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The identification of genetic alteration combinations as drivers of a given phenotypic
outcome, such as drug sensitivity, gene or protein expression, and pathway activity, is
a challenging task that is essential to gaining new biological insights and to discovering
therapeutic targets. Existing methods designed to predict complementary drivers of
such outcomes lack analytical flexibility, including the support for joint analyses of
multiple genomic alteration types, such as somatic mutations and copy number
alterations, multiple scoring functions, and rigorous significance and reproducibility
testing procedures. To address these limitations, we developed Candidate Driver
Analysis or CaDrA, an integrative framework that implements a step-wise heuristic
search approach to identify functionally relevant subsets of genomic features that,
together, are maximally associated with a specific outcome of interest. We show CaDrA’s
overall high sensitivity and specificity for typically sized multi-omic datasets using
simulated data, and demonstrate CaDrA’s ability to identify known mutations linked
with sensitivity of cancer cells to drug treatment using data from the Cancer Cell Line
Encyclopedia (CCLE). We further apply CaDrA to identify novel regulators of oncogenic
activity mediated by Hippo signaling pathway effectors YAP and TAZ in primary breast
cancer tumors using data from The Cancer Genome Atlas (TCGA), which we functionally
validate in vitro. Finally, we use pan-cancer TCGA protein expression data to show the
high reproducibility of CaDrA’s search procedure. Collectively, this work demonstrates
the utility of our framework for supporting the fast querying of large, publicly available
multi-omics datasets, including but not limited to TCGA and CCLE, for potential drivers
of a given target profile of interest.

Keywords: oncogenic driver analysis, stepwise search, TCGA, CCLE, R package

Abbreviations: BRCA, breast carcinomas; CaDrA, candidate driver analysis; CCLE, Cancer Cell Line Encyclopedia;
COSMIC, Catalogue of Somatic Mutations in Cancer; FDR, false discovery rate; FPR, false positive rate; KS, Kolmogorov–
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INTRODUCTION

Advances in high-throughput sequencing technology has led
to a rapid rise in the availability of large multi-omic datasets
through compendia such as the CCLE, TCGA, the Genotype-
Tissue Expression (GTEx), and others (Barretina et al., 2012;
Chang et al., 2013; Ardlie et al., 2015). These data include
genetic alterations, comprising SCNAs and somatic mutations,
epigenetic information, such as microRNA expression and
DNA methylation, as well as gene expression profiling through
microarray or RNA-sequencing (RNASeq) technology, across
tens of thousands of samples representing varying biological
contexts. Concomitantly, several computational methods have
been developed and applied to effectively query and integrate
different types of genome-wide datasets in order to make
meaningful predictions about the biological processes driving the
phenotypes of interest (Drier et al., 2013; Kristensen et al., 2014).
An important application of such methods is the identification
of recurrent genomic alterations, and their potential effects
on downstream pathway activity or phenotypes associated
with development and disease states. For example, in many
cancers, samples exhibiting elevated activity of a given oncogenic
signature may be enriched for, or driven by functionally relevant
somatic mutations or SCNAs. Identifying such associations may
help elucidate underlying mechanisms contributing to abnormal
pathway activity, further enabling disease subtyping and sample
classification (Bea et al., 2005; Savage et al., 2003; Monti et al.,
2012). Alternatively, linking these genomic features with their
close interactors through protein-protein interaction networks,
gene function annotations or phenotypic readouts such as drug
sensitivity may support the discovery of novel druggable targets
and further guide precision medicine regimens (Bild et al., 2006;
Heiser et al., 2011; Daemen et al., 2013; Hou and Ma, 2014;
Jia and Zhao, 2014).

Recently, computational methods and models have been
developed for performing driver gene analyses applied to high-
dimensional ‘omics’ data from cancer cell lines and patients.
These are typically motivated either by frequency or exclusivity
of alterations across samples (Youn and Simon, 2011; Ciriello
et al., 2012; Dees et al., 2012; Vandin et al., 2012; Lawrence
et al., 2013; Leiserson et al., 2013; Kim et al., 2016), or their
functional interplay based on biological interaction networks and
pathway ontology (Ng et al., 2012; Creixell et al., 2015; Leiserson
et al., 2015; Cho et al., 2016). Indeed, certain approaches
integrate interactome and functional information to further
guide driver gene prioritization in cancer (Chen et al., 2014;
Xi et al., 2017; Sanchez-Vega et al., 2018). Some of these
tools have been proposed to specifically identify subsets or
combinations of genomic features that are collectively associated
with a given phenotypic response, explaining a larger fraction
of the biological context than any individual feature alone
(Kim et al., 2016). These methods, while useful, do not offer
simultaneous support for: (i) the joint analyses of multi-type
features, including SCNAs and somatic mutations, with possible
extension to other genomic data, (ii) multiple feature scoring
functions and, most importantly, (iii) rigorous assessment of the
statistical significance of the discovered associations. Of equal

relevance, a user-friendly and flexible programming package
supporting the rapid screening for candidate drivers given a set
of ranked genomic features is currently lacking, and would prove
extremely useful for incorporation in analytical pipelines aimed
at the generation of novel biological hypotheses.

Here, we present CaDrA, a methodology that searches for the
set of genomic alterations, here denoted as features (mutations,
SCNAs, translocations, etc.), associated with a user-provided
ranking of samples within a dataset. Our method specifically
employs a stepwise heuristic search to identify a subset of
features whose union is maximally associated with the observed
sample ranking, and carries out rigorous statistical significance
testing based on sample permutation, thereby allowing for
the identification of candidate genetic drivers associated with
aberrant pathway activity or drug sensitivity, while still exploiting
aspects of feature complementarity and sample heterogeneity.
To highlight the method’s overall performance, along with
its relevance and ability to select sets of genomic features
that indeed drive certain oncogenic phenotypes in cancer, we
perform extensive evaluation of CaDrA based on simulated
data, as well as real genomic data from cancer cell lines and
primary human tumors. The results from simulations show that
CaDrA has high sensitivity for mid- to large-sized datasets, and
high specificity for all sample sizes considered. Using genomic
data drawn from CCLE and TCGA, we demonstrate CaDrA’s
capacity to correctly identify well-characterized driver mutations
in cancer cell lines and primary tumors spanning multiple
cancer types, along with its ability to discover novel features
associated with invasive phenotypes in human breast cancer
samples, which we functionally validate in vitro. Our framework,
which is publicly available as an R package, will allow for
rapidly mining numerous multi-omics datasets for candidate
drivers of user-specified molecular readouts, such as pathway
activity, drug sensitivity, protein expression, or other quantitative
measurements of interest, further enabling targeted queries and
novel hypothesis generation.

