changes in phylogenetic diversity
between samples that came from patients that never faced
infection and post infection samples (p = 0.358). In addition,
no individual antibiotic exposure was significantly associated,
however, vancomycin exposure was close to our alpha value
(p= 0.1249).

Finally, we examined 11 baseline samples
(Supplementary Figure 1) (taken within 10 days of the
start of therapy) to determine whether alpha diversity at baseline
was predictive of future infections and minimal residual disease
(MRD) at 30 days. We did not find a significant association
between Faith’s phylogenetic diversity and NIC or IC status
(Wilcoxon rank sum test; p = 0.1255). Stratifying the infection
types into either bloodstream infections, gastrointestinal
infections, or febrile neutropenia did reveal a significant

association between baseline alpha diversity and subsequent
bloodstream infections (Wilcoxon rank sum test; p = 0.02424).
We did not find a significant relationship between MRD at 30
days and baseline Faith’s Phylogenetic Diversity (Wilcoxon rank
sum test; p= 0.6303).

Microbiome Profiling Reveals Significant
Differences in Beta Diversity Between
Samples From NIC and IC Patients
Using 16S rRNA gene sequencing and weighted UniFrac analysis
to account for both abundance and phylogenetic distance,
we found significant differences between samples from IC
and NIC patients (PERMANOVA, r2 = 0.2112, p = 0.001).
Plotting weighted UniFrac distances using principal coordinates
of analysis (PCoA) ordination resulted in distinct separations
between samples from NIC and IC patients (Figure 2A).
To test what other factors may be associated with the
differences between samples from NIC and IC patients we
completed both univariate and multivariate analyses using
PERMANOVA tests. Along with differences between IC and
NIC samples we also found differences in sex (although all
females are IC patients), days since the start of therapy
(Supplementary Figure 8), vancomycin exposure and anti-
fungal exposure (Table 2). We did not find significant differences
in microbial community structure in patients based on age
at diagnosis (Supplementary Figure 8), treatment type, overall
antibiotic exposure, piperacillin tazobactam exposure, or other
less commonly used antibiotics (Table 2). Following this we
tested all features significantly associated with changes in
weighted UniFrac within a single multivariate PERMANOVA
test to try and determine the most important features. We
found that none of the factors alone were significant explanatory
variables, however, infectious complications explained the most
variance among all the predictors (R2 = 0.04433, p = 0.08)
(Table 3). In order to get a better visualization of how samples
with antifungal or vancomycin exposure compared to those that
did not, we recolored our PCoA based of these two exposure
outcomes (Supplementary Figure 9). From this we noted that
not all samples from IC patients that grouped within the IC
cluster were exposed to vancomycin or antifungal medication.
We also found that three of the five samples that were exposed
to anti-fungal medication came from one patient, which could be
playing a role in the significant association that we found.

Similar to our analysis with alpha diversity, we were interested
in comparing samples from patients that never experience
infection vs. pre and post initial infectious complication samples.
Visualizing these results using a PCoA that connected samples
from the same patient in chronological order revealed that
samples from IC patients that previously grouped with NIC
patients were pre-infection samples (Figure 2B). We tested
whether any of these groups were significantly different from
each other and found that samples from NIC patients grouped
significantly from pre (R2 = 0.109, p = 0.027) and post
(R2 = 0.294, p = 0.001) IC samples. We did not find
a significant difference between pre and post IC samples
(R2 = 0.1018, p= 0.149).
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FIGURE 2 | Weighted UniFrac beta diversity (16S rRNA gene sequencing) is significantly different between samples from NIC and IC patients. A Principal Coordinates

of Analysis ordination plot of the weighted UniFrac distances of the samples sequenced by 16S rRNA gene sequencing at a read depth of 1481 (37 of 44 samples).

(A) Samples that came from NIC patients are colored blue and samples from IC patients are colored red. (B) Samples colored based on whether a sample came from

an NIC patient (never in blue) or an IC patient pre (yellow) or post (purple) their initial infectious complication. Lines connecting samples represent the chronological

order of sample collection from each patient. Numbers on points and the color connecting points together are colored by individual (Supplementary Figure 1).

