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Although error amplification (EA) feedback has been shown to improve performance on
visuomotor tasks, the challenge of EA is that it concurrently magnifies task-irrelevant
information that may impair visuomotor control. The purpose of this study was to
improve the force control in a static task by preclusion of high-oscillatory components in
EA feedback that cannot be timely used for error correction by the visuomotor system.
Along with motor unit behaviors and corticomuscular coherence, force fluctuations (Fc)
were modeled with non-linear SDA to contrast the reliance of the feedback process
and underlying neurophysiological mechanisms by using real feedback, EA, and low-
frequency error amplification (LF-EA). During the static force task in the experiment,
the EA feedback virtually potentiated the size of visual error, whereas the LF-EA did
not channel high-frequency errors above 0.8 Hz into the amplification process. The
results showed that task accuracy was greater with the LF-EA than with the real and EA
feedback modes, and that LF-EA led to smaller and more complex Fc. LF-EA generally
led to smaller SDA variables of Fc (critical time points, critical point of Fc, the short-term
effective diffusion coefficient, and short-term exponent scaling) than did real feedback
and EA. The use of LF-EA feedback increased the irregularity of the ISIs of MUs but
decreased the RMS of the mean discharge rate, estimated with pooled MU spike
trains. Beta-range EEG–EMG coherence spectra (13–35 Hz) in the LF-EA condition
were the greatest among the three feedback conditions. In summary, amplification of
low-frequency errors improves force control by shifting the relative significances of the
feedforward and feedback processes. The functional benefit arises from the increase in
the common descending drive to promote a stable state of MU discharges.
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INTRODUCTION

A general outcome of motor control is variability (Frank
et al., 2006; Bays and Wolpert, 2007). The structures of
movement variability [such as force fluctuations (Fc)] are not
necessarily a direct consequence of neural noises. Contrary to
the whiteness assumption, Fc are colored time series contingent
upon environmental contexts and task demands (Miall et al.,
1986, 1993). Fc are composed of numerous centrally scaled
pulse-like elements that remedy tracking deviations during a
visuomotor task (Navas and Stark, 1968; Miall et al., 1986;
Slifkin et al., 2000; King and Newell, 2015). The spatial
and temporal information in visual feedback determines the
transitions of the motor state with respect to target constraints
(Hwang et al., 2013; Chen et al., 2017b). Hence, Fc with
visual feedback are smaller and have greater complexity as
compared to those in a no-vision condition (Baweja et al.,
2009). Force tracking results in higher complexity of Fc when
the visual display has high spatial resolution than when it has
low spatial resolution (Sosnoff et al., 2006). The reason is that
high-sensitivity feedback with precise visual information can
facilitate richer error correction strategies. A major determinant
of Fc is variations in the discharge properties of MUs. In
addition, corticomuscular coherence (EEG–EMG coherence) in
the beta range (13–35 Hz) plays a critical role in stabilizing
corticospinal communication during static contraction (Kristeva
et al., 2007; Omlor et al., 2011). Greater beta EEG–EMG
coherence represents more effective sensorimotor integration
and greater attentional focus being directed toward stabilizing the
force output (Witte et al., 2007).

Accurate visual feedback is important to develop a
reliable perception–action link. Interestingly, visual display
of performance outcomes that are worse than the actual
performance can better expedite motor adaptations to novel
task constraints than can accurate visual feedback (Patton et al.,
2006; Domingo and Ferris, 2010; Reisman et al., 2013). The
virtual amplification of task errors, or EA, is frequently used in
combination with robotic technology to facilitate motor recovery

Abbreviations: 1 MDRRMS, differences in root mean square of mean
discharge rate between the EA/LF-EA and control conditions; 1β_CohEMG−EEG,
differences in beta-range EMG-EEG coherence area between the EA/LF-EA
and control conditions; 1IRGAV, differences in discharge irregularity between
the EA/LF-EA and control conditions; 1Task Error, difference in task errors
between the EA/LF-EA and control conditions; CL, confidence level; CMC,
corticomuscular coherence; CV-ISImean, coefficient of variance of mean ISI among
motor units; <dF2>, mean-squared value of the force fluctuations; <dFc

2>,
critical point of force fluctuations; Dl, long-term effective diffusion coefficient;
DOF, degree of freedom; Ds, short-term effective diffusion coefficient; DSDC,
Decomposition-Synthesis-Decomposition-Compare test; dt, time interval; dtc,
critical point of time; EA, error amplification; EEG, electroencephalography; EMG,
electromyography; Fc, force fluctuations; FDI, first dorsal interosseus; Hl, long-
term scaling exponent; Hs, short-term scaling exponent; IR, irregularity index
of inter-spike interval; IRGAV, global average of irregularity index of inter-spike
interval for all motor units; ISI, inter-spike interval; ISIGAV, global average of mean
inter-spike interval for all motor units; ISImean, mean value of inter-spike intervals
in an individual MUAPT; LF-EA, low-frequency error amplification; MF, mean
frequency; MU, motor unit; MUAPT, motor unit action potential train; MVC,
maximal voluntary contraction; RE, real error; RF, real force; RMS, root mean
square; SampEn, sample entropy; SDA, stabilogram diffusion analysis; T, target
signal; VE, visualized error; VF, visualized force.

in patients with neurological disorders (Abdollahi et al., 2014;
Kao et al., 2015; Israely and Carmeli, 2016; Bouchard et al.,
2017). EA is thought to inflate response conflicts in the error-
monitoring network such that participants are more attentive
to execution of the motor task (Boussaoud and Kermadi, 1997;
Jueptner and Weiller, 1998; Shirzad and Van der Loos, 2012).
Alternatively, a model-based study predicted that EA could
minimize the effect of overt task fluctuations by reducing the
neuromotor noise variance (Hasson et al., 2016). In addition
to task improvement, a force-tracking task with EA leads to
smaller Fc with higher spectral components and complexity
(Williams et al., 2016; Chen et al., 2017b; Hwang et al., 2017).
These scenarios support the potential functional benefits of
visual EA, including deliberate and richer tuning behaviors
with more frequent corrective attempts than with real visual
feedback. Physiologically, visually exaggerated mismatches with
visual EA favors the use of a feedback process to regulate the
MU discharge and the variability of the ISI among those MUs
(Chen et al., 2017b). However, the use of visual EA does not
always result in behavior success (Wei et al., 2005; Sung and
O’Malley, 2011; Bouchard et al., 2015). For instance, EA may
add to perceptual conflicts among the visual, proprioceptive, and
haptic inputs due to the distortion of real visual consequences
(Ogawa and Imamizu, 2013). Moreover, EA may augment the
visual information load by proportionately amplifying the full
spectrum of execution errors, including functionally irrelevant
visual stimuli that could impair the efficacy of corrective
behaviors (Lipowski, 1975; Chen et al., 2017a). Hence, to
optimize visual EA, it is necessary to focus on the usability of
task-related information.