RESULTS

CaDrA Overview
An overview of CaDrA’s workflow is summarized in Figure 1.
CaDrA implements a step-wise heuristic approach that searches
through a set of binary features [each represented as a 1/0-valued
vector, indicating the presence/absence of a SCNA, somatic
mutation, or other (epi)genetic alterations across samples,
respectively], and returns a final subset of features whose union
(logical OR) defines an alteration ‘meta-feature’ that is maximally
associated with the defined sample ranking provided as input (see
section “Methods”). The strength of the association of a meta-
feature with a sample ranking is a function of the agreement
between the skewness of the alterations’ occurrences and the
sample ranking. The input sample ranking is usually a function
of a sample-specific measurement, e.g., the activity level of a
pathway, the response to a targeted treatment, the expression
level of a given transcript or protein, etc. Therefore, the meta-
feature returned by the search is the set of features maximally
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FIGURE 1 | Overview of CaDrA workflow and implementation. CaDrA takes as input a sample-specific measurement to rank samples, and a matrix of binary
features of the same samples. In Step 1 (blue box), CaDrA begins by choosing a starting feature, which is either the single feature having the best score based on its
left-skewness, or a user-specified start feature. In the next step (Step 2; orange box), the union (logical OR) of this feature with each of the remaining features in the
dataset is taken, yielding ‘meta-features’ with their corresponding scores. If any meta-feature has a better score than the hit from the previous step (Step 3; green
box), CaDrA uses this new meta-feature as a reference for the next iteration, repeating Steps 2 and 3 until no further improvement in scores can be obtained. The
final output is a set of features (meta-feature) whose union has the (local) maximum score and its permutation-based p-value.

predictive of that same sample-specific measurement variable.
The logical OR operator used in the iterative search framework
specifically takes advantage of heterogeneity seen across samples
(i.e., samples harboring similar phenotypes but different drivers
of the given outcome), thus enabling the potential identification
of complementary drivers of target phenotypes (Kim et al.,
2016). CaDrA allows for multiple modes to query ranked
binary datasets with user-specified parameters defining search
criteria, enables rigorous permutation-based significance testing
of results, and reduced computation time by exploiting pre-
computed score distributions and parallel computing, when
available (see section “Methods”).

Analysis of Simulated Data to Evaluate
CaDrA Performance
To assess the overall performance of CaDrA to recover
(statistically) significantly associated meta-features, we simulated
two types of datasets for a range of sample sizes: (i) the true-
positive datasets consist of both left-skewed (i.e., true positive
with skewness concordant with sample ranking) as well as

uniformly distributed (i.e., null) features; and (ii) the null
datasets consist of null features only (see section “Methods”
and Supplementary Figure S1). This enabled us to estimate
the overall sensitivity and specificity of CaDrA using the true
positive and null datasets, respectively. By running CaDrA on
multiple simulated datasets of different sample sizes (n = 500
true positive and null datasets for each sample size), we first
evaluated the resulting meta-features based on the number of
true positive features and the total number of features contained
within each returned meta-feature (i.e., the meta-feature size;
Figures 2A,B). The true positive datasets had a maximum of
five positive features to be detected, while the maximum number
of features CaDrA was allowed to add was set to 7, to evaluate
the ability of the search to recover all but no more than the
positive features. With progressively higher sample sizes, we
observed an increase in the fraction of CaDrA-identified meta-
features that include all 5 true positive features (Figure 2A).
The TPR and FPR of CaDrA on the simulated positive and
null data, respectively, for different sample sizes are shown in
Figures 2C,D, and was calculated as the fraction of searches
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FIGURE 2 | CaDrA performance on simulated data. CaDrA was run on 500 independent simulated datasets containing (A) both positive and null, and (B) only null
features with sample sizes ranging between 50 and 500 samples (number in gray box above each sub-panel). In each case, the distribution of the number of
features per meta-feature (i.e., the meta-feature size) returned by CaDrA is shown (A,B) as well as the number and fraction of searches that yielded significance for
α = 0.05 (C,D), corresponding to the true positive rate (TPR) and false positive rate (FPR), respectively.

returning meta-features with permutation p-value significant at
α = 0.05 (Supplementary Figure S2). The TPR was estimated
for different numbers of recovered true positive features (in
the true positive datasets), while the FPR was estimated for
different numbers of returned features (by definition, false
positives) in the null datasets, and is summarized in Table 1.
CaDrA returned all of the simulated true positive features with
100% TPR for sample sizes larger than N = 100. CaDrA also
yielded a very high mean TPR of >95% at N = 100, with the
sensitivity dropping to 7.7% only at the smallest sample size of
N = 50 (Table 1). Further, when applied to the null datasets
(Figure 2B), the majority of meta-features returned by CaDrA
were correctly deemed as non-significant at α = 0.05, with a

maximum mean FPR of 7.2% for the lowest sample size analyzed
(Figure 2D and Table 1).

These results suggest that CaDrA requires mid- to large-
sized datasets for sufficient sensitivity, while maintaining high
specificity at all sample sizes assessed.

CaDrA Identifies Known Regulators of
Ras/Raf/Mek/ERK Signaling Sensitivity
in Cancer Cell Lines
The mitogen-activated protein kinase (MAPK) kinase
(MEKK)/extra-cellular signal-regulated kinase (ERK) pathway
is a well-conserved kinase cascade known to play a regulatory
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TABLE 1 | Overall true positive rate (TPR) and false positive rate (FPR) of CaDrA
based on simulated data.

Sample Size (N) Mean TPR (%) Mean FPR (%)

50 7.69 7.2

60 5.76 2.8

70 11.53 3.8

80 30.72 4.6

90 87.55 5

100 96.51 4.6

250 100 4.6

500 100 4.2

Weight-averaged TPR and FPRs were computed per sample size for true positive
and null simulated datasets, respectively (n = 500 simulated datasets per sample
size; see section “Methods”).

role in cell proliferation, differentiation, and survival in response
to extracellular signaling (Kim and Choi, 2010; Cargnello
and Roux, 2011; Burotto et al., 2014). Increased MAP/ERK
kinase (MEK) activity is a feature of many cancers, and is
often triggered by missense mutations in BRAF and NRAS, two
upstream oncogenes and potent regulators of Ras/Raf/Mek/ERK
signaling (Cantwell-Dorris et al., 2011; Burotto et al., 2014).
Small molecules targeting these mutated proteins have been
shown to be effective in treating these cancers via inactivation of
Ras/Raf/Mek/ERK signaling (Roberts and Der, 2007; Chapman
et al., 2011; Barretina et al., 2012; Johnson and Puzanov, 2015).
To highlight CaDrA’s ability to recover independent genomic
features that may confer hypersensitivity of cancer cells to
targeted small molecule treatment, we utilized drug sensitivity
profiles for MEK inhibitor AZD6244 (Yeh et al., 2007), along
with matched genomic data from CCLE. Specifically, we used
per-sample estimates of ‘ActArea’ or area under the fitted dose
response curve, a metric that has been shown to accurately
capture drug response behavior (Jang et al., 2014), to rank cell
lines from high to low sensitivity, as well as data comprising
somatic mutations and SCNAs as the binary feature matrix (see
section “Methods”). CaDrA was then run to look for a subset of
features associated with increased sensitivity to treatment with
AZD6244 (i.e., increased ActArea scores).

