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GROUND AND TRANSITION PROPERTIES OF “Ca AND “Ca NUCLEI

Properties of the ground states and transitions in “°Ca and “éCa nuclei are studied using the self-consistent Hartree -
Fock and random phase approximation calculations with Skyrme-type interactions: KDEO, SLy4, LNS, RAPT and T6.
The purpose of the paper is to obtain the best Skyrme-force parameterizations for description of the experimental data.
All the calculated values were compared with the available data. The calculated binding energy per nucleon, charge root
mean square, ground charge density distribution and transition strength distribution agree very well with the experimental
data. The overall behavior of the calculated transition densities demonstrated the reliability of the method.

Keywords: charge density distribution, transition density, strength distribution, Skyrme - Hartree - Fock, random phase

approximation.

1. Introduction

A nuclear many-body problem is generally
difficult to solve exactly, as it arises in many branches
of physics. Various approximate approaches exist to
deal with such systems. Simple shell-model (SM) is
based on the independent particle approximation,
which ignores all correlation effects. It can be used in
its simplest single-particle form to predicts or
explains with some success properties of nuclei, in
particular spin and parity of ground states, and to
some extent their excited states as well.

The self-consistent mean-field SCMF theory in
the quantum many-body problem is Hartree - Fock
(HF) theory [1], assumes that nucleons move
independently in a mean-field generated by the other
nucleons of the atomic nucleus. SCMF calculation
starts from an effective interaction between nucleon
to drive the mean field and an SC interaction of single
particle equations. The variation principle is applied
to drive a set of coupled equation that yields
minimized the value of ground-state energy as the
best approximation which solved in a repetitive
pattern. This type of models mainly include the
relativistic mean field (RMF) [2] and the non-
relativistic HF theories.

The main idea in non-relativistic HF approach is
to calculated the NN interaction, such as the short
finite range (Gongy-model) [3, 4] or zero range
(Skyrme-model) [5 - 7] to describe ground state and
low-energy excitation properties of finite nuclei and
nuclear matter because these forces (Gongy and
Skyrme) depend on about ten adjustable parameters
that are fitted to reproduced relevant ground state
properties of some nuclei.
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In the case of closed shell and sub-shell nuclei, the
simplest correlation beyond the HF can be described
by breaking the HF core and raising a nucleon from
below to above the Fermi level; then the collective
excited states can be demonstrated as a linear
combination of particle-hole (ph) states in truncated
model space. In another language, this model is also
expressed as the random phase approximation (RPA)
theory.

Since the pioneering work of Brink and
Vautherin [8], continuous efforts have been made to
readjust the parameters of the Skyrme-type effective
nucleon-nucleon interaction to better reproduce
experimental data. Most of the set of parameters
were obtained by the fitting of the HF results to
experimental data on bulk properties of a few stable
closed shell nuclei [9, 10]. Recently, were obtained
by the fitting of HF results to the experimental data
on the bulk properties of nuclei ranging from the
B-stable nuclei to those near the proton and/or
neutron drip lines [11 - 16]. M. Dutra et al. [17, 18]
presented a detailed assessment of the ability of the
263 Skyrme interaction parameter sets in the
literature to satisfy a series of criteria derived from
macroscopic properties of nuclear matter in the
vicinity of nuclear saturation density at zero
temperature and their density dependence, derived
by the liquid-drop model, in experiments with giant
resonances and heavy-ion collisions.

Having a large number of the Skyrme-force
parameterizations requires continuous search for the
best in theoretically description of the nuclear
structure, therefore in the present work, the nuclear
structure of “°Ca and *3Ca nuclei has been studied in
the framework of the self-consistent HF-RPA with
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using Skyrme-type interactions KDEOQ, SLy4, LNS,
RAPT and T6. The investigated interactions have
different nuclear matter constraints, these sets of
parameters may fit the ground-state properties (e.g.
single-particles energies, binding energies, and radii)
with some differences. But, more efforts need to
assessment the calculated results of the excited
properties.