TABLE 2 | Univariate weighted UniFrac analysis on multiple metadata features

using a single PERMANOVA test for each metadata feature.

Feature R2 P

UNIVARIATE ANALYSIS

Infection in 6 months 0.2112 0.0003

Sex 0.15456 0.0024

Age at diagnosis 0.04421 0.159

Within 2 weeks of antibiotic exposure (not including Septra) 0.01716 0.606

Within 2 Weeks of Vancomyicin Exposure 0.12044 0.004

Within 2 weeks of anti-fungal exposure 0.09899 0.013

Within 2 weeks of Piperacillin Tazobactem exposure 0.00977 0.883

Within 2 weeks of other antibiotic exposure 0.02664 0.373

Days since start of therapy 0.08903 0.032

Treatment type 0.04676 0.1444

NIC and IC Patients Differ in Several
Bacterial Species
To get a high-resolution view of the gut microbial communities
of patients enrolled in the study we looked at the taxonomic
profiles generated from shotgun metagenomics. We found a
total of 6 different species in differential abundance between
NIC and IC patients using a Wilcoxon rank sum test and
correction for false discovery (Figure 3). We found that the only
bacterial species that was in higher relative abundance in samples
fromNIC patients was Faecalibacterium prausnitzii. Interestingly
this species was almost completely absent in samples from IC
patients, apart from 3 samples (Figure 3A). The rest of the

TABLE 3 | Multivariate weighted UniFrac analysis on multiple metadata features

using a single PERMANOVA test containing all of the features found to be

significant in univariate analysis.

Feature R2 P

SIGNIFICANT MULTIVARIATE ANALYSIS

Infection in 6 Months 0.04433 0.08

Sex 0.01939 0.392

Days since therapy start 0.03684 0.149

Within 2 weeks of vancomycin

exposure

0.02021 0.392

Within 2 weeks of anti-fungal

exposure

0.01979 0.423

species that we identified as being in differential abundance had
higher relative abundances in samples from IC patients when
compared to samples from NIC patients (Figures 3B–F). The
mean difference in relative abundance between these species
ranged from 0.36% to 6.5%. Furthermore, many of these species
were not present in many samples. Faecalibacterium prausnitzii
was the only species present in all the samples from either NIC or
IC patients (Figure 3A).

We did a similar analysis at multiple taxonomic levels in
order to assess the large collective shifts of microbial groups
within the gut microbiome of samples from NIC and IC patients.
We found multiple differentially abundant taxa at multiple
taxonomic levels based on metagenomic shotgun sequencing.
At the phylum level we found Bacteroidetes to be significantly
enriched in relative abundance in samples from NIC patients

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6 February 2019 | Volume 9 | Article 28

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Nearing et al. Gut Microbiome, Infection and ALL

FIGURE 3 | The relative abundance of multiple species is significantly different between samples from NIC and IC patients that were sequenced by metagenomic

shotgun sequencing. Six species were found to be significantly different in relative abundance between samples from NIC and IC patients: Fecalibacterium prausnitzii

(A), Brevundimonas diminuta (B), Agrobacterium tumefaciens (C), Agrobacterium unclassified (D), Achromobacter unclassified (E), and Alcaligenes unclassified (F).

(Wilcoxon rank sum test with correction for false discovery at an alpha value of 0.05). Points are colored by individual patient (Supplementary Figure 1).

and found Proteobacteria to be significantly reduced in NIC
patients (Supplementary Figure 10). We found six families to
be in significantly increased relative abundance in samples from
NIC patients Bifidobacteriaceae, Bacteroidaceae, Prevotellaceae,
Rikenellaceae, and Eubacteriaceae (Supplementary Figure 11).
All four families that were in increased relative abundance
in samples from IC patients were part of the Proteobacteria
phylum (Caulobacteraceae, Rhizobiaceae, Alcaligenaceae, and
Burkholderiaceae) (Supplementary Figure 11). At the genus
level, we found similar results with six genera being increased
in relative abundance in samples from NIC patients and five
genera being increased in relative abundance from IC patients
(Supplementary Figure 12).