The resulting feature set (i.e., meta-feature) is shown
in Figure 3. Remarkably, CaDrA selected the BRAFV600E

and NRAS somatic mutations in the first two iterations,
respectively. Subsequent iterations identified mutations in
APAF1, TGFBR2, and AMHR2, before terminating the search
process (P ≤ 0.001). APAF1 is a pro-apoptotic factor and
known regulator of cell survival and tumor development
(Ferraro et al., 2003), the depleted expression of which has
been observed in malignant melanoma cell lines and specimens
(Soengas et al., 2006). TGFBR2 and AMHR2 are both type II
receptors functioning as part of the transforming growth factor
(TGF)/bone morphogenetic protein (BMP) superfamily, together
serving as mediators of cellular differentiation, proliferation
and survival, and play important roles in directing epithelial-
mesenchymal transition (EMT) (Rojas et al., 2009; Stone et al.,
2016). Notably, MAPK signaling activity can also be regulated
by TGF/BMP stimulation (Derynck and Zhang, 2003; Moustakas

FIGURE 3 | CaDrA identifies mutations in MAPK/ErK signaling genes that
contribute to hyper-sensitivity to MEK inhibition in vitro. ActArea
measurements reflecting sensitivity to MEK inhibitor AZD6244 were used to
rank CCLE cell lines (n = 477). CaDrA was then run to identify sets of genomic
features that were most-associated with decreasing ActArea (i.e., increasing
sensitivity) scores. Through step-wise search iterations, CaDrA identified
somatic mutations in known regulators upstream of MEK, including an
activating mutation in BRAF (BRAFV600E ) and NRAS, as well as those in
APAF1, TGFBR2, and AMHR2, before terminating the search process. The
resulting meta-feature (red track) and its corresponding enrichment score (ES)
is shown.

and Heldin, 2005; Chapnick et al., 2011), suggesting that these
mutations are potential independent drivers of increased MEK
signaling, and hence, of increased sensitivity to treatment with
AZD6244. We next extended our analysis of cancer cell line
sensitivity profiles to alternative small molecules targeting MEK
(PD-0325901), as well as RAF (PLX4720 and RAF265). The meta-
features associated with increased sensitivity to each of the four
drug treatments assessed are shown in Supplementary Figure S3
and summarized in Table 2. Importantly, both BRAFV600E

and NRAS mutations were identified as candidate drivers of
sensitivity to MEK inhibition by AZD6244 and PD-0325901.
Furthermore, the BRAFV600E mutation was returned by CaDrA
for all four independent queries, highlighting its association with
increased sensitivity to inhibitors targeting the same protein
(BRAF) as well as its downstream effector (MEK).

Collectively, these results confirm CaDrA’s capability to
accurately identify upstream drivers of cellular response to
treatment that are both components of independently linked
pathways, as well as part of the same signaling branch, which in
turn suggests their role in driving the disease state of interest.

CaDrA Identifies Hallmark Drivers
Associated With Protein Biomarkers in
Human Cancers
Protein abundance levels have widely been utilized to
histologically classify several human tumor subtypes, with
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TABLE 2 | Summary of mutation subsets identified by CaDrA as associated with elevated Mek and Raf inhibition in cancer cell lines.

Target Treatment CaDrA hits P-value

MEK AZD6244 BRAF.V600E, NRAS, APAF1, TGFBR2, AMHR2 0.001

MEK PD-0325901 BRAF.V600E, NRAS, TRIM33 0.001

RAF PLX4720 BRAF.V600E 0.001

RAF RAF265 TTK, BRAF.V600E, ZMYM2, IL21R, BCL11B, MAP3K5, TAF15 0.005

Mutation meta-features identified as associated with increased sensitivity to inhibitors targeting Mek (AZD6244, PD-0325901) and Raf (PLX4720) are shown, along with
the corresponding permutation p-value of each search result.

relevant diagnostic and therapeutic implications. Epidermal
Growth Factor Receptor (EGFR) expression, for instance,
together with EGFR mutation status can be used to predict
response to existing anti-EGFR treatments in patients with lung
cancers (Pao et al., 2004; Mascaux et al., 2011). To demonstrate
CaDrA’s targeted search mode when identifying genomic
alterations that track with a pre-defined starting feature, we
ran CaDrA using phosphorylated EGFR (EGFRTyr1068) protein
expression levels to stratify TCGA lung adenocarcinomas
(LUAD), and seeded the search process with EGFR mutations.
Subsequent search iterations selected well-known regulators of
EGFR activity in lung cancers, including mutations in epithelial-
to-mesenchymal transition mediators SMAD4 and LAMC2, as
well as ERBB2 (Liu et al., 2015; Moon et al., 2015), with the
meta-feature being statistically significant based on the permuted
null background obtained for the same search criterion (P ≤ 0.02;
Supplementary Figure S4).

We then wished to more systematically determine whether
CaDrA can identify known drivers of target profiles previously
associated with oncogenic and tumor-suppressive markers in
human cancers. To do so, we queried TCGA expression profiles
of proteins encoded by a set of hallmark genes that are defined
in the COSMIC database (Forbes et al., 2017), along with
genomic data from nine different cancer types in TCGA (Forbes
et al., 2017). Briefly, for each cancer type, a CaDrA query was
performed with respect to each of the proteins corresponding
to the COSMIC-defined oncogenes or tumor suppressor genes
(n = 57). In particular, CaDrA was applied to search for sets
of genomic features associated with elevated protein expression
for each protein under consideration. The features selected
by CaDrA were then pooled across all protein queries, and
the resulting feature set was tested for enrichment against the
reference COSMIC list of frequently mutated oncogenes and
tumor suppressor genes (n = 554; see section “Methods”).
We observed a significant enrichment of the reference cancer
driver mutations among the CaDrA-identified features in all
cancer types tested (Hyper-enrichment FDR < 0.05; Figure 4
and Supplementary Table S1). These results validate CaDrA’s
ability to identify independently cataloged, functionally relevant
genomic drivers in primary human malignancies.