2. Theory
The nuclear ground-state in HF calculation, is

V12 to (1+ %P, ) 8(r)

obtained by varying the nuclear Hamiltonian within
the set of trial functions. Using the Wick’s theorem,
the HF energy can be obtained as in terms of the
single-particle density p [19]

" Z_Z‘c’ijpji Zbk. ijkiP1j 1)
ij

ukl

In this work we adopt the following Skyrme-type
effective NN interaction [16, 20]:

+ H(1+X1 )[5(lf)k2 k’26(r)J central term

+1, (1+x,P, )K'- 3(r)k

=ty (14 x4P, ) p* (R)3(r)

+iW, (6, +6,) [ K- 8(n)k ],

(h+1)

where r=r—-r,, R= P.=(1+0,0,)/2

is the spin-exchange operator, o is the Pauli spin
matrices and k'’ is the Hermitian conjugate of k
(acting on the left) and it is given by

1 — = ’ 1 — ! !
k:E(Vl—Vz), K =—E(V1—V2),
where ty, t;, t,, t;, Xo, X, Xp, X3 and W are arbitrary

adjustable parameters [21 - 23].
The ground proton, neutron and charge density
distribution of a nucleus can be obtained using the

Skyrme-HF radial wave functions u(nt,r) [24, 25]

pa(r) == Y (2 +1)

2
u(nj,r)
- | 3

Hence n,= 0 or 1 for empty or fully occupied orbits

respectively. The root-mean-square (rms) radii is
defined as follows [26]:

<rq2> = Rlcjpxrzpq (r)d°r. 4)

0

The charge radius can be obtained approximately
using the proton distribution

() =)+ (1), Q

non-local term 2
density-dependent term

spin-orbit term

Beyond HF, the excited collective states of closed
shell and subshell nuclei can be described by a linear
combination of ph RPA states. Then the excited states

|v> can be results from the action of excitation

operator Q; [19]

[X ala —Yrala, |, (6)

mi~m™i mi~i U'm

where the label m represents particle states and i is for
hole states. The ph RPA ground state is defined via
the condition

Q,|RPA)=0. @)

The probability of finding the particle-hole states
ala;|0) and afa, |0) in the excited state |v) gives

the amplitudes Ko and Y;,

(0la/a, |v) ;(HF[

iom? ml’

(0|ala, |>;<HF|[a;a,,QT]|HF>=Yn:i. (8)

The ph RPA equations can be written in a compact

matrix form
j )

ABXV_E10XV
B- A Jlyr) vlo -1y
with

with (r) —08 fm. Ay = (HF | alan, [ H,ala; ||[HF) = (6, =) 81y + Vi,
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A
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€, Is the single particle energy. In the J couples

scheme, all the particle-particle pp residual
interaction matrices should be in ph channel [6]
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The residual interaction can be built from the self-
consistent Skyrme-HF energy density functional

Ji

i)

VAR

mjin

(11)
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SZEHF
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ph _
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(12)

The strength function is defined by the transition
operators as follows

. 2
=3 (V[ Ho>‘ S(E-E,), (13)
v
where IfJ is the nuclear multipole operator between
the RPA ground |0)and excited states |v) with the

corresponding excitation energy E,. For plotting

purpose, the strength functions is approximated as
follows:

(14)

=s|(v|es[o] or (£

where the Lorentzian function is defined as in the
following:

r 1

r (15)
2m (E-E,)?+(T/2)

pl"(E - Ev) =

with T" is the smearing parameter.
The radial transition density of state ‘V> is defined
as follows [27]:

S X v Yl ) A,

(16)

where X and Y are RPA amplitudes. The isoscalar IS
(T =0) and isovector 1V (T = 1) densities defined

op,(r) =

\/2\]

85U (r) =8py (N+3py, (1), (A7)

5o\ (1) =8py, (N—8py,(r).  (18)

The reduced matrix elements of the spherical
harmonic Y, is expressed as [28]

2j,+1)(2J +1)

(i) = (2 (a2

3. Results and Discussion

4r

In this study, the equations of the static HF were
solved by using the Numerov method with the radial
mesh of size h = 0.1 fm within a model space based
on Skyrme-type interactions KDEO [29], SLy4 [13],
LNS [30], RAPT [31] and T6 [32].

The HF calculations have been investigated for
“Ca and “Ca nuclei, including the ground state

jm ‘] L +I+0
(1/2 0 —1/2j [Lrenet )

|properties: binding energy, root mean square radii
and the charge density distributions, were compared
with the available experimental data. The theoretical
binding energies per nucleon calculated using 5-type
Skyrme interactions for the investigated nuclei are
listed in Tables 1 and 2 respectively with the
corresponding experimental data [33]. The results are
in good agreement with available experimental data.

