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Reconstruction of neuronal morphology from images involves mainly the extraction of

neuronal skeleton points. It is an indispensable step in the quantitative analysis of

neurons. Due to the complex morphology of neurons, many widely used tracing methods

have difficulties in accurately acquiring skeleton points near branch points or in structures

with tortuosity. Here, we propose two models to solve these problems. One is based on

an L1-norm minimization model, which can better identify tortuous structure, namely,

a local structure with large curvature skeleton points; the other detects an optimized

branch point by considering the combination patterns of all neurites that link to this

point. We combined these two models to achieve optimized skeleton detection for a

neuron. We validate our models in various datasets including MOST and BigNeuron.

In addition, we demonstrate that our method can optimize the traced skeletons from

large-scale images. These characteristics of our approach indicate that it can reduce

manual editing of traced skeletons and help to accelerate the accurate reconstruction of

neuronal morphology.

Keywords: Lasso-based model, neuronal morphology reconstruction, neuronal image, model optimization,

branch points

INTRODUCTION

Neuron reconstruction is an important technique in many areas of brain research to identify
neuron types, examine neuronal connections, or investigate neuronal circuits. It has therefore been
a focus of neuronal image analysis for years (Meijering, 2010; Lu, 2011; Peng et al., 2015). Neuron
reconstruction is essentially an extraction of connected skeleton points from a brain imaging
dataset (Parekh and Ascoli, 2013; Li et al., 2019). Skeleton points are divided into three classes:
branch points, intermediate points, and terminal points. As a series of advances have been made in
molecule labeling (Luo et al., 2008; Ugolini, 2010; Jefferis and Livet, 2012) and imaging techniques
(Ragan et al., 2012; Silvestri et al., 2012; Gong et al., 2013, 2016; Osten and Margrie, 2013; Liu et al.,
2017), nowadays, nearly the complete morphology of a neuron can be visualized at the cellular
level in a brain imaging dataset. However, automatic generation of accurate skeleton points faces
difficulties, which originate from two typical morphological properties of neurons. One is that the
neuronal morphology includes the tortuous structures, in which the curvature of skeleton points
is large. In addition, the radii and signal intensity vary a lot for neurites near branch points, which
form a complex morphology. These two features are commonly found in neurons but cannot easily
be captured by a parameter model.
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In neuron reconstruction, many methods focus on tracing
neurite segments in challenging cases, i.e., fuzzy or broken
segments in noisy environments. Some best available methods
are listed here, such as graph-based models (Peng et al., 2011;
Turetken et al., 2011; Basu et al., 2013; De et al., 2016),
principle curve models (Bas and Erdogmus, 2011; Li et al.,
2016; Quan et al., 2016), iterative back-tracking (Liu et al.,
2018), optimization models (Zhao et al., 2011; Skibbe et al.,
2018), minimal path approaches (Lee et al., 2012; Yang et al.,
2018), learning structured features (Gu et al., 2017) etc. These
methods can automatically extract skeleton points and branching
points, which drop into three-dimensional tubular region in
neuronal images and construct the geometrical structure of the
neuron. Most of these methods behave well in the reconstruction
of sparsely distributed neurons. A few of methods involve in
identifying individual neurons in the presence of packed neurites
(De et al., 2016; Quan et al., 2016). However, for most of these
methods, the smoothness of a neurite is an important premise
(Skibbe et al., 2018), and the branch point is often handled
after acquiring skeletons of neurites (De et al., 2016; Radojević
et al., 2016). This indicates that the accurate localization of the
positions of intermediate points and branch points in tortuous
neurites has barely been explored. In the reconstruction of
neurons including tortuous structures, some commonly used
methods (Rodriguez et al., 2009; Xiao and Peng, 2013; Quan
et al., 2016) fail to determine the accurate positions of the
skeleton points in some neuronal structures (Figures 1A,B). This
decreases the accuracy of a morphological analysis and leads to
difficulties in making conclusions.