CaDrA Reveals Novel Drivers of
Oncogenic YAP/TAZ Activity in Human
Breast Cancer
Next, we tested whether our framework can be applied to
the discovery of novel drivers of oncogenic pathways in

FIGURE 4 | CaDrA systematically identifies known drivers of onco-proteins
and tumor suppressor proteins in human cancers. TCGA genomic data for
nine different cancer types were queried using the expression of distinct
proteins mapping to hallmark genes included in COSMIC (n = 57) for sample
ranking. Resulting meta-features identified by CaDrA were then pooled across
all protein queries and tested for enrichment against a reference
COSMIC-defined gene list (n = 554). FDR-adjusted gene set enrichment
p-values are shown, with cancer types sorted in decreasing order of FDR
q-value. BLCA, bladder urothelial carcinoma; BRCA, breast invasive
carcinomas; GBM, glioblastoma multiforme; HNSC, head and neck
squamous cell carcinoma; LIHC, liver hepatocellular carcinoma; LUAD, lung
adenocarcinoma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic
adenocarcinoma; PRAD, prostate adenocarcinoma. Points are plotted in
-log10 space.

cancer. The Hippo signaling pathway is a highly conserved
developmental pathway known to play an essential role in cell
proliferation and survival (Varelas, 2014). YAP (Sudol, 1994),
and TAZ (Kanai et al., 2000) serve as central downstream
transcriptional effectors of the pathway. Aberrant nuclear
YAP/TAZ localization and transcriptional activity is associated
with a range of cancers, including BRCAs (Hiemer et al.,
2015; Moroishi et al., 2015; Zanconato et al., 2015, 2016). To
identify alternative genetic events that can potentially explain
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FIGURE 5 | CaDrA identifies novel drivers of oncogenic YAP/TAZ activity in human breast carcinomas. (A) TCGA BRCA RNASeq data (n = 951) was projected onto
the space of YAP/TAZ-activating genes (blue area plot; see section “Methods”). A CaDrA search for features associated with elevated YAP/TAZ activity identified two
chromosomal deletions (Del5q21.3, Del20p13), and a somatic mutation in RELN (black tracks). The union of the three features (red track) and the corresponding
running enrichment score (ES) is also shown. (B) Box plot of YAP/TAZ activity estimates for triple negative (TN) and non-TN TCGA BRCA samples. Sample groups
are further stratified by the presence or absence of the union alteration status of the meta-feature identified by CaDrA (panel a, red track). Only samples with known
TN status were considered (C) siRNA-mediated knockdown of 20p13-harboring gene RBCK1, and RELN in HS578T cells resulted in significant increase in the
expression levels of canonical YAP/TAZ targets CTGF and CYR61, as indicated by their relative qRT-PCR expression, confirming the identified CaDrA hits as
potential regulators of BRCA-associated YAP/TAZ activity. (D) Sub-sampling-based reproducibility assessment for candidate drivers of YAP/TAZ activity compared to
a CaDrA query for a random profile ranking in TCGA BRCAs. Jaccard (J) indices of the returned meta-features obtained with and without sub-sampling (repeated for
n = 100 independent sub-sampling iterations) were computed and compared for the two queries, yielding a significantly higher J index distribution for the original
query relative to the permuted ranking query (Wilcox P < 0.0001). Ctrl: Scrambled control; YT: YAP/TAZ; ∗ FDR < 0.05; two-tailed Student’s t-test.

the elevated YAP/TAZ activity exhibited in some human breast
cancers, we applied CaDrA using genomic data from the TCGA
BRCA sample cohort, along with corresponding per-sample
estimates of YAP/TAZ activity derived using a gene expression
signature of YAP/TAZ knockdown in MDA-MB-231 cells (see
section “Methods”). Samples with available RNASeq, somatic
mutation and SCNA profiles (n = 957) were first ranked in
decreasing order of their overall YAP/TAZ activity estimates.
The ranked binary matrix of mutation and SCNA features were
then used as input to CaDrA. In the first iteration, CaDrA
identified the top scoring genomic feature to be a deletion on
chromosomal locus chr5q21.3 (Figure 5A), harboring tyrosine

kinase receptor-encoding gene EFNA5. EFNA5, a member of
the Eph receptor family, has been hypothesized to function as
a tumor suppressor, whose expression has been shown to be
reduced in human BRCAs relative to normal epithelial tissue
(Fu et al., 2010). Advancing to a second iteration, CaDrA
then identified an additional deletion of chr20p13 as the next-
best feature (Figure 5A). The chr20p13 genomic deletion spans
multiple genes (Supplementary Table S2), including RBCK1,
whose reduced expression has been shown to be associated
with increased tumor cell proliferation and survival, as well
as with poor prognosis in breast cancer (Donley et al., 2014).
CaDrA then proceeded to identify somatic mutations in the
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RELN gene, before terminating the search process (P ≤ 0.001;
Figure 5A). Loss of RELN expression has indeed been shown
to induce cell migration in esophageal carcinoma, and to be
associated with poor prognosis in breast cancer (Stein et al.,
2010; Yuan et al., 2012). To ensure that the derived meta-
feature association is not a spurious consequence of correlation
with tumor subtype, we tested for the association of YAP/TAZ
activity with the meta-feature while controlling for BRCA TN
status using a linear regression model. The results confirmed
that the positive association between YAP/TAZ activity and
the occurrence of these genomic alterations is independent of
BRCA patho-histology (linear regression meta-feature coefficient
P < 0.0001; Figure 5B). Analysis of YAP/TAZ activity based on
the same knockdown signature in CCLE BRCA cell lines (n = 59;
Supplementary Figure S5A) shows that RBCK1 and RELN
display the highest anti-correlation between their gene expression
and YAP/TAZ activity (Supplementary Figure S5B). In order
to assess whether these identified candidates indeed drive the
elevated YAP/TAZ activity phenotype, we performed siRNA-
mediated knockdown of RELN or RBCK1 in HS578T breast
cancer cells, followed by expression quantification of YAP/TAZ
canonical targets, which serves as a read-out of nuclear YAP/TAZ
activity (Piccolo et al., 2014). HS578T cells which, similar to
MDA-MB-231 cells from which the gene signature was derived,
are TN BRCA cells but display lower overall YAP/TAZ activity
(rank 7/59) compared to the latter (rank 54/59). Importantly,
knockdown of either of these candidate drivers in these cells
yielded a significant increase in expression levels of YAP/TAZ
targets CTGF and CYR61 (FDR < 0.05; two-tailed Student’s
t-test), validating the association of their loss of function with
increased YAP/TAZ transcriptional activity (Figure 5C).