Given the potential positive effects with EA, this study
aimed to contrast EA with and without high-frequency error
components during low-level static contraction. We argue
that not all of the error information, especially the fast-
oscillatory components, is helpful to improve visuomotor
performance. As a visuomotor task with EA favors the
use of a feedback mechanism (Chen et al., 2017b), the
amplified fast-oscillatory error components (>0.8 Hz)
within visual feedback cannot be effectively used due to a
significant delay of 150 ms in the visuomotor loop (Miall
et al., 1985, 1986, 1993). The amplification of these high-
frequency error components could offset the positive effect
of EA on a visuomotor task. Only LF-EA, wherein the
error information of rapid fluctuations is excluded, could
increase the effectiveness of visual feedback (or a feedback-
prone process) for corrections of force-tracking deviations.
Employing non-linear Fc dynamics and mathematical
decomposition of surface electromyography, this study
contrasted the behavior and neural mechanisms of static
force-tracking in the real, EA, and LF-EA feedback conditions.
Due to potential changes in force gradation strategies, it was
hypothesized that (1) the size, complexity, and SDA variables
of Fc would be different in the three visual feedback modes
(traditional visual feedback, EA, and LF-EA), and (2) the
variations in MU discharge and central drive to stabilize
corticomuscular communication would vary among the visual
feedback modes.
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MATERIALS AND METHODS

Subjects
The participants were 15 healthy adults (8 males and 7 females;
mean age: 24.8 ± 0.9 years, range: 21–31 years old) from a
university campus or the local community. All were self-reported
as being right-handed, and none had symptoms or signs of
neuromuscular diseases. The experiments were conducted in
accordance with the Declaration of Helsinki and approved by an
authorized institutional human research review board (IRB) at
the University Hospital of the Chung Shan Medical University,
Taiwan. All participants signed a written informed consent form
prior to inclusion.

Experimental Procedures
The participants completed a unilateral static force task of
isometric index abduction at a low force level (20% MVC) under
three error feedback conditions: control, error-amplification
(EA), and low-frequency error-amplification (LF-EA). The
participants were seated with the palm and forearm of the right
hand firmly fixed within a thermoplastic splint on the table. The
index finger was held slightly abducted (5 degrees of abduction),
and its abduction force was measured using a force transducer
(Model: MB-100, Interface Inc., United States) followed by an
analog amplifier (gain = 10). The cut-off frequency of the
amplifier was 20 Hz so that fast-oscillatory force components
such as 8–12 Hz physiological tremor would not be attenuated
by the experiment setting. For each individual, the MVC of the
FDI was pre-determined from three maximal contraction trials
of 3 s separated by 3 min pauses, by averaging the largest force
produced in each trial. Interleaved with 3-min pauses, separate
experimental trials in the control, EA, and LF-EA conditions
commenced in a randomized order, after three practice trials in
all conditions. There were four experimental trials for the control,
EA, or LF-EA conditions. During the force-tracking in the control
condition, the participants were given 2 s to reach the target force
(slope: 10% MVC/second) after a latent period of 3 s (Figure 1A).
Then they coupled isometric force to the target signal (20% MVC)
as precisely as possible by pushing their index finger against the
force transducer for another 34 s under visual guidance. The force
output returned to the resting level in 2 s, followed by a 3-s latency
period. The time window of interest was denoted as the 8th to
37th seconds in a total of 44 s for an experimental trial. The
resolution of the display of visual feedback on the monitor was
1,920 pixels× 1,080 pixels.

In the EA condition, the VF displayed on the monitor
was mathematically transformed to potentiate execution error
[mismatches between the real force output (RF) and the target
signal (T)] (Figure 1B). The VF was equal to the sum of
twice the RF minus the target signal (T) (VF = 2RF-T), so
the participant would perceive twice the amount of the RE
of the static force-tracking task (VE = 2RE). RF in the EA
condition was low-pass filtered at 20 Hz, and the VF was relatively
noisy, containing enhanced fast-oscillatory force components
and tremulous movements. In the LF-EA condition, the RF came
from a parallel force channel that pre-conditioned the force

output with an analog low-pass filter (cut-off frequency: 0.8 Hz)
prior to amplification (Figure 1B). The VF was much smoother in
the LF-EA condition than in the EA condition. The participants
could hardly correct high-frequency errors above 0.8 Hz via
visual feedback (Pew, 1974; Miall et al., 1985), because the time
period between the pick-up of visual information and its use
in producing a required adjustment was at least 150 ms (Miall
et al., 1986). For all the feedback conditions, the spatial gain
to display the target signal and the force output was roughly
25 pixels per 1% MVC. The inter-trial interval of rest was
2 min. In the LabVIEW platform (LabVIEW v.8.5, National
Instruments Inc., United States), the RF conditioned with a low-
pass filter at 20 Hz and the target signal were digitalized at
1 kHz by a 16-bit analog-to-digital converter (DAQCard-6024E;
National Instruments Inc., United States) in the EA and LF-EA
conditions. For the LF-EA condition, the smoother force channel,
conditioned with an analog low-pass filter (cut-off frequency:
0.8 Hz), was also recorded.