A few methods have been proposed for correcting the
reconstructed skeleton to better reflect real morphology. For
example, Tsai et al. presented an effective model-based method
for identifying optimized branch points (Tsai et al., 2004). In this
study, the skeleton of a neurite is approached as a line in the
least-squares sense and the branch point is refined iteratively as
a point that is nearest to these lines. Vasilkoski et al. (Vasilkoski
and Stepanyants, 2009) built a method for automatically revising
the position of skeleton points including branch and intermediate
points. This method is based on the premise that the skeleton is
smooth and that the optimal path will, therefore, pass through
the high-intensity region in the image. In addition, wavelet
transformation (Dima et al., 2002) was used for detecting the
optimized branch points. De et al. proposed a two-step tracing
approach to address the segment crossovers based on the digraph
matrix-forest theorem, in which identifying the accurate position
of a branch point is an important issue (De et al., 2016).
Radojevi’c et al. developed a fuzzy logic-based system to detect
branch points in 2-dimensional images (Radojević et al., 2016).
Radojevi’c and Meijering further adopted probability hypothesis
filtering to tackle a similar problem in 3-dimensional images
(Radojević and Meijering, 2017). In summary, these methods
are reasonable and effectively optimize morphologies in many
cases. However, the issue of fully considering the presence of
tortuous neurite segments and the complex structures around
branch points persists.

In fact, it is hard to define whether a skeleton is the optimal
one to reflect the real tubular structure, due to lack of standard

definition to describe this optimal skeleton. However, it is feasible
for us to improve the traced skeletons based on comprehensive
consideration of morphological features in tubular structures,
such as its tortuosity, signal intensity, and radii changes around
local branch point. Based on this information, we presented
two optimization models to identify intermediate points and
branch points from the initial skeletons. For the first model,
we analyzed the morphological characteristics of neurites and
found that tortuous elements are sparsely distributed. Here,
the sparsity indicates that no or few skeleton points in a
segment have a large curvature. Inspired by the Lasso method
(Tibshirani, 1996; Tibshirani et al., 2005), we constructed an L1-
norm minimization model (Candes et al., 2008) for detection
of optimized intermediate points. For the second model, we
considered that the real structure of neurites around branch
points can be decomposed into three skeleton pieces. Any two of
these decomposed elements can be combined into a new skeleton
and all skeletons should contain the branch point. This basic
fact inspired our procedure for detection of optimized branch
points from the initial skeleton. Furthermore, taking the initial
reconstructed skeleton of a neuron as input, we integrated these
two models and ran them on the original images. An optimized
skeleton for this single neuron can be achieved. In our model,
the optimized skeleton is a solution to the optimization models
and the points are shifted to regions with local maximums, which
are generally considered as real skeleton points. This mechanism
ensures that the optimized skeleton is closer to real structure,
rather than initial skeleton. We demonstrate the performance
of the presented method by identifying skeletons of neurons
with tortuous structures and complex branch-structures. We also
applied our models to initial skeletons from public datasets with
noisy backgrounds, i.e., the BigNeuron project (Peng et al., 2015).
Furthermore, we demonstrated that our method unifies initial
skeletons derived by different algorithms applied to the same
dataset, thereby reducing the variability in the reconstruction
provided by different algorithms. This may prove very helpful for
the morphological analysis of neurons.

MATERIALS AND METHODS

Detection of the Optimized Skeleton of
Reconstructed Neurons
The neuronal skeleton generated by reconstruction algorithms
may deviate from real neuronal neurites in images, due to the
presence of tortuous neuritis, and the complexity of the branch
structure. These factors will reduce the accuracy of neuronal
morphology quantifications. In this case, we developed two
methods, based on an L1-norm minimization model (Tibshirani
et al., 2005; Candes et al., 2008), for optimized neurite skeleton
generation, and branch point detection. Descriptions of the two
methods are presented in the following two sections.

Detection of the Optimized Neurite
Skeleton
The reconstructed skeleton of a neurite is composed of a
series of sequential points identified by the tracing algorithm
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FIGURE 1 | Initial skeletons as determined by tracing algorithms in NeuroGPS-Tree (red), NeuronStudio (yellow), and APP2 (green) require optimization. (A) A dataset

with a tortuous neurite. The inserts show an enlarged view of the blue squares in (A) and illustrate a sharp direction change of the neurite, which induces difficulties in

detecting the neurite skeleton; (B) The complex branch structure of neurites and the initially calculated corresponding skeletons. Inserts: The enlarged view in

(B) shows neurite structures and skeletons near the branch point in more detail.