Thus, application of CaDrA to the analysis of YAP/TAZ
activity in primary BRCA samples identified multiple new
candidate drivers, with in vitro validation confirming the causal
role of the top two candidates, RBCK1 and RELN, in driving this
activity. These results highlight our tool’s ability to discover novel
oncogenic genomic drivers.

Evaluation of CaDrA Reproducibility
Next, we sought to determine CaDrA’s reproducibility, and how
this may be influenced by the statistical significance of the
returned meta-feature (as determined by permutation p-value).
To do so, we implemented a sub-sampling procedure and
applied it to the search for YAP/TAZ activity drivers in TCGA
BRCAs. Specifically, the original meta-feature returned by the
search on the full dataset, and the meta-feature returned when
performing the same search on a random subset (80%) of
samples were compared by the Jaccard (J) index (see section
“Methods”). We performed this sub-sampling search procedure
both with respect to the original sample ranking (Figure 5A),
and with respect to a permuted sample ranking (n = 100
iterations each). Comparison of the resulting J index distributions
yielded a significantly higher reproducibility of results when
sub-sampling from the original sample ranking, than from the
randomly permuted one (Wilcox P < 0.0001; Figure 5D). These
results support the conclusion that the CaDrA-based significance
testing is a strong predictor of a search result reproducibility,

and a rigorous criterion to discriminate between true and
false positives.

To systematically validate this conclusion, we extended
the sub-sampling analysis to CaDrA queries of protein
expression profiles across the nine different cancer types
previously described. Briefly, for each cancer type we assessed
whether the meta-features corresponding to the top five most-
significant CaDrA protein queries (CaDrA P ≤ 0.05) were
more reproducible than those corresponding to a randomly
selected subset of five non-significant protein queries (CaDrA
P > 0.05). To this end, the J index distribution obtained upon
sub-sampling from the significant queries (n = 100 iterations
each) was compared to the equivalent distribution from the
non-significant queries, and a significantly higher reproducibility
of the former was observed in all nine cancer types tested (Wilcox
FDR < 0.001; Figure 6).

Taken together, these results show that CaDrA-based
significance testing is a strong predictor of a search result
reproducibility. Most importantly, it provides for a statistically
rigorous decision rule, which would not be available based on the
sub-sampling results alone.

DISCUSSION

Identifying (epi)genetic drivers of molecular readouts is of
fundamental importance to determining alternative mechanisms
influencing the phenotype in question. Existing methods
attempting to extract functionally relevant sets of genomic
alterations associated with a given context either do not
support the analysis of data beyond somatic mutations, do
not incorporate multiple feature scoring functions and search
modes, or do not implement rigorous statistical significance
testing of the obtained results. Importantly, a computational
framework package bundling all of these features does not
exist, and can significantly help identify novel drivers of
signature activity.

Here, we presented CaDrA as a tool that determines the
subset of queried binary features most associated with a
phenotypic signature of interest by specifically exploiting a
stepwise heuristic search method. CaDrA was applied to identify
both known and novel genomic drivers of sample signature
activity, comprising drug sensitivity, protein expression and
gene set activity estimates, using publicly available multi-omics
datasets from cancer cell lines and primary tumors. Querying
CCLE data for features associated with increased sensitivity to
Mek/Raf inhibitors, CaDra recovered known driver mutations in
oncogenes known to be gate-keepers of MEK pathway activity,
including NRAS and BRAF. Importantly, BRAFV600E mutations
account for >90% of BRAF mutations and is generally found
to be mutually exclusive to NRAS mutations (Sensi et al., 2006;
Cantwell-Dorris et al., 2011), as also observed in the CCLE,
highlighting CaDrA’s ability to identify features exhibiting mutual
exclusivity. Further, the large-scale investigation of expression
profiles of annotated hallmark proteins in tumors from nine
different cancer types in TCGA confirmed CaDrA’s ability
to systematically identify known mutations of oncogenes and
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FIGURE 6 | Pan-cancer sub-sampling analysis confirms agreement between CaDrA search significance and reproducibility of identified meta-features. CaDrA was
applied to search for genomic alterations associated with elevated protein expression for all proteins profiled using RPPAs, for nine different cancer types in TCGA.
Reproducibility by sub-sampling was then assessed for the top 5 significant (CaDrA P ≤ 0.05), and 5 non-significant (CaDrA P > 0.05) protein queries (see text).
Consistency of CaDrA results was computed by the Jaccard (J) index of the returned meta-feature obtained with and without sub-sampling for each iteration, with
the J indices pooled for the 5 significant and non-significant results, respectively. Box plots highlight a significantly higher J index coefficient among the significant
protein queries compared to the non-significant queries across all cancer types investigated (Wilcox FDR < 0.001).

tumor suppressor genes in human cancers, as defined in the
COSMIC database.

Through our extensive evaluation on simulated data, we
were able to highlight CaDrA’s high sensitivity for mid-to-large
sized datasets (N > 90), and high specificity for all sample
sizes considered. Importantly, multi-omics datasets produced
by networks such as CCLE and TCGA, also presented in this
study, are well above this sample size limit. CaDrA’s specificity
was further evident when querying genetic drivers of increased
sensitivity to treatment with PLX4720, a potent and selective
inhibitor designed to preferentially inhibit active B-Raf protein
bearing the V600E allele (Tsai et al., 2008). In this scenario, the
search process correctly identified the BRAFV600E mutation as
the sole feature associated with elevated sensitivity to treatment,
in agreement with the known specificity of the small molecule
inhibitor, with the feature association being highly statistically

significant. It is important to emphasize that the evaluation of
CaDrA’s sensitivity and specificity crucially relied on the statistical
testing procedure we defined, a feature missing in most of the
other existing methods.

We were also able to demonstrate the utility of our framework
in the discovery of novel drivers in human breast cancers.
Specifically, we asked whether there were genomic alterations
associated with elevated activity of Hippo pathway co-activators
YAP/TAZ, known to control pro-tumorigenic signals in multiple
cancer types (Hiemer et al., 2015; Moroishi et al., 2015; Zanconato
et al., 2016). The mechanisms contributing to dysregulated
YAP/TAZ activity in cancer remain poorly understood. To
date, very few genomic alterations have been associated with
driving tumorigenic YAP/TAZ activity (Harvey et al., 2013).
Our CaDrA search with respect to a sample ranking of
decreasing YAP/TAZ activity, as measured by the coordinated
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expression of YAP/TAZ-activated genes, yielded a meta-feature
consisting of chromosomal deletions of 5q21.3 and 20p13, and
mutations in the RELN. Subsequent functional validation by
knockdown of select targets, namely RELN and RBCK1, in
HS578T BRCA cells exhibiting low YAP/TAZ-activity resulted in
a significant increase in the expression of canonical YAP/TAZ
targets CTGF and CYR61. These results confirmed the selected
targets’ involvement in the regulation of YAP/TAZ-mediated
activity, and the capability of CaDrA to identify new drivers
of pathway activity. Importantly, this case study highlights the
capability of the method to integrate information, and discover
targets pertaining to multiple DNA alteration types.