Electromyographic and
Electroencephalographic Recordings
In addition to the force signal, we synchronized multi-electrode
surface EMG with 5 surface pin-sensors (0.5 mm diameter
at the center and corners of a 5 mm × 5 mm square)
(Bagnoli sEMG system, Delsys Inc., United States) to record
activities of the FDI muscle. By careful skin preparation and
proper sensor application, the peak-to-peak value of baseline
noise was controlled under 20 µV to secure the accuracy
of EMG decomposition using EMG works v.4.1 (Delsys Inc.,
United States). The analog EMG signals from each pin-sensor
were amplified (gain = 1,000) and filtered with a bandwidth of 20–
450 Hz (De Luca et al., 2014). After that, four single differential
EMG channels were obtained with pair-wise subtractions of
the five pin-detections (voltages of the pin-sensor at the corner
minus voltage of the pin-sensor at the center) (De Luca et al.,
2006; Nawab et al., 2010; Hu et al., 2013). A high sampling rate
of 20 KHz was used to avoid introducing phase skew across
channels (De Luca et al., 2006, 2014; Nawab et al., 2010). Two
active Ag-AgCl electrodes (3 mm diameter; Model F-E9M-40-
5, Grass, United States) were placed 1 cm apart on the C3 area,
which was over the hand area of the primary motor cortex. The
reference electrodes for the EEG were placed on the bilateral
earlobes. After amplification of the recorded signal (gain = 5,000),
the EEG signal was hardware-filtered in the frequency range of
0.01–100 Hz and 60 Hz (Model P511, Grass, United States).
Synchronized with the EMG system and force data, the EEG
signal was sampled at 1,000 Hz.

Stochastic Modeling of Force
Fluctuation Dynamics
The force data used for behavior analysis were the RF data
low-pass filtered at 20 Hz. To exclude force data irrelevant to
visuo-motor processes and error correction (such as 8–12 Hz
physiological tremor) (Slifkin et al., 2000; Vaillancourt et al.,
2002), the RF was further conditioned with a digital low-pass
filter (cut-off frequency: 6 Hz) (Chen et al., 2013; Lin et al., 2014).
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FIGURE 1 | (A) Target signal and representative data. Only force data, EMG, and EEG in the time window of interest were presumably stable for subsequent feature
extraction. (B) Illustration of manipulation of error augmentation for visual feedback. In the control condition, real force (RF) was shown on the monitor to guide the
force task, so that real error (RE) is equivalent to visualized error (VE) during tracking. In the error amplification (EA) and low-frequency error amplification (LF-EA)
conditions, the VE of the tracking task were magnified with mathematical transformation. The visualized force outputs (VF) in the EA condition represent on-line force
feedback information that doubles the size of the execution error during force-tracking. The LF-EA feedback consists of a low-pass filtering process and an error
amplification process during force-tracking. The low-pass filtering process suppresses high-frequency components (>0.8 Hz) of real force. Error amplification
process based on the filtered real force (RFf) magnifies VE that contains only low-frequency components (<0.8 Hz).

Then the conditioned force data in the time window of interest
(8th to 37th second) were down-sampled to 100 Hz. The
quality of the force-tracking performance was visualized with
a return map for the time series of task errors, a graph of
the task error Ei+1 versus the previous task error Ei (Shenker,
1982; Mendez-Balbuena et al., 2012). A poor performance led
to a dispersive distribution of error points in the map. In
contrast, error points for a good performance concentrated

near to the center of the map. The size of the task error was
quantified with RMS of mismatch between target and force signal.
In the temporal domain, RMS and SampEn were applied to
calculate the size and complexity of Fc, defined as force data
after removal of a linear trend (Hong and Newell, 2008). Fc
characteristics reflect the degree of force steadiness and gradation
strategy for force stabilization. SampEn is a popular and reliable
entropy measure of the temporal aspects of biological variability
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(Richman and Moorman, 2000). The mathematical formula of
sample entropy was SampEn (m, r,N) = −log(

∑N−m
i=1 Ai∑N−m
i=1 Bi

), where

r = 15% of the standard deviation of the force channel, m is
the length of the template (m = 3), and N is the number of
data points in the time series. Ai is the number of matches of
the ith template of length m + 1 data points, and Bi is the
number of matches of the ith template of length m data points
(Pethick et al., 2015). A larger value represents a more complex
structure of the low-frequency Fc. In the spectral domain, the
MF of Fc was determined based on the spectral profile estimated
with a fast Fourier transform and the Welch method (Hanning
window; window length: 2.048 s, overlapping time segment:
1/4 × window length) with a spectral resolution of 0.1 Hz. In
addition, we quantified the spectral DOF, a statistic to reveal the
power dispersion of Fc. Spectral DOF is calculated as DOF =(∑N

i Si

)2
/
∑N

i S2
i . The quantity is unity for a perfect single

spectral peak, and a greater value of DOF represents a broader
band of Fc (maximal value of N for white noise).

Force fluctuation dynamics were characterized with SDA,
a probabilistic tool first proposed by Collins and De Luca
(1993). The mathematical concept of the SDA approach was
originally designated to resolve the statistical mechanics of a one-
dimensional generalized family of Gaussian stochastic processes,
such as postural sway (Collins and De Luca, 1993, 1995) and
Fc (Chen et al., 2017a). The SDA describes the power-law
relationship between the <dF2> and the dt in which these values
occur; i.e., < dF2 >∼ dt2H. H is the scaling factor, a real number
ranging from 0 to 1. For classic Brownian motion, H = 0.5. For
the purpose of the present study, SDA was calculated by using the
following equation:

〈
dF2〉
=

〈[
x
(
t + dt

)
− x (t)

]2
〉
, where <•>

indicates the mean of the time series. The computation of dF2

was empirically repeated with increasing dt values ranging from
0 to 3 s. The diffusion plot (linear–linear plots or log–log plots)
was the mean square of Fc <dF2> against the time intervals
dt (Figures 2A,B). Specifically, for biological systems regulated
jointly by open-loop and closed-loop processes, the diffusion
plots could be best-fitted with piecewise linear regression models,
the cross-over phenomenon (Delignières et al., 2011). The dtc
was the intersection of the two regression lines of the linear-
linear diffusion plot (Figure 2A), and variations in the <dFc

2>
reflected a paradigm shift in force control (Collins and De Luca,
1993; Toosizadeh et al., 2015). In the linear–linear diffusion
plot, the regression slopes (Ds and Dl) of the short-term and
long-term regions were two effective diffusion coefficients, which
parameterized the control of the force stochastic activities in
those regions, respectively. The Hs and Hl were linear fits of the
log–log plot of the SDA (Figure 2B). A scaling exponent greater
than 0.5 indicates that the system is governed by the open-loop
process (persistence) and that the data series of the past and
future are positively correlated (Collins and De Luca, 1993, 1995).
Conversely, a scaling exponent smaller than 0.5 indicates that
the data series of the past and future are negatively correlated,
as regulated by the closed-loop process (anti-persistence). The
selection of this model was a matter of physiological concern, due
to the underlying shift in feedback and feedforward control for

force stabilization with better use of the error information within
the visual feedback.