(Rodriguez et al., 2009; Peng et al., 2015; Quan et al., 2016). To
detect the optimized neurite skeleton, it is necessary to
accurately identify tortuous structures. Here, our solution
is based on the following premises: tortuous neurite
structures are sparsely distributed and most of the neurite
morphologies remain smooth, analogous to a signal sequence
of zero and non-zero values representing the smooth and
tortuous parts. This is a common situation that can be
handled by a Lasso-based model (Tibshirani, 1996). In
addition, we also considered that a skeleton point should
maintain the maximum image intensity in its neighborhood
region. Based on these considerations, we designed our
Lasso-based detection model of the optimized skeleton,
given by

(p∗2 , p
∗
3 , · · · , p

∗
n−1)

= argmin
p2 ,p3 ,...,pn−1

(

n−1
∑

i=2

g(pi)+

n−1
∑

i=2

λ
∥

∥2pi − pi−1 − pi+1

∥

∥

L1

)

(1)

Here, solving the lasso-based model (Equation 1) is an
iterative process. In this optimization process, we fixed terminal
points p1 and pn and updated point pi between the terminal
points iteratively. The optimized skeleton of the neurite is
represented by a series of points p1, p∗2 , p∗3 , . . . , p∗n−1,
pn. The first term in Equation (1) implements the search
of local intensity maxima for a skeleton point pi (Fashing
and Tomasi, 2005). In the second term, ||2pi-pi−1-pi+1|| is
closely related to the curvature of the point pi. Large value
of ||2pi-pi−1-pi+1|| indicates that the point pi is included in
a local tortuous structure of a neurite. In contrast, a small

value corresponds to pi being in a smooth structure. The
second term implements the sparsity of tortuous structure,
namely, when minimize equation (1), no or few skeleton
points have a large curvature and most of them approach
zeros. The parameter λ in the second term controls the
sparsity of the tortuous structure and high λ value indicating
a strong sparsity. || ||L1 is the L1-norm. The function
g(pi) in this optimization problem (1) (Equation 1) is
given by

g(pi) = −
∑

p∈3i
s(p) exp

(

−
||p− pi||

2
2

2σ 2

)

(2)

Here, the index 3iis the neighborhood region of
the point pi, where pi represents the 3-dimensional
coordinates of this point. When the coordinate elements
of pi are integers, pi is regarded as a voxel. p has
the same definition as pi. s(p) is the intensity at the
voxel p, || ||2 represents the L2-norm, and σ is a
predetermined scalar.

We further modified the Equation (1) into a constrained
optimization problem given by

min
p2 ,p3,··· ,pn−1

n-1
∑

i=2
λ||di||L1 +

n−1
∑

i=2
g(pi)

subject to di = 2pi − pi−1 − pi+1

(3)

The Equation (3) can then be converted into the following
optimization problem with the augmented Lagrangian method
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(Hestenes, 1969; Rockafellar, 1973).

min
r,d,p

L(r, d, p) =

n−1
∑

i=2

λ||di||L1 +

n−1
∑

i=2

g(pi)

+

n−1
∑

i=2

< ri, 2pi − pi−1 − pi+1−di >

+
1

2µ

n−1
∑

i=2

||di − (2pi − pi−1 − pi+1)||
2
2 (4)

The solution of Equation (4) can be effectively obtained by the
split Bregman algorithm (Goldstein and Osher, 2009; Ye and Xie,
2011). The pseudo code that solves Equation (4) is shown in
Table 1. This algorithm solves Equation (4) as follows:

The above procedure was carried out five times to achieve
the optimal solution. The skeletons reconstructed by the tracing
algorithm are used as initial points for solving Equation
(4). Note that the number of iterations is an experimental
parameter. In our analysis, an increase in the number of
iterations did not improve the identification of the optimized
skeleton (data not shown).