A sub-sampling-based assessment of CaDrA’s results show
that the ability to recover reproducible meta-features was
higher for the true (significant) YAP/TAZ activity ranking,
compared to a randomly permuted sample ranking. This
sub-sampling procedure was independently assessed using a
systematic pan-cancer comparison of reproducibility results from
significant and non-significant protein queries, which revealed
a significantly higher concordance of the former compared to
the latter in all cases tested. Together, these results confirm the
agreement between the estimated permutation p-values and the
reproducibility of the meta-features identified by CaDrA, and
emphasize the importance of our statistical testing procedure in
supporting normative decision making.

Previously developed methods have indeed been shown
to aid in the selection of functionally relevant genomic
features in cancer (Ciriello et al., 2012; Vandin et al., 2012;
Leiserson et al., 2013, 2015; Kim et al., 2016). However,
CaDrA is to our knowledge the only method performing
rank-based prediction in this context, which we believe is
well-suited to: (i) model the noisy relationship between
(epi)genetic alterations and a functional readout, and (ii)
privilege the accurate prediction of highly ranked samples
over lowly ranked samples, a desirable feature when modeling
oncogenic activity. Furthermore, the framework as defined is
flexible enough such that non-rank-based scoring functions
can be easily incorporated. We emphasize that using rank-
based scoring functions, while advantageous for the reasons
mentioned, rely on accurate stratification of samples based on
the dependent variable to yield concordant associations for a
given biological question. Thus, the soundness of predictions is
dependent on the quality of signatures used to query the target
profile of interest.

The method that most-resembles CaDrA in its approach is
REVEALER (Kim et al., 2016), an iterative search algorithm
that functions in a similar fashion to CaDrA, while specifically
seeking only those features that are mutually exclusive given the
sample context. We note that a direct and rigorous comparison
between CaDrA and REVEALER was not possible given the
lack of a formal procedure to estimate statistical significance of
results in the latter. We further emphasize that our tool defines
a flexible framework capable of incorporating additional feature
scoring functions, including the mutual information criterion
implemented in REVEALER. Indeed, the incorporation of such
scoring functions would benefit from the statistical significance
estimation module built into CaDrA.

Current implementations of CaDrA and other similar
methods are limited to the use of summarized input genomic
features that are treated as binary events, denoting the presence
or absence of a given mutation or SCNA in a sample. As
we have demonstrated, this summarization approach is indeed
sufficient to identifying genomic feature sets that may drive
the target profile of interest. However, since different types of
point mutations (missense, truncating, etc.) may impose differing
functional impacts in oncogenes versus tumor suppressor genes,
we surmise that these methods could be further improved
by qualitatively differentiating between the different types of
alterations being considered. One possibility would be to separate
mutations by predicted gain or loss-of-function, as well as to
distinguish between low (1) and high (≥2) DNA copy number
gains or losses, although this may lead to excessive sparsity in the
input matrix for low-frequency point mutations and SCNAs.

While our evaluations focused on somatic mutations and
SCNAs, CaDrA’s search functionality can be applied to additional
sequencing readouts capturing regulatory features, including and
not limited to, DNA methylation and microRNA expression,
albeit with proper discretization of these continuous features.
A joint analysis of these additional data types might provide
insight into epigenetic mechanisms that complement the assessed
genetic features in driving phenotypic variation. Furthermore,
we envision the adoption of CaDrA for the study of germ-line
variation as well, thus contributing to move beyond the “one
feature at a time” paradigm typical of GWAS studies, although
issues of computational efficiency in that problem space will likely
become more challenging.

CONCLUSION

CaDrA enables the efficient identification of subsets of genomic
features, including somatic mutations and SCNAs, as candidate
drivers of a pre-defined phenotypic variable. Given the rapid rise
in the availability of multi-omics datasets, as well as an increased
need to interrogate targeted molecular readouts within these
contexts, we believe that our methodology will accelerate feature
prioritization for further follow-up and consideration, in turn
aiding in the discovery of potential drivers of the phenotype of
interest. Thus, we propose CaDrA as a tool for both targeted
hypotheses testing, and novel hypothesis generation.

METHODS

The CaDrA Algorithm
An overview of CaDrA’s workflow is summarized in Figure 1.
CaDrA takes as input the sample ranking induced by a sample-
specific measurement, a matrix of binary features (1/0 indicating
the presence/absence of a given feature in a sample), and a
scoring method specification to measure the significance of the
concordance between the occurrence of alteration events and
the defined sample ranking. The pre-defined sample ranking
can be based on quantitative estimates of a gene expression, a
signature or pathway activity, or other experimentally derived
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measurements. Each row in the matrix of binary features denotes
the presence or absence of a somatic alteration (mutation, CNA,
or other) in each of the samples in the ranked cohort. The score
function is a measure of the left-skewness of a binary vector with
respect to the sample ranking. The more the occurrences of an
alteration are skewed toward higher rankings (i.e., the more the
1’s in the feature vector are skewed toward the left), the higher the
score. The scores currently implemented are the KS test (default),
and the Wilcoxon rank-sum test, but additional scoring functions
can easily be added.

Given the sample ranking, the matrix of binary features, and
the score of choice (KS or Wilcoxon), CaDrA implements a
step-wise greedy search: it begins by first selecting the single
feature that maximizes the score (Step 1; Figure 1). It then
generates the union (logical OR) of this starting feature with
every other remaining feature in the dataset and computes
scores for the obtained ‘meta-features’ (Step 2; Figure 1); it
selects a 2nd feature that, added to the first (as a union),
maximally increases the score – which will then serve as the
new top reference hit (Step 3; Figure 1). Repeating this process
until no further improvement to the cumulative score can be
attained, the search output is a set of features (i.e., a meta-
feature) whose union has the (local) maximum skewness score
with respect to the input sample ranking. The significance of
a CaDrA search and its cumulative score are determined by
generating an empirical null distribution of scores based on
the exact same data and search parameters, but with randomly
permuted sample rankings, providing a permutation p-value per
search result. Since the CaDrA algorithm specifically returns
feature-sets maximally left-skewed given the provided sample
ranking variable, it can be applied to identify features that are
either positively correlated or anti-correlated with the continuous
variable of interest by ranking samples in decreasing or increasing
order of that variable, respectively.