Probability of Motor Unit Discharge
The action potential “templates” of MUs were decomposed from
differential EMG channels using a previous proof-of-principle
(De Luca et al., 2006; Nawab et al., 2010). Recent studies
have shown that the artificial-intelligence-based computation
algorithm can produce convincing decomposition results (Nawab
et al., 2004; De Luca et al., 2015) via independent verification
methods (Hu et al., 2013). The entire data collection period
(44 s) was decomposed, resulting in binary spike trains that
coded the activations of all MUs with values of 0 or 1
(Figure 3). Only discharge patterns of the window of interest
were further analyzed. The validity of the EMG decomposition
of each MU action potential train (MUAPT) was evaluated with
the Decomposition-Synthesis-Decomposition-Compare (DSDC)
test (De Luca et al., 1982, 2006). In brief, the DSDC test
was used to decompose a synthetic sEMG signal, which was
reconstructed by the summation of the predefined MUAPTs
(or decomposed results) and Gaussian noise. The decomposed
results were compared with the firing instances of predefined
MUAPTs, and the percentage of the accuracy and location error
of decomposition for each MUAPT was defined as decomposition
accuracy. Previous studies have reported that the decomposition
accuracy of MUAPTs ranges from 92.5 to 97.6% (De Luca et al.,
1982, 2006). In this study, MUs of low decomposition accuracy
(<90%) were excluded from the analysis. The discharge variables
of MUs were determined in the time window of interest based
on the decomposed EMG data of the overall 44 s. Three MU
discharge variables were calculated, including global averaged
inter-spike interval (ISIGAV), CV-ISImean, and global averaged
irregularity index (IR) of all MUs (IRGAV). In an experimental
trial, ISImean was the mean value of all ISIs for an individual
MUAPT, and the ISIGAV was the averaged value of the ISImean
for a group of MUs. Experimentally observed ISI variability
among MUs was represented with the CV of the ISImean of
a group of MUs (CV-ISImean). Given a series of inter-spike
intervals (ISIi) for a single MU, the irregularity index (IR)
(Davies et al., 2006; Witham and Baker, 2007) is mathematically
formulated as: IR = 1

N−1
∑N−1

i=1
∣∣ln (ISIi+1/ISIi)

∣∣. The IRGAV
was the averaged value of the IR for a group of MUs. An
increase in force steadiness with LF-EA was likely associated
with changes in inter-spike variability. The pooled behaviors
of MU discharges were characterized with the mean discharge
rate (Figure 3). To estimate the mean discharge trace, the
global discharge rate was first determined by convolution of
the cumulative spike trains of all the MUs with a Hanning
window (window duration: 400 ms) (Hwang et al., 2017). The
mean discharge rate was the global discharge rate divided by
the number of detectable MUs in the experimental trial. The
averaging process was used to standardize the amplitude of the
global discharge rate across trials. Low-frequency oscillations
of the mean discharge rate likely correspond to the common
input to the motoneurons, providing a reasonable estimate
of the force exerted by the muscle (Farina and Negro, 2015;
Farina et al., 2016).
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FIGURE 2 | Stabilogram-diffusion plot. (A) A typical linear-linear stabilogram-diffusion plot. The short-term effective diffusion coefficient (Ds), and long-term effective
diffusion coefficients (Dl) are regression slopes for the short time scale (0–0.5 s) and long time (0.5–3 s) scales. The critical point (dtc, <dFc

2>) is the intersection
point of the two regression lines, indexing a shift in open-loop and closed-loop control for the stochastic dynamics of force fluctuations. (B) A typical log-log
stabilogram-diffusion plot. The computed short-term scaling exponent (Hs) and long-term scaling exponent (Hl) are regression slopes of the short time and long time
scales of the log–log stabilogram-diffusion plot.

Corticomuscular Coherence Estimation
Corticomuscular coherence, especially in the spectral range of
13–35 Hz, is known to reflect efferent neural transmission to
maintain force steadiness (Kristeva-Feige et al., 2002; Omlor
et al., 2011). Four undecomposed EMG signals directly from
differential channels were used to calculate CMC. The analog
EMG signals were first resampled at 1 KHz, followed by
signal conditioning with a band-pass filter (cut-off frequencies:
10 and 400 Hz). The conditioned EMG signal was rectified
and high-pass filtered at 5 Hz (Chen et al., 2013). Ocular
artifacts in the EEG recordings were removed. The EEG–EMG
coherence was determined with EEG C3 and each conditioned
EMG signal. The resulting EEG–EMG coherence spectra were
averaged to represent the CMC of the experimental trial. The
coherence between signals x and y at frequency f, Cohxy(f), was
determined according to the following equation: Cohxy

(
f
)
=

|Sxy(f )|
√

Sxx(f )×Syy(f )
. The cross-spectrum between signals x and y

at frequency f averaged across N data segments, Sxy(f), was
calculated as follows: Sxy

(
f
)
=

1
N
∑N

i=1 Xi
(
f
)
× Yi

(
f
)∗

, where
Xi (f) denotes the Fourier transform of the data segment i of
the channel x at frequency f, and Yi (f)∗ denotes the complex
conjugate of the Fourier transform of the data segment i of
the channel y at frequency f. To estimate Cohxy(f), EEG, and
EMG signals were segmented into artifact-free epochs of 1.024 s
without overlapping. Each segmented EEG and four EMG
data from the differential channels were Hanning-windowed
to minimize spectral leakage, and the Cohxy(f) of a given
experimental trial was estimated with a total of 116 epochs (29
epochs/trial × 4 experimental trials). Spectral resolution was
1 Hz. The significance level of EEG–EMG coherence was the
95% CL. The CL was defined as: CL (α) = 1−

(
1− α

100
)1/N .