Detection of the Optimized Branch Point
The neuronal morphology can be modeled as a tree structure.
When a neurite connects to another, it makes a contact
with one of its terminal ends, which can be regarded as
the branch point. Many tracing algorithms have difficulties in
detecting the optimized branch point when the physical branch
point is surrounded by tortuous neurite structures or when
sudden changes in neurite diameter and signal intensity occur
(Figure 1B). We observed that in the proximity of the branch
point, the sparsity of tortuous structures can still be kept, namely,
no or few skeleton point of a neurite have a large curvature.
In this sense, our model (Equation 1) can effectively identify
this structure. In addition, the neurite branch structure is often
formed by three segments. Any two segments can form a new
neurite skeleton in which the branch point is included. This
means that during the branch point identification, we should
consider all neuronal segments that link to the branch point. To
identify a branch point, we first used, as described in the previous
section, a Lasso-based model to produce the optimized skeleton
of the combined neurite segments. Then we designed a model to

TABLE 1 | Pseudocode for solving Equation (4).

While (terminal condition is not satisfied) do

pk+1 = argmin L(rk ,dk , p) =
n−1
∑

i=2
g(pi )+

n−1
∑

i=2
< ri

k , 2pi − pi−1 − pi+1−dk
i

>

dk+1 = argmin L(rk ,d,pk+1) =
n−1
∑

i=2
λ||di ||L1+

n−1
∑

i=2
< ri

k , 2pk+1
i

− pk+1
i−1

−pk+1
i+1 −d

i
>

+ 1
2µ

n−1
∑

i=2
||d

i
− (2pk+1

i
− pk+1

i−1 − pk+1
i+1 )||22

ri
k+1 = ri

k + (2pk+1
i

− pk+1
i−1 − pk+1

i+1 )−dk+1
i

(i = 2, · · · , n− 1)

end while

optimize the position of the current branch points. The specific
procedure was as follows:

Before detecting the optimized branch point in a
reconstructed neuron, we searched for a branch point and
extracted its related local skeletons, represented by S1 = (p11,
p12,. . . , p1s,. . . , p1n) and S2 = (p21, p22, . . . , p2m), where p1sis
equal to p21 as the branch point. The skeleton S1 contains the
branch point and can be decomposed into two segments S11
= (p11, p12,. . . , p1s) and S12 = (p1s,. . . , p1n). To reduce the
computational costs,m and n were set to 21 and 16, respectively.
These empirical values were used for extracting a local branch
structure that contains the target branch point and its adjacent
neurites. The values selection is based on a rule that the extracted
information is enough to optimize this branch point. In this
sense, large values indicate that unnecessary neurite information
is included and arises the computation time. Small values lead to
insufficient information that reduces the optimization accuracy.
We chose these values based on the real size of branch structures
in general and they are fixed in our algorithm.

The steps for detecting a branch point were the following:

Step (1) Adjust the skeleton S1 with Equation (4), denoted by
S1

∗. Perform a sample operation on S1
∗ to assure that

the Euclidean distance between any two neighboring
resampled points equals 1µm.

Step (2) Convolute the resampled skeleton with a 3D Gaussian
template (sigma= 1.73) and generate an image in which
the signal intensities of all skeleton points are almost the
same and bigger than those of non-skeleton points.

Step (3) Amend the branch point p21 according to the model
Equation (5) in which the information from the
convolution image in Step (2) and the skeleton S2
are used.

Step (4) Use Equation (4) to adjust the S2 skeleton points p22,
p23,. . . ,p2,m−1accordingly, with fixed terminal points p21
and p2m.

Step (5) Repeat Steps (3) and (4) until the position of
p21converges, which is denoted as p∗21.

Step (6) Recombine skeletons S12and S2into a single neurite
skeleton and use S11 as the other neurite. Repeat
Steps (1)–(5) with these values, generating the branch
point p∗∗1s .

Step (7) Repeat Step (6) to generate the branch point p∗∗∗1s for
the recombined skeletons S11and S2 with S12 as the
additional neurite.