Similar to the previous analysis we also wanted to determine
the differences between samples from patients that never
faced infectious complications and pre and post initial
infectious complication samples. We found that the order
Burkholderiales was significantly increased in relative abundance
in pre-IC samples compared to samples from NIC patients
(Supplementary Figure 13). We also found significantly
different relative abundances of species between samples from
NIC patients and post infectious complication samples. Six of
the eight species found to be in increased relative abundance in
post-IC patients (Supplementary Figure 13) were the same as
the six species found to be in significantly different abundance

between samples from NIC and IC patients indicating that
post-IC samples may be the driving force for many of these
significant associations.

Multiple Microbial Pathways Are
Significantly Different Between NIC
Patients and IC Patients
We identified 42 microbial MetaCyc pathways that were
significantly different in abundance between NIC and IC patients
(Figure 4). Interestingly of these 42 pathways, only 11 were
increased in NIC patients (Figure 4). Furthermore, of the
degradation pathways that were significantly different, 6 out of 9
were in higher relative abundance in samples from NIC patients.
This was mainly due to contributions by Faecalibacterium. The
majority of biosynthetic pathways were increased in samples
from IC patients (Figure 4). Some pathways of interest that were
in increased relative abundance in samples from IC patients
include aerobic respiration and heme biosynthesis. Of these
pathways one interesting note wemade was that themean relative
abundance of aerobic respiration I (cytochrome c) was mainly
contributed to by bacterial species we found to be significantly
different between samples from NIC and IC patients (Figure 4).

Examining the genera that contributed to the differentially
abundant functional pathways we found that the reduction of
Faecalibacterium was a large contributing factor for many of
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FIGURE 4 | Taxonomic contributions to pathways that were significantly different between samples from NIC patients and IC patients from metagenomic shotgun

sequencing. All 42 Metacyc pathways represented in the figure were determined to be significantly different in relative abundance between NIC and IC patients

(Wilcoxon rank sum test with correction for false discovery at an alpha value of 0.05). Significantly different pathways were then divided into either being biosynthetic,

degradation or other pathway types. Contributions to the relative abundance of these pathways’ are colored by genus of the contributing bacteria. Genera that

contributed less than a total of 0.01% relative abundance to overall pathways were collapsed into “Other.” Note some pathways have total relative abundances of 0

due to no single species contain all genes required to contribute to the pathway.

the pathways found in higher abundance in samples from NIC
patients (Figure 4). Furthermore, we found that contributions
from Agrobacterium and Enterobacter to multiple different
functional pathways in samples from IC patients was a main
cause for many pathway abundance level shifts found in NIC
patients (Figure 4). Interestingly, we did not find Enterobacter as
being significantly different in abundance, however this could be
due to the low sample size of our cohort.

Machine Learning Reveals That Bacterial
Signatures Are a Strong Classifier for
Samples From IC and NIC Patients
We next wanted to determine how well sample species and
metadata could classify samples from IC and NIC patients
and determine if the strongest features for classification were
similar to taxa already identified to be in significantly different
abundance. In this analysis we included all species identified by
MetaPhlAn2 and patient metadata (Supplementary File 1). We
found the model was able to classify samples as coming from
either NIC or IC patients with an accuracy of 84.09% based on
the out of bag error rate. Interestingly we found that of the top 20
classification features only 2 were from patient metadata and that
the top 5 classification features were all bacterial species that we
found to be in significantly different relative abundance between
the two patient groups in our previous analysis (Figure 5). Taking
a similar approach to try and classify samples from pre-IC
patients and NIC patients resulted in accuracies that were not

significantly better than random assignment, which may stem
from class imbalances and as such more encompassing studies
will be required in the future.