Both the peak coherence and spectral area of the pooled EEG–
EMG coherence spectrum in the beta band frequencies (13–
35 Hz) were determined for each experimental trial, and those
spectral variables of the three experimental trials were averaged
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FIGURE 3 | Acquisition of variables of inter-spike interval and mean discharge rate following mathematical decomposition of surface EMG into motor unit spike
trains. Mean discharge interval (ISImean) and irregularity index (IR) of each spike train are determined. The global averages of ISImean and IR, as well as coefficient of
variance of ISImean (CV-ISImean) among motor units (MUs). Mean discharge rate is obtained by smoothing the cumulative MU spike trains following convolution with a
Hanning window (window length: 400 ms). Spectral distributions of mean discharge rate are estimated.

for all the feedback conditions. All the behavior/physiological
variables and their functional implications in this study are briefly
summarized in Figure 4.

Statistical Analysis
With reference to typical visual feedback to guide force-
tracking, the primary research interest of this study was
to contrast variations in the stochastic force behaviors and
probability structure of MU discharges with the use of EA
feedback and LF-EA feedback. On account of the relatively
small sample size, the Wilcoxon signed-rank test was used
to examine the task error, Fc variables (including SDA
variables), inter-spike variables, variables of the mean discharge

rate, and EEG–EMG coherence in the beta band in the
three feedback conditions. The level of significance was
0.05. In the presence of significant main effects, post hoc
testing was conducted using the Mann–Whitney U test
with Bonferroni correction to determine the alpha level of
significance (p = 0.0167). Spearman rank correlation was
used to assess functional linkages between differences in
task error between the EA/LF-EA and control conditions
with the corresponding changes in those neurophysiological
metrics that were sensitive to manipulation of EA. Signal
processing and statistical analyses were completed in Matlab
R2015b (Mathworks Inc., United States) and the statistical
package for IBM SPSS software for Windows v.19.0 (IBM Inc.,

FIGURE 4 | A summary diagram of behavior and physiological variables and their functional implications.
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United States), respectively. Data reported in the text and figures
without specific notations indicating otherwise are presented as
mean± standard error.

RESULTS

Figure 5A displays the return maps of the task errors from a
typical subject in the three conditions: control, EA, and LF-EA.
The dispersion of the error points in the maps for the LF-
EA condition was smaller than those for the EA and control
conditions. This was a qualitative way to characterize stable
and accurate force-tracking with LF-EA. Figure 5B shows the
population means, standard errors, and individual values of
force-tracking errors for all three visual conditions. The results
of the Wilcoxon signed-rank test revealed that force-tracking
errors varied with feedback mode (χr

2 = 10.13, p = 0.006),
with the smallest error for the LF-EA condition (p ≤ 0.006).
Figure 5C shows the distribution of differences in tracking error
between the EA/LF-EA and control conditions. The majority of
the participants exhibited a more positive performance benefit
with LF-EA than with EA, as indicated by the smaller mean

tracking error relative to that of the control condition. Table 1
contrasts the differences in the Fc variables among the three
visual conditions. The results revealed that all Fc variables were
dependent on the feedback mode (p < 0.05). Post hoc analysis
further revealed that the LF-EA condition exhibited the smallest
RMS and the largest SampEn of Fc among the three feedback
conditions (p < 0.01). Both the EA and the LF-EA conditions
exhibited mean frequencies and spectral DOF larger than those of
the control condition (p < 0.01). Functionally, LF-EA led to fine-
grained and richer force gradation to rapidly remedy tracking
deviations. In addition, the Fc dynamics were characterized with
SDA, and all the SDA variables varied with manipulation of the
feedback mode (p ≤ 0.006) (Table 2). Post hoc test indicated
that dtc was smallest in the LF-EA condition and largest in the
control condition (p < 0.01). In addition, <dFc

2> was smaller
in the LF-EA condition than in the control and EA conditions
(p < 0.01). Ds and Hs were smallest in the LF-EA condition
(p< 0.01), whereas Dl and Hl were largest in the LF-EA condition
(p < 0.01). The observations indicated that the preclusion of
high-frequency feedback components from the EA process led
to task improvement during static force-tracking. The functional
benefits were associated with the sensible detection of Fc (smallest

FIGURE 5 | Task error properties. (A) Return maps of the force-tracking for a typical subject in the control, EA, and LF-EA condition. Graph of the error E i+1 versus
previous error E i where i is the sampling point. For brevity, the interval between two error data is set at 100 ms. Good performance of force-tracking exhibits error
points that are concentrated near the center of the blue circle. (B) The contrasts of force-tracking error among the three visual feedback conditions. The blue dots
represent force-tracking error of all individuals in this study. (C) A schematic plot to display scattering of differences in tracking error between the error amplification
(EA)/low-frequency error amplification (LF-EA) and control (C) conditions. A more negative value of the error difference indicates a more positive performance benefit,
underlying a relatively smaller tracking error in the EA or LF-EA condition. Each green dot represents EA-related differences in tracking error for an individual.
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TABLE 1 | Mean and standard errors of task error and force fluctuation variables for the control, error amplification (EA), and low-frequency error amplification (LF-EA).

Behavior variables (n = 15) Control EA LF-EA Statistics

Fc_RMS (% MVC) 0.424 ± 0.029a 0.424 ± 0.028a 0.376 ± 0.026a χr
2 = 14.80, p = 0.001

Fc_SampEn 0.294 ± 0.017b 0.292 ± 0.016b 0.336 ± 0.023b χr
2 = 11.02, p = 0.004

Fc_MF (Hz) 0.832 ± 0.049c 0.894 ± 0.040c 0.893 ± 0.045c χr
2 = 12.13, p = 0.002

Spectra DOF 26.50 ± 1.40c 29.25 ± 1.05c 29.67 ± 1.27c χr
2 = 6.40, p = 0.041

aControl, EA > LF-EA, p < 0.01. bLF-EA > Control, EA, p < 0.01. cLF-EA, EA > Control, p < 0.01. (Fc, force fluctuations; RMS, root mean square; SampEn, sample
entropy; MF, mean frequency; DOF, degree of freedom).

TABLE 2 | Parameters of stabilogram diffusion analysis (SDA) of static force tracking in the control and error amplification (EA), low-frequency error amplification (LF-EA)
conditions.