The average position of the three determined points p∗21, p
∗∗
1s , and

p∗∗∗1s is regarded as the optimized branch point. In Step (2), we
generated the synthetic data for detecting the optimized branch
point. In this dataset, the signal intensities of all the skeleton
points have the maximum value. This ensures that the branch
point can be located in the skeleton with a high probability. By
contrast, in real images, branch points sometimes have lower
signal intensities than other skeleton points, which lowers their
chance to be identified in an experimental dataset. In addition, in
the synthetic datasets, the signal intensities along the skeleton are
almost the same. This ensures that any position in the skeleton
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can potentially be identified as a branch point with the same
chance when other factors are not considered. Therefore, we used
a synthetic dataset in Step (2) of the procedure for detecting
branch points. Note that, we selected the Gaussian kernel width
(sigma = 1.73) based on the fact that this kernel width should
match with the radius of a neurite, namely, <2.5µm (De Paola
et al., 2006; Loopuijt et al., 2007) in general. In addition, the
optimization position changes slightly in a wide range of sigma
value (Figure S1).

In Step (3), we improved the branch point positioning of the
optimization model according to

min
pbifur

g(pbifur)+ λ(pfx − pbifur)
T(dv2dv2

T + dv3dv3
T)

(pfx − pbifur) (5)

Here, g (pbifur) is calculated based on Equation (2) in the
simulation image that was generated in Step (2). The point pfx
denotes a reference point in the skeleton S2. This point meets
the condition that the distance between pfx and any point in the
skeleton S1 is more than three times the voxel size. The fixed
orientation vector dv1forms an orthonormal coordinate system
with dv2 and dv3. dv1 is calculated as

dv1 =
pv1 − pfx

||pv1 − pfx||
(6)

pv1denotes a point in the skeleton S2 and satisfies the condition
that the distance between this point and pfx is more than three
times the voxel size.

Note that minimizing the first term in Equation (5) ensures
that the branch point is located at the skeleton S1, while
minimizing the second term means that the orientation from
the branch point pbifur to pfx is similar to the orientation
dv1. Additionally, the branch points that need to be optimized
in skeletons S11and S12 in Steps (6, 7) still satisfy the above
description and can be obtained using Equation (5).

Workflow for Optimizing the
Reconstructed Skeleton of a Neuron
The reconstructed skeleton of a neuron can be represented by
a tree structure. In this structure, each skeleton has two ends.
One end has no links. The other end directly links to another
skeleton and is defined as the branch point. Depending on this
tree structure, all branch points in a reconstructed skeleton can
be successfully detected. Based on the detected branch points and
the terminal points, the initial skeleton segment which connects
to them can be detected. Thus, the methods described in the
previous sections can be applied to identify the optimized branch
points and segments and finally determine an optimized skeleton
of a neuron. The workflow is as follows (see Figure 2):

Step (1) Detect all branch points in the reconstructed tree.
Step (2) Amend the branch points as described in the previous

subsection.
Step (3) Adjust the corrected branch points and adapt all

skeleton segments as described in the first subsection of
this method section.

Measuring Morphological Features of a
Neuronal Reconstruction
For measuring the morphological changes before and after
optimizing the traced neurites, we selected two indexes,
neurites length, and local branching angle, and used software
Amira to calculate them (Stalling et al., 2005). When using
“SpatialGraphToLineSet” module in this software, the length
of every neurite segment can be automatically computed and
then the total length can be generated. In the calculation of
a branching angle, we used “3D angle” tool in the measuring
module. One middle point (branching point) is fixed and two
local segments that directly link to the branching point are
manually determined. Both of the local segments have the same
length (10µm). After finishing these settings, we can get the
branching angle.

Generation of Synthetic Datasets
We took the following steps to generate a dataset that includes a
synthetic neurite with tortuous structure.

(1) Generate a binary image: We first generate a three-
dimensional image stack with predetermined sizes. The values of
voxels in this image are set to zero. Then, we select the locations
of two terminal points and a specific intermediate point. We use
a fold line to connect these three points and ensure the curvature
of the selected intermediate point is nonzero. Finally, we find the
voxels that along the fold line and set their intensity values to one.