To try and better understand if vancomycin exposure was
having an impact on the composition of the gut microbiome, we
created two different random forest classification models. The
first model was trained on and used to classify samples from
NIC patients and samples from IC patients that had vancomycin
exposure, whereas the other model used samples from NIC
patients and IC patients that did not have vancomycin exposure.
We found that both models ended up having similar accuracies
(76.48 and 80% respectively) and had similar important
features (Supplementary Figure 14) indicating a limited effect of
vancomycin treatment on gut microbial composition.

IC Patients Have a Higher Proportion of
Gut Microbiota Virulence Factors
We found that samples from patients that faced infectious
complications had a significant increase in the prevalence of
virulence factors according to the Virulence Factor Database
(Figure 6A) (Wilcoxon, p = 0.02). Overall, we found a total of
134 individual genes that were in differential abundance between
samples from IC and NIC patients (Supplementary File 2).
The overall prevalence of antimicrobial resistance as described
by the Comprehensive Antibiotic Resistance Database was not
significantly different between samples from IC and NIC patients
(Figure 6B) (Wilcoxon, p = 0.072). However, examining the
abundance of individual resistance genes did reveal significant
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FIGURE 5 | Bacterial species found to be significantly different by metagenomic shotgun sequencing are the most important classification features in a random forest

model built from species data and sample metadata. A random forest model with an accuracy of 84.09% built with species information and metadata reveals that

species that were found to be significantly different in relative abundance are the most important classification features between samples from NIC and IC patients.

The top 20 most important features are ranked by their mean decrease in accuracy when the feature is randomly permuted after model training.

FIGURE 6 | Prevalence of genes associated with virulence factors is significantly higher in samples from IC patients. A higher proportion of metagenomic shotgun

sequencing reads were mapped to the Virulence Factor Database (A) in IC patients (p = 0.02). Proportion of metagenomic shotgun sequencing reads mapped to the

Comprehensive Antibiotic Resistance Database (B) (p = 0.072). Differential prevalence was tested using a Wilcoxon rank sum test with an alpha value of 0.05

(represented by *). Points colored by patient (Supplementary Figure 1).
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differences in samples from IC patients and NIC patients.
In total 13 genes found in the CARD database were in
differential prevalence between samples form IC and NIC
patients (Supplementary File 2). As expected, due to higher
levels of antibiotic exposure the vast majority (11 of 13), were
increased in samples from IC patients. We did not expect
any antimicrobial genes to be more prevalent in NIC patients
but found two cepA and mefC, which confer resistance to
beta lactams and macrolides, respectively. Examination of the
13 baseline metagenomic samples did not reveal significant
differences in the prevalence of anti-microbial resistance genes
or virulence factor genes.

DISCUSSION

The connection between the gut microbiome and infection
during chemotherapy treatment has been addressed for multiple
different cancer types and cancer treatments (Goodman and
Gardner, 2018) including pediatric ALL (Hakim et al., 2018).
We describe here the first study to look at associations between
pediatric ALL and infection during the first 6 months of therapy
using both 16S rRNA gene sequencing data and metagenomic
shotgun sequencing data. Similar to previously published work
we found significant differences between samples from patients
that suffer infectious complications and those that did not,
however, in some cases it was unclear whether this was due to
antibiotic exposure or the infection itself. We found a significant
difference in alpha diversity between the samples from patients
that faced infectious complications and those that did not
based on phylogenetic diversity. We found multiple taxonomic
groups that were significantly higher in relative abundance in
samples from IC and NIC patients as well as 42 different
metabolic pathways that were significantly higher in relative
abundance in either samples from NIC or IC patients. We
did not find a significant difference in the total prevalence of
antibiotic resistance factors but did find differences in the total
prevalence of genes associated with virulence factors within the
gut metagenome between NIC and IC patients.