Table 1. Binding energies per nucleon B/E, and rms radii of neutron, proton, and charge of “°Ca,
calculated using the KDEOQ, LNS, SLy4, RTAP and T6 Skyrme interaction sets

Force E/A, MeV <rn2 >1/2 , fm <r§ >1/2 , fm < rczh >1/2 , fm
Exp. -8.55 [33] 3.48 [34]
KDEO -8.94 3.33 3.38 3.47
SLy4 -8.61 3.37 3.41 351
LNS -8.69 3.22 3.28 3.37
RAPT -8.59 3.37 3.41 3.50
T6 -8.27 3.38 3.42 351
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Table 2. Binding energies per nucleon B/E, and rms radii of neutron, proton, and charge of “Ca,
calculated using the KDEOQ, LNS, SLy4, RTAP and T6 Skyrme interaction sets

Force E/A, MeV <rn2 >1/2 , fm <r§ >l/2 , fm <rczh >1/2 , fm
Exp. -8.67 [33] 3.47 [34]
KDEO -9.10 3.57 3.42 3.51
SLy4 -8.71 3.61 3.46 3.55

LNS -8.77 3.46 3.30 3.40
RAPT -8.70 3.60 3.45 3.54

T6 -8.41 3.61 3.45 3.55

The calculations with the KDEO, LNS, SLy4,
RTAP and T6-type Skyrme parameterizations of the
neutron, proton and charge root mean square (rms)
radii for “°Ca along with the experimental data [34]
are shown in Tables 1 and 2 respectively. Our results
show that the calculated charge rms radii are close to
the experimental data with a slight difference by type
of Skyrme parameterizations. Our results are
comparable with the earlier studies with S, Sll, SIII,
BLV1 and SL1 in ref. [9].

The nuclear charge density is the most helpful
notice for considering the nuclear structure. It gives
us a picture of the internal structure of nuclei. Figs. 1
and 2 display the calculated HF charge distribution
for °Ca and “®Ca nuclei, respectively with 5-type
Skyrme parameterizations. Most of the interactions
have an agreement with the experimental data [34] at
the surface and interior regions. The calculated results
of the interaction LNS have a deviation from data at
the surface region for the investigated nuclei.
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Fig. 1. Charge density distribution for 4°Ca calculated with
the KDEO, LNS, SLy4, RTAP and T6 Skyrme interactions
and compared with experimental data [34]. (See color
Figure on the journal website.)

The code skyrme_rpa [27, 35] has been used to
perform the full self-consistent RPA matrix
diagonalization within the selected model space. The
ph configurations between all possible occupied and
unoccupied states were restricted by the cut-off
energy equal to 50 MeV.

The giant resonance region from 9.5 MeV < Ex <
<40 MeV in “Ca was studied with inelastic
scattering of 240 MeV « particles at small angles,
including 0°. Close to 100 % of the the isoscalar giant
monopole resonance (ISGMR) (EOQ), isoscalar giant
dipole resonance ISGDR (E1), and isoscalar giant
quadrupole resonance (ISGQR) (E2) strengths have
been located between 9.5 and 40 MeV in *Ca [36].
To study the effect of neutron-proton asymmetry, a
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Fig. 2. Charge density distribution for 43Ca calculated with
the KDEO, LNS, SLy4, RTAP and T6 Skyrme interactions
and compared with experimental data [34]. (See color
Figure on the journal website.)

comparison with the available data for “°Ca [37 - 39],
as well as with the results obtained within the HF-
RPA, was carried out in ref. [36]. The ISGMR was
found at somewhat higher energy in “®Ca than in “°Ca,
whereas  self-consistent HF-RPA  calculations
obtained using the SGII, KDEO, SKM+, and SK255
Skyrme interactions predict a centroid energy in this
neutron-rich Ca isotope lower than in “°Ca [36].

In this work, the excitation properties of “°Ca and
“8Ca nuclei including the strength distributions and
transition densities were calculated in the long
wavelength limit by considering the KDEO, LNS,
SLy4, RTAP and T6-type Skyrme parameterizations
for the three most important giant resonance: the
ISGMR, the isoscalar giant quadrupole resonance
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(ISGQR), and the IVGDR. The interest of the
transition densities relies on the fact that their spatial
shape reveal the nature of the excitations: volume or
surface type, IS or IV etc.

The strength distributions (fraction of EWSR) of
isoscalar monopole EO and quadrupole E2, and
isovector dipole E1 photo absorption cross section