(2) Generate a synthetic dataset: We use a three-dimensional
Gaussian kernel (kernel width = 1.73) to convolute the binary
image, normalized the convoluted images (maximum value =

255) and add Gaussian white noise into it. The above process
is originated from the model that describes how to collect the
light microscopic images (Agard et al., 1989). Note that, the
curvature of the specific intermediate point has nonzero value
and corresponds to the tortuous structure. By changing the
curvature value of this point, we can generate synthetic neurites
in different tortuous level. We further used these synthetic
datasets to illustrate the concept and effectiveness of the proposed
optimization model, Equation (1) (Figure 3).

RESULTS

We evaluated the performance of our model in detecting the
skeleton of tortuous structures. Synthetic datasets were generated
using the method introduced in section 2.6. We generated
four image stacks that had the same size of 156 × 156 ×

57 voxels but with different noise level. The noise in the
images is controlled by Gaussian white noise (mean value: 0,
standard deviation: 50 or 100). The tortuous level in these image
stacks varies according to the curvature change of the specific
intermediate point. As the angle variation is closely related to
curvature. Here, we used an angle that associated with the
specific intermediate point to quantify the curvature changes.
The angle is achieved between two segments, which are formed
with the previous and consecutive skeleton point of this specific
intermediate point. In the synthetic datasets, 30 and 90 degrees
were set. The initial skeleton was generated by adding random
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FIGURE 2 | Workflow for identification of the optimized neuronal skeleton. (A) Optimizing all branch points in the neuronal skeleton. Detecting the initial branch points

of the skeleton and an area (dashed square) that includes an initial branch point (white dot) is enlarged in (A1); (A1) The procedure for optimizing branch points. Upper

panel: The branch structure (yellow) enlarged from (A). Middle panel: Process of identifying the optimized branch point: The branch structure can be treated as three

segments (purple, red, and green) whose one terminal end directly links to the branch point. For one segment (purple), build an orthonormal coordinate system based

on its direction. With the help of this coordinate system and a reference point (gray dot with white circle), the optimization model Equation (5) is constructed, and the

initial branch point is modified (purple dot, left image). For the other two segments (red and green), a similar model is constructed based on a corresponding

orthonormal coordinate system, and the corresponding branch points are generated (red and green marks in the middle and right image, respectively). Bottom panel:

the optimized branch point (yellow mark) is determined by averaging the positions of the three calculated branch points (purple, green, and red marks); (B) Optimizing

the segments which are composed of intermediate points with fixed branch and terminal points; (B1) Optimization of intermediate points. An enlarged view of a

tortuous neurite in (B) is shown. In this area, some intermediate points (piand pi+1, yellow arrows) deviate from their real positions (upper image). After optimization of

the skeleton, the positions of these points are adjusted (lower image); (C) Optimized skeleton of this neuronal tree.

perturbation on the predetermined fold line in synthetic datasets
(Section Generation of synthetic datasets). We optimized these
initial skeletons and used the optimized results for evaluating
the model.

For an image stack with low-level noise and a 30-degree
direction change (Figure 3A), our model successfully identified
the skeleton of the tortuous structure (Figure 3A, right panel,
green) from the initial skeleton (Figure 3A, left panel, red). In
contrast, the L2 minimization-based method (Vasilkoski and
Stepanyants, 2009) failed under these conditions (Figure 3A,
middle panel, yellow). In fact, the L2minimization-basedmethod
contains a term that describes the sums of square deviations
of adjacent skeleton points. This term helps to keep the
smoothness of the skeleton, with all second-order differences
between adjacent skeleton points being infinitely close to zero.
The L1 minimization-based method only requires the above
situation for most values. So, when a tortuous structure is
detected, the corresponding second-order differences diverge
from zero. The L1 minimization-based method can capture
these non-zeros values due to their sparse property, while the
L2 minimization-based method fails (Figure 3B). This may be
an explanation why our L1 minimization-based method can
identify the skeleton of a tortuous structure. When we decreased
the tortuosity of the structure to a 90-degree direction change,
similar results were achieved (Figures 3C,D). Furthermore,
the L1 minimization-based method established the skeleton
of structures with different tortuosity levels well, even in a
high-noise environment (Figures 3E–H). From these results, we
concluded that our model can detect the optimized skeleton of
neurites with tortuous structure.