SDA variables (n = 15) Control EA LF-EA Statistics

dtc (s) 0.401 ± 0.016a 0.367 ± 0.015a 0.329 ± 0.014a χr
2 = 20.93, p < 0.001

<dFc
2> (%MVC2) 0.409 ± 0.063b 0.442 ± 0.071b 0.292 ± 0.040b χr

2 = 14.80, p = 0.001

Ds (%MVC2/s) 0.601 ± 0.097b 0.682 ± 0.109b 0.419 ± 0.064b χr
2 = 14.80, p = 0.001

Dl (%MVC2/s) −0.014 ± 0.006c
−0.019 ± 0.008c 0.005 ± 0.002c χr

2 = 14.53, p = 0.001

Hs (%MVC2/s) 0.940 ± 0.003b 0.942 ± 0.003b 0.937 ± 0.002b χr
2 = 12.13, p = 0.002

Hl (%MVC2/s) −0.088 ± 0.020c
−0.062 ± 0.014c

−0.015 ± 0.016c χr
2 = 10.13, p = 0.006

aControl > EA > LF-EA, p < 0.01. bControl, EA > LF-EA, p < 0.01. cLF-EA > Control, EA, p < 0.01. (dtc, critical point of time; <dFc
2>, critical point of force fluctuations;

Ds, short-term effective diffusion coefficients; Dl, long-term effective diffusion coefficients; Hs, short-term scaling exponent; Hl, long-term scaling exponent).

TABLE 3 | Means and standard errors of variables of inter-spike interval (A) mean discharge rate (B) from all motor units in the control, error amplification (EA), and
low-frequency error amplification (LF-EA) conditions.

Control EA LF-EA Statistics

(A) Discharge variables (n = 15)

ISIGAV (ms) 58.89 ± 3.15 58.78 ± 3.30 59.07 ± 2.99 χr
2 = 1.20, p = 0.549

CV-ISImean 0.238 ± 0.012 0.215 ± 0.012 0.222 ± 0.012 χr
2 = 5.20, p = 0.072

IRGAV 0.198 ± 0.007a 0.194 ± 0.008a 0.208 ± 0.009a χr
2 = 6.93, p = 0.031

(B) Mean discharge rate (n = 15)

RMS (Hz) 0.823 ± 0.067b 0.785 ± 0.065b 0.763 ± 0.057b χr
2 = 10.53, p = 0.005

SampEn 0.319 ± 0.009 0.308 ± 0.007 0.339 ± 0.007 χr
2 = 1.73, p = 0.420

MF (Hz) 1.089 ± 0.025 1.074 ± 0.024 1.076 ± 0.017 χr
2 = 0.40, p = 0.819

DOF 30.32 ± 0.88 29.88 ± 0.54 31.30 ± 0.85 χr
2 = 3.73, p = 0.155

aLF-EA > EA, p = 0.023; LF-EA > Control, p < 0.01. bControl > EA > , p = 0.023; Control > LF-EA, p = 0.012. (ISIGAV, global average of mean discharge interval
(ISImean) of all MUs; IRGAV, global average of irregularity index (IR); CV-ISImean, Coefficient of variance of ISImean among motor units; RMS, root mean square; SampEn,
sample entropy; MF, mean frequency; DOF, degree of freedom).

dtc and <dFc
2> in the LF-EA condition) and a shift in Fc control

toward the feedback-prone process.
Under the condition of acceptable decomposition accuracy

using the DSDC test (Control: 93.10± 0.42%; EA: 93.45± 0.42%;
LF-EA: 93.76± 0.46%), the average numbers of analyzed MUs of
an experimental trial did not vary with the feedback conditions
(Control: 30.8 ± 1.8; EA: 32.1 ± 2.0; LF-EA: 31.5 ± 1.9;
χr

2 = 1.97, p = 0.374), (χr
2 = 1.20, p = 0.549). Table 3A

contrasts the inter-spike (ISI) variables of all MUs among the
three feedback conditions. The global averages of the mean inter-
spike interval (ISIGAV) and CV-ISImean were not affected by the
feedback mode (p > 0.05). Only the discharge irregularity in
terms of IRGAV (or global average of IR for all MUs) varied
significantly with feedback mode (p < 0.05). IRGAV was generally
highest in the LF-EA condition (p < 0.01). Table 3B contrasts
the characteristics of the mean discharge rate of the all MUs

among the three feedback conditions. Only the RMS of the
mean discharge rate was subject to feedback mode (p = 0.005).
Post hoc test revealed that the RMS of the mean discharge
rate was significantly smaller in the LF-EA condition than in
the control condition (p = 0.012). However, the SampEn, MF,
and DOF of the mean discharge rate did not significantly
vary with feedback mode (p > 0.05). Figure 6A presents an
example of the pooled coherence spectra of the EEG and rectified
EMG from a typical participant in the control, EA, and LF-
EA conditions. The typical coherence spectra manifested with
large power in the beta frequencies (13–35 Hz), exceeding
the 95% CL. Figure 6B contrasts the population means of
the peak coherence and spectral area in the beta frequencies
among the three feedback conditions. Both the peak coherence
(χr

2 = 7.60, p = 0.022) and the spectral area in the beta frequencies
(χr

2 = 9.73, p = 0.008) varied significantly with feedback mode.
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FIGURE 6 | (A) Pooled coherence spectra between the EEG and rectified EMG of a typical participant in the control, error amplification (EA), and low-frequency error
amplification (LF-EA) conditions. (B) the contrasts of peak coherence and spectral area in the beta band (13–35 Hz) among the three feedback conditions. The blue
dots represent coherence values of all individuals in this study.

Beta peak coherence was larger in the LF-EA condition than in
the control condition (p = 0.005), and the spectral area in the
beta frequencies was largest in the LF-EA condition (p ≤ 0.009).
The use of LF-EA appeared to enhance CMC at 13–35 Hz,
which might serve to stabilize the motor output and decrease the
discharge variability.

Figure 7 presents three scatterplots showing the associations
between differences in task error and the neurophysiological
metrics (1IRGAV, 1MDRRMS, and 1β-CohEMG−EEG) sensitive
to manipulation of EA. In terms of Spearman rank correlation
(rs), the change in task error between the LF-EA and control
conditions was significantly correlated to 1MDRRMS and
1β-CohEMG−EEG (p< 0.05). In contrast, the change in task error
between the EA and control conditions was not significantly
correlated to 1IRGAV, 1MDRRMS, or 1β-CohEMG−EEG
(p > 0.05). These facts implied that task improvement in the
LF-EA condition relative to that of the control condition could be
linked to centrally mediated change in the amplitude of pooled
discharges of the MUs.