In our study we found significant differences in phylogenetic
diversity between samples from IC and NIC patients indicating
an association between reduce gut microbial diversity and
infectious complications. Furthermore, we found that lower
phylogenetic diversity scores were associated with future blood
stream infections a result that has been similarly reported in
non-Hodgkin’s lymphoma (Montassier et al., 2016). These results
suggest that monitoring of gut microbial diversity may be useful
in determining the future risk of infection for individuals being
treated for pediatric acute lymphoblastic leukemia. However,
caution is required when interpreting these results due to our
small sample size, and other significant confounding variables
that we found to be associated with phylogenetic diversity. This
includes the age at diagnosis, and the number of days post start
of treatment. To control these effects, we were able to show
that a logistics regression model based on phylogenetic diversity
and other significant confounding variables was able to classify
samples from IC or NIC patients with moderate accuracy. As

this model is most likely over-fit to our cohort more data is
needed from robust studies to build strong classification models
for infection. This will allow future models to better account for
differences in geographic locations, ethinic backgrounds and diet
styles all factors that can affect themicrobiome (Yatsunenko et al.,
2012). The relationship between alpha diversity and infection
was not reported on by Hakim et al. however, they did find that
infection was associated with domination by specific families,
which could indicate reduce gut microbial diversity.

Examination of the small subset of baseline samples in our
cohort revealed that the association between future infectious
complications and phylogenetic diversity was near our significant
alpha value. Larger numbers of baseline samples will be needed
in the future to confirm whether or not gut microbial diversity
at diagnosis could serve as a marker for future infectious
complications in pediatric ALL. Similar to our whole sample
analysis we did find subsequent bloodstream infections to be
significantly associated, indicating that gut microbiome diversity
at diagnosis may be useful in determining the future risk of blood
stream infections during chemotherapy treatment.

One difficulty in studying the relationship between the
composition of the gut microbiome and pediatric ALL is the
usage of antibiotic prophylaxis due to immune suppression.
All patients receive Septra, a broad-spectrum prophylactic
antibiotic, throughout treatment as prophylaxis for pneumocystis
opportunistic infections and the vast majority of patients will
receive various other antibiotics at the first sign of possible
infection (i.e., a fever). We expected this to have a large impact
on gut microbial alpha diversity, however, the only antibiotic
we found to be significantly associated with phylogenetic
diversity was vancomycin. The majority of patients that received
vancomycin were also patients with infectious complications
making it difficult to determine howmuch of an impact infection
vs. vancomycin had on the phylogenetic diversity of the samples;
especially since vancomycin treatment is usually reserved for
severe infections, which could be having dramatic effects on
the gut microbiota. Furthermore, all patients that received
vancomycin received it intravenously, which has limited gut
availability in mice models (van Oosten et al., 2013). However,
it should be noted that as described previously many of these
individuals will have reduced structural integrity of the gut
barrier, which may allow the passage of vancomycin into the
gut. While only one statistically significant association between
phylogenetic diversity and specific antibiotics was observed,
the usage of drugs other than piperacillin-tazobactam were
significantly associated with infectious complications and due
to the small sample size may still play a role in the differences
observed between NIC and IC patients.

Further analysis also revealed significant differences in beta
diversity between individuals that received vancomycin
and individuals that received anti-fungal medication
(Supplementary Figure 9). Due to the limited number of
samples exposed to anti-fungal medication (n = 5) and three
of the five samples coming from the same patient it is difficult
to determine whether anti-fungal exposure or interpatient
variability between samples is the driving factor of significance
for this result. Vancomycin exposure on the other hand was
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found in samples from multiple patients. To determine whether
vancomycin exposure was a better classifier than gut microbiota
species composition we ran random forest models containing
both species abundance and metadata characteristics. We found
that vancomycin exposure was in the top 10 classification
features but was below all of the species that we found to
be significantly different between samples from IC and NIC
patients. Further analysis on the separate classification models
for IC patients that received vancomycin or patients that did
not receive vancomycin also revealed similar important features
(Supplementary Figure 14). This indicated that underlying
differences in the gut microbiome between IC and NIC patients
are present despite vancomycin usage, which could be due to the
infection itself or the combination of other anti-biotic treatments.