CaDrA Features
Search Modes
CaDrA supports multiple search modalities: it allows for the
selection of a user-specified feature from which to start the search
(rather than selecting the feature with highest score as depicted
in Step 1 of Figure 1); alternatively, since the greedy search is
not guaranteed to find the global maximum, it also allows for a
“top-N” search modality, whereby the search is started from each
of the first N features (as measured by their individual skewness
scores), and the result of the best search can be determined by
selecting the set of features with the best cumulative score over
the top-N runs.

Visualization of Search Results
For a given search, CaDrA outputs a set of features (meta-
feature), which can be visualized as a ‘meta-plot’. This includes
(panels from top to bottom): an area plot of the sample-
specific measurements used to obtain the sample ranks; a color-
coded matrix of all features in the meta-feature (in the step-
wise order that they were added), one feature per row, with
the corresponding union of the meta-feature (red) last; and a
corresponding enrichment score (ES) plot below. Additionally,

top-N search results can be visualized for overlapping features to
evaluate robustness across different search starting points.

Parallelization Support
The generation of the empirical null distribution for significance
testing is typically done for ≥500 iterations (i.e., permuted sample
ranks). In order to speed up this potentially time-consuming task,
CaDrA supports exploiting parallel computing with the help of
the parallel R package functionality, should multiple compute
cores be available to users.

Permutation Caching
Since the generation of the null distribution used for significance
testing is a time-consuming step, and since the null distribution
of scores depends solely on the feature dataset and the search
parameters specified (scoring method, starting feature versus top-
N search mode etc.), and not on the input sample ranking, we
can implement cacheing of the null distribution corresponding to
each dataset and search parameters. When submitting multiple
subsequent queries (each with its own sample ranking) that
utilize the same dataset and search criteria, CaDrA can then
fetch the corresponding cached null distribution to generate
permutation p-values almost instantaneously, avoiding the need
for repetitive computation, thus significantly reducing overall
query run time.

Data Availability and Processing
CaDrA is freely available for download and use as a documented
R package under the git repository https://github.com/montilab/
CaDrA, and will further be deposited and maintained for future
use under Bioconductor, including complete code and example
use-cases.

DNA copy number (GISTIC2), mutation and RPPA data
for TCGA analyses were obtained using Firehose v0.4.3
corresponding to the Jan 28th, 2016 (SCNA and somatic
mutations) and Jul 15th, 2016 (RPPA) Firehose release. Somatic
mutation data was processed at the gene level by assigning
either 1 or 0 based on the presence or absence of any given
mutation in that gene, respectively (excluding synonymous
mutations). Annotated Level 3 RPPA data was used for all
protein-related TCGA data queries. For pan-cancer analyses,
these three data sets were obtained for nine cancer types,
including bladder urothelial carcinoma (BLCA), breast invasive
carcinomas (BRCA), glioblastoma multiforme (GBM), head and
neck squamous cell carcinoma (HNSC), liver hepatocellular
carcinoma (LIHC), lung adenocarcinoma (LUAD), ovarian
serous cystadenocarcinoma (OV), pancreatic adenocarcinoma
(PAAD), and prostate adenocarcinoma (PRAD). RNASeq version
2 data processed as Level 3 RSEM-normalized gene expression
values corresponding to the Feb 4th, 2015 Firehose release
was used for the TCGA BRCA analysis. CCLE genomic data
were downloaded from https://portals.broadinstitute.org/ccle
and processed as previously described (Kim et al., 2016). Somatic
mutation binary calls per gene were used as is, and SCNA
data was processed using GISTIC2 (Mermel et al., 2011) with
all default parameters barring the confidence level, which was
set to 99%. ActArea estimates pertaining to drug treatment
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sensitivity across CCLE samples was used as previously described
(Barretina et al., 2012).

In all cases presented, SCNA and somatic mutation data were
jointly analyzed as a single input dataset to CaDrA, thereby
including samples for which both data were available. All input
data to CaDrA were further pre-filtered so as to exclude alteration
frequencies below 3% and above 60% to reduce feature sparsity
and redundancy, respectively, across samples (CaDrA’s default
feature pre-filtering settings).

Simulated Data Generation
To evaluate both the sensitivity and specificity of CaDrA, we
generated simulated data to represent cases where there was a mix
of left-skewed (“true positive”) and randomly distributed (“null”)
features, as well as cases where there were only null features. The
left-skewness of a feature is a measure of its association with the
sample ranking, since samples are sorted from left (high rank)
to right (low rank). The design and parameter specification of
the simulated data matrix is shown in Supplementary Figure S1.
Each feature/row is a binary (0/1) vector, with 1 (0) in the ith
position denoting the occurrence (non-occurrence) of the genetic
event (e.g., SCNA or mutation) in the ith sample. This simulation
of binary features relies on the following parameters:

N: Dataset sample size (number of columns in the matrix).
n: Total number of features in the dataset (number of rows
in the matrix).
p: Number of true positive features generated per dataset
[a positive feature is a feature whose distribution of events
(i.e., the number of 1’s) is significantly associated with the
sample ranking, i.e., left-skewed].
f : Left-skew proportion. The proportion of samples that are
cumulatively left-skewed in the sample ranking.
λ: The mean (and variance) of the Poisson distribution
from which the number of events in the null features
is sampled. This is equal to the number of 1’s per
skewed positive feature. A Poisson distribution is used
so that we can partially control (through the mean)
the number of 1’s in a null feature, which are then
uniformly distributed across samples (see description of
Null feature generation below).

The resulting simulated binary data matrix will consist of two
main types of features:

True Positive (TP) Features: A total of p TP features are
generated. Events (i.e., 1’s) are assigned to the TP features
in a mutually exclusive fashion, with each of these features
having (f × N)/p entries set to 1, with their cumulative
OR yielding an N-sized vector with the left-most f × N
entries set to 1’s. For example, if we generate data for
100 samples and 5 positive features, with the left-skew
proportion set to 0.5, each non-overlapping feature will
have 10 among the 50 left-most entries (columns) set to 1,
such that the union (logical OR) of the 5 features will have
1’s in the first 50 entries.

Null Features: Null features are generated for a total of (n–p)
features. To generate these features, we sample the number
of 1’s per null feature based on a Poisson distribution with
mean parameter λ = (f × N)/p. In this fashion, the number
of 1’s in the null features will have a distribution centered on
the corresponding number for the TP features. For instance,
if we generate data for 100 samples and 5 TP features with
left-skew proportion f = 0.5, then each of the TP features
will have ten 1’s, and each of the remaining 995 null features
will have a number of 1’s sampled from Poisson (λ = 10),
uniformly distributed over the N samples.