DISCUSSION

The novel finding of this study was that gating of the high-
frequency execution errors prior to virtual amplification (the
LF-EA feedback) provided a functional benefit to the stabilization
of static force, due to the smaller Fc with higher complexity, MF,
and spectral DOF. The LF-EA feedback reduced the perceptual
sensitivity to Fc (smaller <dFc

2>) with a greater reliance on
the visual feedback process for error corrections (smaller dtc).
Physiologically, the shift in force control was associated with
greater global discharge irregularity (IRGAV), smaller fluctuation
in the mean discharge rate, and enhanced EMG-EEG coherence
in the beta band.

Structural Changes in Force Fluctuations
and Implications for Force Control
The time series of Fc modeled with SDA was different from
ordinary Brownian motion (un-correlated random-walk), as the
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FIGURE 7 | Scatter plots to show the relationships between EA-related changes in task error and neurophysiological metrics. Negative value of 1Task Error
represents task improve with EA or EA-LF feedback. (1Task Error, difference in task errors between the EA/LF-EA and control conditions; 1IRGAV, differences in
discharge irregularity between the EA/LF-EA and control conditions; 1MDRRMS, differences in root mean square of mean discharge rate between the EA/LF-EA and
control conditions; 1β_CohEMG−EEG, differences in beta-range EMG-EEG coherence area between the EA/LF-EA and control conditions; rs, Spearman rank
correlation).

diffusion curve of Brownian motion is linear and unbounded
with the scaling exponent equal to 0.5 (Mandelbrot and van
Ness, 1968; Collins and De Luca, 1993). The diffusion curve of
the Fc changed slope after the critical point, and the scaling
exponents for Fc were, respectively, greater than and less than 0.5
for short-term and long-term intervals (Figure 2B and Table 2).
Hence, like postural sway (Collins and De Luca, 1993, 1995;
Delignières et al., 2011), Fc are correlated and bounded random-
walk signals, regulated distinctively by two subsystems. An open-
loop process predominates Fc control in the short-term region
with a scaling exponent greater than 0.5, for the stochastic activity
was persistent and Fc data of the past and future were positively
correlated. In contrast, a closed-loop process predominates Fc
control in the long-term region. The stochastic activity with a
scaling exponent smaller than 0.5 was anti-persistent, for Fc data
of the past and future were negatively correlated (Collins and De
Luca, 1993, 1995). This stochastic model of Fc is reminiscent of
a continuum of the control regime of a visuomotor act ranging
from feedback (closed-loop) to feedforward (open-loop) (Slifkin
et al., 2000). Central to this interpretation is that the SDA
variables of Fc in the LF-EA condition indicated a scheme switch
of open- and closed-loop controls for static force control, as
compared with those of the EA and control feedback modes.
The smaller dtc and <dFc

2> in the LF-EA condition (Table 2)
reflected a drift in the equilibrium point of Fc control toward
a closed-loop process (Kurz et al., 2013; Coubard et al., 2014;
Toosizadeh et al., 2015). The interval of short-term stochastic
activity governed by the open-loop regime (dtc) was significantly
shortened, and feedback control was called into play when a
smaller degree of Fc (<dFc

2>) took place. The experimental
observation was congruent with reductions in the Ds and
scaling exponent (Hs). After deconditioning of the feedforward
mechanism, force-tracking in the LF-EA condition was more
dependent on the feedback mechanism, with a functional benefit
of superior task accuracy (Table 1). Hence, the prevailing use

of the feedback process was conceptually in agreement with
the perceptual narrowing (Easterbrook, 1959) and enhanced
attentive control (Boussaoud and Kermadi, 1997; Jueptner and
Weiller, 1998; Shirzad and Van der Loos, 2012) reported in
behavioral studies.

Due to the smaller Fc with greater complexity (Table 1),
the participants could develop fine-grained force-scaling with
a richer correction strategy in the LF-EA condition with the
feedback-prone process (Vaillancourt et al., 2002; Chen et al.,
2013). Several lines of indirect evidence have shown that
modulation of Fc dynamics in the LF-EA condition resembles
characteristic changes in Fc after motor practice (Deutsch and
Newell, 2004; Hwang et al., 2013). Moreover, the increase in
the MF of Fc and flattening of the spectral DOF support
of LF-EA indicated that the participants could increase the
number of corrective attempts with abundant exploratory
efforts to remedy tracking deviations. Gating the high-frequency
components brought about these performance benefits because
VEs above 0.8 Hz are too fast to be corrected. The interval
to accomplish visuomotor correction in humans is at least
1 s (Navas and Stark, 1968; Miall et al., 1985), and primates
cannot follow the full excursion of a target higher than 0.9 Hz
with the feedback process (Miall et al., 1986). If visual EA
contains information that cannot be rapidly responded with
the feedback process, lag-induced feedback instability taxes
attentional resources with processing visuomotor information
that is irrelevant to task success. That is why the task accuracy,
Fc properties, and SDA variables between EA and LF-EA
were distinct.

Variations in Motor Unit Discharge for
Low-Frequency Error Amplification
The adaptation of the Fc dynamic originated from variations in
the probability structures of the MU discharges. Physiologically,
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the decrease in the size of Fc with LF-EA was correspondent
with the decrease in RMS of the mean discharge rate (Table 3B)
rather than CV-ISImean (Table 3A). It is known that modeling of
the mean discharge rate with a pooling process could accentuate
synaptic inputs common to a population of active motoneurons
but also attenuate the role of independent synaptic inputs to
motoneurons (Farina and Negro, 2015; Farina et al., 2016).
Therefore, the amplitude modulation of the mean discharge
rate implies that LF-EA could effectively reduce the variations
in the common input to a muscle. The observed influence
of the common input confirms the model-based conjectures,
implying a reduction in the intrinsic neuromotor noises at
the motoneuronal level with EA (Wei et al., 2005; Hasson
et al., 2016; Williams et al., 2016). The modulation of the
size of the mean discharge rate was critical to the increase in
task precision in the LF-EA condition (Figure 7). However,
the reduction in the size of Fc with LF-EA is unlikely to
have resulted from modulation of independent synaptic inputs
to motoneurons because CV-ISImean, which highlights the
influence of synaptic inputs to motoneurons that differ from
those that are common, was insensitive to feedback mode.
On the other hand, the enhancement of the complexity of
Fc in the LF-EA condition (Table 1) was nicely compatible
with the irregularity of the increases in MU discharge (IRGAV)
(Table 3A). However, the structures of the mean discharge rate,
such as SampEn and DOF (Table 3B), did not well index the
change in the complexity of Fc in the LF-EA condition. In
addition to some unidentified organizational discharge activities,
the viscous resistances of the musculotendon system attenuate
the transmission of high-frequency neural drive to a muscle
(Günther et al., 2007). This non-linearity often complicates the
discharge–force relationship.