Examining further differences in beta diversity we found
a significant separation between samples from NIC and IC
patients. We found in multivariate testing, that infectious
complications within the first 6 months of therapy was the
largest explanatory variable (Table 3), although it was not the
only significant explanatory variable, in univariate analysis
(Table 2). Our second biggest explanatory variable was sex;
however, we believe this is most likely due to all females in
our study experiencing an infectious complication, and therefore
it does not actually represent a difference due to sex. This
finding will need to be looked at in the future as differences
in gut microbiome composition due to sex is not completely
understood (Haro et al., 2016). We did not find any significant
difference in phylogenetic diversity between male and female
samples at baseline or collectively. Finally, looking at samples
based on pre and post initial infectious complications we found
that both pre and post IC samples were significantly different
then NIC samples indicating that beta diversity may be useful in
determine risk for infection in the future. Samples from patients
15 and 8 both grouped with NIC samples before infection and
had follow-up samples that were post infection and grouped with
other IC samples indicating a dramatic shift in their gut microbial
community (Figure 2B). This could have been due to multiple
factors including anti-infectious treatments or the infectious
complication itself. Interestingly, three patients (4, 12, and 13)
that were pre-infection, grouped with samples that already had
an infection (Figure 2B). Examination of the metadata from
these patients did not reveal any key differences other than
patient 13 received both vancomycin and caspofungin before
infection, which could be the cause of their similar gut microbial
community to other individuals with infections. Pre-IC samples
from patients 4, 8, 12, and 15 had all only been exposed to
piperacillin-tazobactam and so differences in antibiotic treatment
did not explain why two individuals grouped with NIC samples
and two grouped with IC samples.

Examining the abundance of different taxonomic phyla’s
revealed that NIC patients had increased relative abundances
of Bacteriodetes whereas IC patients had increased levels of
Proteobacteria. This increase in Proteobacteria was similar to
findings by Hakim et al., who saw that at baseline increased
levels of Proteobacteria was predictive of subsequent febrile
neutropenia. Evaluating their suggested model of a relative
abundance over 0.01% being predictive of febrile neutropenia,

was not effective in our dataset as all samples contained
Proteobacteria relative abundances above this cut-off. We did
however see that a cut-off value of 1% relative abundance
in the baseline 16S rRNA gene sequencing dataset did result
in all patients below the cut-off not having future infections
and 5/7 patients above the cut-off acquiring future infections
(Fisher’s Exact test; p = 0.06993). These findings do suggest
that Proteobacteria may play a role in the prediction of future
infections but the relative abundance cut-off for using this
phylum may vary cohort to cohort. This could be due to
multiple differences such as the variable region sequenced
or the geographic location of treatment. Further evidence of
Proteobacteria playing an important role in future infectious
complications was seen in the significantly differential abundance
of Burkholderiales (an order of bacteria that belong to
the Proteobacteria phylum) in pre-IC samples compared to
NIC samples.

Further comparisons of Hakim et al.’s findings of the
predictive nature of the domination (relative abundance <

30%) of Enterococcaceae or Streptococcaceae revealed varied
results. No samples within the cohort were dominated by
Enterococcaceae and so this predictive marker was of no
use in our cohort, however, of the 7 samples dominated by
Streptococcaceae five were from IC patients (p= 0.2117). We did
not find any significant relationship between Streptococcaceae
domination and subsequent gastrointestinal infections (p =

0.233), blood stream infections (p = 0.1563), or febrile
neutropenia (p = 0.1827). However due to the small sample size
of our cohort it could be due to low statistical power.

We found multiple species that were significantly different
between samples from NIC and IC patients five of six which,
were increased in relative abundance in samples from IC patients.
Furthermore, many of these bacterial species have been described
as opportunistic pathogens in immunocompromised individuals.
Brevundimonas diminuta, has previously been described as
an opportunistic pathogen found in patients undergoing
chemotherapy treatment (Han and Andrade, 2005). Bacteria
in both Achromobacter and Alcaligenes genera have also been
described as uncommon opportunistic pathogens in patients
with various cancers including hematological malignancies
(Aisenberg et al., 2004). Possibly suggesting the gut microbiome
as a source of infection from these bacteria. It should be
noted that some of these species were only found in a subset
of patients and so the presence of these bacteria was not
ubiquitous across all IC patients. Future studies will need to be
done to determine how common these bacteria are in patients
with infectious complications and which role they are playing
in the gut including and not limited to their colonization
potential. As many of these species are normally found on and
within plants it’s possible that they represent bacteria found
within the diet.