(mb) are shown in Figs. 3 and 4 for the studied nuclei.
Lorenzian smearing I of 3 MeV width was used in
the calculation, and compared with the experimental
data [36, 38, 40]. Most interactions work best and
agree with data concerning centroid energy, widths
and (smooth) profiles of strength. For the ISGMR,
fragmented structure seen in some interactions.
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Fig. 3. Our calculations of the strength distribution for the fraction of EWSR: a — isoscalar monopole (EO);
b — quadrupole (E2); ¢ — photo absorption dipole cross section (E1) in #°Ca, obtained using the KDEO, LNS, SLy4,
RTAP and T6 Skyrme interactions. A Lorenzian smearing I" of 3 MeV was used in the calculation. Experimental data
are from [38] for ISGMR and ISGQR and [40] for IVGDR, are shown as red-solid lines. (See color Figure on the

journal website.)
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Fig. 4. Our calculations of the strength distribution for the fraction of EWSR: a — isoscalar monopole (EO);
b — quadrupole (E2); c — photo absorption dipole cross section (E1) in 48Ca, obtained using the KDEO, LNS, SLy4,
RTAP and T6 Skyrme interactions. A Lorenzian smearing I" of 3 MeV was used in the calculation. Experimental data
are from [36] for ISGMR and ISGQR and [40] for IVGDR, are shown as red-solid lines. (See color Figure on the

journal website.)

In Figs. 5 and 6 the calculated transition densities
of proton and neutron for “°Ca and “3Ca are presented
as a function of the radial coordinate of the states
using KDEO, LNS, SLy4, RTAP and T6-type
interactions for the ISGMR, IVGDR, and ISGQR. In
the ISGMR mode, the surface of the nucleus is
confirmed for the centroid energy range 19 - 25 MeV

ISSN 1818-331X AJEPHA ®I3MKA TA EHEPTETUKA 2018 T.19 Ne 4

for “°Ca and “®Ca. Clearly, protons and neutrons are
oscillated in the same trend, in all cases, the surface
has a dominant IS character. The same behavior is
illustrated for peak energy in ISGQR, i.e, the IS
character of the surface of the nucleus is confirmed,
for the energy range 15 - 22 MeV for “Ca and 13 -
18 MeV for ®Ca.
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Fig. 5. Transition densities of proton and neutron for “Ca: a —

Isoscalar monopole; b — isovector dipole;

¢ — isoscalar quadrupole. The HF-RPA calculations were done with KDEO, LNS, SLy4, RTAP and T6 Skyrme

interaction. (See color Figure on the journal website.)

The total transition in IVGDR mode is dominated
by IV component for the main strength peaks around
17 - 23 MeV for “°Ca and 16 - 24 MeV for *!Ca.
Obviously, both protons and neutrons contribute to
the transition and oscillate in opposite directions.

In our results, we do not have pigmy giant resonance
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(PGR) because the GDR mode, is IS and involves the
motion of mainly internal nucleons, the PDR is IS
behavior more than IV and includes the motion of the
external nucleons, which are mainly neutrons. In our
case, the number of neutrons in the studied nuclei does
not exceed the number of protons too much.
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Fig. 6. Transition densities of proton and neutron for “8Ca: a — isoscalar monopole; b - isovector dipole; ¢ — isoscalar
guadrupole. The HF-RPA calculations were done with KDEQO, LNS, SLy4, RTAP and T6 Skyrme interaction. (See
color Figure on the journal website.)

4. Conclusions experimental data for the most type of Skyrme
interactions. The overall behavior of the calculated
! A transition densities demonstrated the reliability of the
even nuclei *Ca and “Ca were studied in the method. The used method can be readily used in
framework of the self-consistent HF-RPA using  giving a good description and understanding of the
5-type Skyrme interaction parameterization. Our pclear structure of the investigated nuclei, this
results give a reasonable description of the  serying as a sign or indication of to the validity and

experimental data. In- conclusion, the calculated  gccess of the self-consistent HF and the ph RPA for
results are in very good agreement with the available  ¢,ch even-even nuclei, especially for pf-shell nuclei.
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BJACTHUBOCTI OCHOBHHX CTAHIB TA ITIEPEXO/IB B IJIPAX “°Ca I “Ca

BiacTHBOCTI OCHOBHHMX CTaHiB Ta nepexoi B sapax ‘°Ca ta “Ca Gyo BUBUEHO 3 BAKOPHCTaHHAM CAMOY3IOJKEHHX
obuucnens y HaOmmxeHHI XapTpi - Poka Ta Bunaakosux ¢as i3 B3aemoxismu tuny Ckipma: KDEO, SLy4, LNS, RAPT
ta T6. MeToro nociipkeHHs: OyJio oTpuMaHHs mapamerpiB cuil CkipMa, 10 HalKpalle ONHCYIOTh eKCIIepUMEHTAIbHI
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BaHHBIX pacueToB B MpubmmKeHnn Xaptpu - Poka u ciydaiinbix (a3 ¢ B3aumozeiicteuem tuna Ckupma: KDEO, SLy4,
LNS, RAPT u T6. Llenbto uccieaoBanus ObUIO MOMy4eHHE MapaMeTpoB cuil CKUpMa, KOTOPbIE HAWITYYIIUM 00pa3oM
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