Variation in Corticospinal Coupling for
Low-Frequency Error Amplification
Instead, superior task accuracy and force steadiness in the LF-EA
condition were associated with increased EEG–EMG coherence
in the beta range (Figure 4). An increase in the beta-range EEG–
EMG coherence represents greater synchronization of cortical
activity to regulate common spinal inputs, a neural marker
of steady-state motor output during static contraction (Perez
et al., 2006; Kristeva et al., 2007). The beta-range CMC is
greatly reduced when a force task is not steady (Salenius et al.,
1997; Boonstra et al., 2009). Previous studies have reported that
repetitive training can increase the precision of control in a
static force task, in association with enhancement of beta-range
CMC (Perez et al., 2006; Witte et al., 2007; Larsen et al., 2016).
From all the neural sequelae, the enhanced beta-range CMC
should contribute to a smaller size of discharge variability with
enhanced complexity (Table 3 and Figure 7) and fine-grained
force scaling with the feedback-prone process (Tables 1, 2) in the
LF-EA condition. Since the beta-range corticomuscular rhythm
is modifiable to peripheral sensory afferents (Riddle and Baker,
2005; Lalo et al., 2007), the precise force control in the LF-
EA condition might be attributable to the reduction of the
cognitive load of processing task-irrelevant error information,

which would facilitate rapid integration of the visual and
somatosensory information.

Methodological Issues
A contrasting approach to enhance static force control is
stochastic resonance (Mendez-Balbuena et al., 2012; Trenado
et al., 2014). In addition to an increase in corticomuscular
synchronization at 13–35 Hz, a better force precision with a
return map of concentrated error points was noted following
application of an optimal mechanical Gaussian noise. The task
improvement was hypothesized to detect subthreshold sensory
signals in the peripheral receptors, pertaining to noise-enhanced
sensorimotor integration. However, stochastic resonance differs
with the use of LF-EA, which minimizes cognitive load to process
functionally irreverent noises. The return map with concentrated
error points speaks for additional functional benefits for removal
of high-frequency error components (noises) prior to EA
(Figure 5A). Besides, one matter of concern is the decomposition
of multi-electrode surface EMG. Although we cannot deny the
likelihood of a small decomposition error (Piotrkiewicz and
Türker, 2017), the state-of-the-art decomposition algorithm is a
trade-off to capture the discharge variability among MUs and the
force–discharge relation, based on a relatively large number of
active MUs. To be rigorous, we applied a “reconstruct-and-test”
procedure (Nawab et al., 2010; De Luca et al., 2015) to support the
accuracy of the obtained identifications (91.2–97.1%) (De Luca
et al., 2006; Nawab et al., 2010; Chen et al., 2017a,b; Hwang et al.,
2017). The use of multi-channel surface EMG to explore MU
behaviors has gained popularity in recent studies (Hu et al., 2014;
Laine et al., 2015; Contessa et al., 2016; Chen et al., 2017a,b). In
particular, the inconsistent changes in the complexity measures
between IRGAV and the SampEn of the mean discharge rate
with LF-EA (Tables 3A,B) reinforce the role of decomposition in
revealing diverse fractal myoelectric manifestations. A simulated
EMG study showed that the fractal characteristic of surface EMG,
which accounts for pooled MU behaviors, is jointly subject to
variations in the CV of the discharge rate and the degree of
MU synchronization (Mesin et al., 2016). Hence, fractal changes
in the surface EMG are evident during fatiguing (Ravier et al.,
2005) or higher-force (>25% MVC) contractions (Beretta-Piccoli
et al., 2018). When the CV of the ISI is not expected to change,
the discharge irregularity of a single MU such as IRGAV could
be masked by the interference pattern of surface EMG (or the
mean discharge rate). Next, a low-pass filtering effect was likely
to be effective only in the visual EA condition, though this study
did not examine tracking performance in the non-EA condition.
According to our preliminary study in healthy adults (n = 14),
the task error of the control condition (0.467 ± 0.029% MVC)
did not differ significantly from the task error in the condition
of low-frequency feedback without EA (0.446 ± 0.039% MVC)
(t13 = 0.648, p = 0.528) (unpublished data). Therefore, low-
frequency error signals without amplification could not facilitate
feedback control, and the performance benefit and paradigm shift
were evident only in the LF-EA condition. Also, the selection
of a low pass threshold of 0.8 Hz for EA was empirically
determined. The time period necessary for the detection of
visual information and motor adjustments was at least 150 ms
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(Miall et al., 1985, 1986), which prevented the participants from
timely correcting fast-oscillatory error components. However,
on account of the slow tracking response and perceptual
motor conflict, the excessive removal of high-frequency error
components is disadvantageous to task precision due to the lack
of ample information for remedying tracking deviations. The
effects of various low-pass thresholds on EA feedback will require
further investigation.

CONCLUSION

Virtual potentiation of low-frequency errors below 0.8 Hz for
visual feedback more effectively improves task performance than
does traditional EA or real visual feedback in a static isometric
task. The selective gating of high-frequency error components
reduces the task-irrelevant information in the visual feedback that
cannot be rapidly processed with a feedback process. This study
reveals that the amplification of low-frequency error information
could increase the sensitivity to detect Fc and facilitate the state
shift to the negative feedback process for force stabilization.
The behavior adaptations arise from the promotion of effective

corticospinal interactions to enhance discharge irregularity and
minimize fluctuations of the common drive to a muscle.
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