The only species increased in relative abundance in samples
from NIC patients was Faecalibacterium prausnitzii a bacterial
species that has been shown to be decreased in relative abundance
in type II diabetes, ulcerative colitis, and Crohn’s disease
(Lopez-Siles et al., 2017). F. prausnitzii is an abundant member of
the gut microbiome and has previously been shown to be found
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in the gut microbiome of pediatric ALL patients (Rajagopala
et al., 2016). F. prausnitzii also has both anti-inflammatory
properties (Lopez-Siles et al., 2017) and produces butyrate and
propionate, short chain fatty acids that have been shown to
be important in host metabolism and immune function (den
Besten et al., 2013; Corrêa-Oliveira et al., 2016). The reason
as to why this prominent member is reduced in samples from
IC patients remains to be solved but could be due to its
high sensitivity to oxygen, which could be higher than normal
in samples from IC patients as indicated by the increase in
relative abundance of aerobic respiration in the gut metagenome
(Figure 4). All of the species that were significantly increased in
relative abundance in IC patients were aerobic bacteria, which
all contributed to the majority of the abundance of aerobic
respiration pathways in samples from IC patients (Figure 4). One
possible cause of increased oxygen availability is the higher than
normal reduction of gut barrier integrity and low-grade intestinal
blood loss, in IC patients from chemotherapeutics (Blijlevens
et al., 2000) or the infectious complication, allowing oxygen
into the gut.

We found increased prevalence of genes annotated as
virulence factors, such as iron acquisition, and specific
antimicrobial resistance genes in both samples from NIC
and IC patients. However, we did not find a difference in
the prevalence of these genes at baseline indicating that this
difference may be due to differences in treatment between
NIC and IC individuals. These differences could be due to
anti-infectious treatment or prolonged hospital stays for IC
patients, which may increase the likely hood for the colonization
of pathogenic bacteria within the gut microbiome. Interestingly,
in samples from NIC patients we found increased prevalence
of two genes cepA and mefC, which confer resistance to beta
lactams and macrolides, respectively (Jia et al., 2017). We did
not expect to find any genes significantly increased in prevalence
in samples from NIC patients. One explanation for the relative
increase in cepA prevalence could be due to it being found
within members of the Bacteroides genera (Rogers et al., 1994)
a group of organisms found to be enriched at the genera level
(Supplementary Figure 12) within samples from NIC patients.
We found multiple antimicrobial genes that were significantly,
increased in prevalence in samples from IC patients that
conferred resistance to a large array of antibiotics. We believe
this is due to the increased exposure of IC patients to antibiotics
driving antimicrobial resistance.

We have reported multiple significant associations between
the gut microbiome and infectious complications in pediatric
ALL patients, however, in some cases it was not possible
to determine whether infection itself, anti-biotic treatment,
or a combination of the two were the driving factors for
these associations. We were able to create a model with high
classification accuracy of infectious complications, based on
phylogenetic diversity, while acknowledging that the complexity
of pediatric ALL treatment may be confounding some of
these associations. We found distinct bacterial groups that
differ between patients that faced infection and those that
did not face infection, furthermore, we found that patients
that face infection have higher proportions of genes annotated

as virulence factors within their gut metagenome. This may
indicate that perhaps harboring these communities within the gut
increases the patient’s susceptibility to infection during therapy
or that infection itself increases the risk of carrying higher
prevalence of virulence factors within the gut metagenome.
Further studies will be needed to determine the connection
between the gut microbiome and risks for infection during
chemotherapy, to create robust models for the stratification
of the risk of infection for patients undergoing treatment for
pediatric ALL.
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