A schematic representation of this data, along with
the parameters that define its composition is shown in
Supplementary Figure S1.

Evaluation of CaDrA Performance on
Simulated Data
Evaluation of CaDrA performance was performed considering
two main scenarios: (a) True positive datasets: Data containing
both true positive and null features (where the sensitivity of
CaDrA is tested); and (b) Null datasets: Data containing only
null features (where the specificity of CaDrA is tested), with the
following parameter specifications for data generation:

N = {50, 60, 70, 80, 90, 100, 250, and 500}
n = 1000
p = 5
f = 0.5

CaDrA was run using default input parameters, returning a
meta-feature which had the best score, along with a permutation
p-value based on the empirical null search distribution
(Supplementary Figure S2). These results were then used to
determine performance estimates for different sample sizes,
composition (i.e., distribution of TP versus null features per
returned meta-feature), size (i.e., the number of features within
the returned meta-feature) and statistical significance of the
returned meta-features. Mean TPR percentages shown in Table 1
are a result of weight-averaging TPRs corresponding to different
number of true positive features per meta-feature, weighted
by the total searches returning such meta-features (gray circles
Figure 2C). Mean FPR percentages shown in Table 1 are a
result of weight-averaging FPRs corresponding to different meta-
feature sizes, weighted by the total searches returning such
meta-features (gray circles Figure 2D).

COSMIC Enrichment Analyses
For enrichment analyses, RPPA protein data for the nine cancer
types (see section “Data Availability and Processing”) was first
restricted to those proteins representing hallmark oncogene or
tumor suppressor genes included in the COSMIC v84 database
(n = 57)1 (Forbes et al., 2017). For each cancer type, a CaDrA
query was then performed with respect to the protein expression-
induced sample ranking, using somatic mutation and copy
number alteration data as input features, in order to search

1https://cancer.sanger.ac.uk/census
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for features associated with elevated protein expression of each
of the hallmark proteins queried. The features selected thereof
were then pooled across all queries, and the resulting gene list
tested for significant enrichment (based on the hyper-geometric
distribution) with respect to a set of annotated oncogenes and
tumor suppressor genes in COSMIC (n = 554), compared to the
pooled list of non-selected features.

Sub-Sampling Analyses
For all sub-sampling analyses presented, CaDrA was run after
sub-sampling 80% of the original data, with consistency of
CaDrA results computed as the Jaccard (J) index of the returned
meta-feature obtained with and without sub-sampling (repeated
for n = 100 independent sub-sampling iterations). To assess
reproducibility of drivers associated with YAP/TAZ activity, the
search was repeated by either preserving the observed ranking
(decreasing YAP/TAZ activity), or by taking a permuted ranking.
J indices were then compared between the original and permuted
ranking cases using a Wilcox rank sum test. For the pan-
cancer protein query analysis, all available proteins profiled
as part of the RPPA data were used, with J indices similarly
computed for the top 5 protein queries that yielded significant
meta-features (P ≤ 0.05), and 5 queries randomly selected
from the non-significant list (P > 0.05) in each cancer type.
J indices were then pooled for the five significant, and non-
significant results, respectively, and compared using a Wilcox
rank sum test. FDR correction was used for all pan-cancer
analyses tests of significance.

YAP/TAZ Signature Projection and
Assessment in TCGA BRCAs
A signature comprising YAP/TAZ-activating genes (n = 717)
in MDA-MB-231 cells was obtained based on a previous study
(Enzo et al., 2015). The TCGA BRCA RNASeq data (n = 1,186
samples) was projected onto the signature genes and per-sample
estimates of YAP/TAZ activity were derived using ASSIGN (Shen
et al., 2015), which was then used as a continuous ranking
variable with CaDrA. The association of YAP/TAZ activity with
the CaDrA-derived meta-feature, and with BRCA subtype (i.e.,
TN status) was determined using a linear regression model.

Cell Culture, siRNA Knockdown and
qRT-PCR
HS578T BRCA cells were purchased from ATCC and cultured
using media and conditions suggested by ATCC. For RNA
interference, cells were transfected using RNAiMAX (Thermo
Fisher) with control siRNA (Qiagen, 1027310) or an equal
molar mixture of siRNA targeting RELN (Sigma), RBCK1
(Sigma), or TAZ and YAP (Hiemer et al., 2014). 48 h post
transfection, RNA was extracted from cells using RNeasy
kit (Qiagen) and the synthesis of cDNA was performed as
previously described (Hiemer et al., 2014). Quantitative real-
time PCR (qRT-PCR) was performed using Taqman Universal
master mix II (Thermo Fisher) and measured on ViiA 7
real-time PCR system. Taqman probes used included those
recognizing CTGF (Thermo Fisher Hs00170014_m1), CYR61

(Thermo Fisher Hs00155479_m1), RELN (Thermo Fisher
Hs01022646_m1), RBCK1 (Thermo Fisher Hs00934608_m1),
WWTR1 (Thermo Fisher Hs01086149_m1), and YAP (Thermo
Fisher Hs00902712_g1) and GAPDH (Thermo Fisher 4326317E).
Expression levels of each gene were calculated using the 11Ct
method and normalized to GAPDH. Knockdown efficiency of
YAP, TAZ, RELN, and RBCK1 was verified for each experiment.
Mean transcriptional knockdown of YAP, TAZ, and RBCK in
HS578T cells was >80%. Basal RELN levels in HS578T cells were
low, and relative knockdown in these cells was 28.3% (±14.1).
Data from qRT-PCR experiments are shown as mean ± S.D., with
each knockdown compared with respect to the scrambled siRNA
control (siCtl) using an unpaired, two-tailed Student’s t-test.

CaDrA Search Parameters
For evaluation using genomic data, CaDrA was run in the top-N
mode using the default of N = 7, choosing the best resulting meta-
feature (see section “Methods”; CaDrA features: Search modes).
For evaluation of simulated data, only the top-scoring feature was
considered as a starting feature per search run (i.e., N = 1). The
“ks” method was chosen for evaluating skewness of features at
each step in all cases presented. All other default input search
parameters were used for all cases presented.

AVAILABILITY OF DATA AND MATERIAL

The datasets generated and/or analyzed during the current
study are available in the TCGA repository (https://tcga-data.
nci.nih.gov/docs/publications/tcga), and CCLE repository (https:
//portals.broadinstitute.org/ccle), and are available from the
corresponding author on reasonable request.
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