We also evaluated the performance of ourmodel in identifying
skeletons in experimental datasets. These datasets included three
image stacks with a size of 101 × 101 × 51 voxels. One dataset
has a large dynamic range of signal intensities (Figure 4A)
and the other two present tortuous neurites (Figures 4B,C).
For these datasets, the initial (blue) and optimized (yellow)
skeletons are shown in Figures 4A–C. Here, the optimized
skeleton refers to the skeleton generated by solving Equation
(4). The initial skeleton was provided by NeuroGPS-Tree (Quan
et al., 2016). Our results indicate that compared to the initial
skeleton, the skeletons determined by our model are closer
to the real skeleton of the neurite. We further illustrated this
point by quantitative analysis. It is well acknowledged that
each point of the real skeleton has the local maximum image
intensity (Wang et al., 2011; Quan et al., 2016). Based on this,
we compared the image intensities along the initial and the
optimized skeleton. Specifically, for each optimized skeleton
point, we searched a point in the initial skeleton that was
nearest to this optimized skeleton point. Our results suggest
that a certain number of optimized points have higher signal
intensity than those of the initial skeleton points (Figures 4D–F).
We also determined statistically significant differences between
the signal intensity values of optimized and initial points using
the Kolmogorov-Smirnov test, on the intensity values shown
in the dashed rectangles of Figures 4D–F. The size of the
rectangle is dependent on the tortuous structure that needs to
be covered. The corresponding images are shown in the inserts
of Figures 4A–C in which neurites exhibit a high dynamical
range and tortuous structures. The statistical results demonstrate
a significant difference between the corrected skeleton and the
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FIGURE 3 | Performance comparison between the L2 minimization-based method and our model to detect the skeleton of tortuous structures in a synthetic dataset.

(A) A dataset polluted with Gaussian white noise (mean: 0, standard deviation: 50) contains a neurite (initial skeleton, red) with a 30-degree direction change. The

skeletons as determined by the L2-minimization and our model are shown in yellow and green in the middle and right panels, respectively. Insert: The tortuous

structure of the neurite and the corresponding skeletons; (B) Distance measured between two adjacent intermediate points on the detected skeletons from both

methods (upper panel: L2 minimization-based method, bottom panel: our model); (C) Initial and detected skeletons acquired using the same methods as in (A) in a

dataset with a weaker 90◦ tortuosity; (D) Distance of adjacent skeleton points in (C) as described in (B); (E) Dataset polluted with Gaussian white noise of a higher

noise level (standard deviation: 100). The neurites have the same structure as in (A), and their initial and detected skeletons are generated in the same way;

(F) Distance of skeleton points in (E) measured according to (B); (G) The dataset with 90-degree tortuosity as shown in (C) but with the same higher noise level

applied to (E); (H) Distance of adjacent skeleton points in (G) calculated as in (B).

initially calculated points (p-values of 0.02, 0.02, and 0.07).
From these test results, we concluded that our model can
generate a corrected skeleton that better reflects reality than the
initial skeleton.

Next, we examined the performance of our model to identify
branch points. We used three image stacks (Gong et al.,

2013) for testing our model. The first dataset illustrated a
branch structure with smooth neurites, in which the initial
branch point (blue dot in Figure 5A) is slightly shifted from
the real position. In the last two datasets, the neurites near
the branch point exhibit a shape change in terms of signal
intensity and segment diameter (Figures 5B,C), and the tortuous
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FIGURE 4 | Performance of our model in optimizing skeletons in experimental datasets. (A) A dataset with a large signal intensity range. The initial and optimized

skeletons are presented in blue and yellow, respectively. Insert: Higher magnification of the dashed square. p-value: Kolmogorov-Smirnov test on the initial and

optimized skeleton intensity values, see dashed rectangle in (D); (B,C) Dataset with tortuous structures in a picture with high and low background noise, respectively.

All other descriptions are similar to (A); (D) Signal intensities of every intermediate point along the initial (blue) and optimized (yellow) skeleton as shown in (A). The

dashed window corresponds to the insert in (A); (E,F) Signal intensity variations of the skeletons shown in (B,C), all other details as in (D).

FIGURE 5 | Identification of optimized branch points by our model. The signal intensity changes in neurites around the branch point in (A), the diameter varies along

neurite segments and the segments form a small angle in (B), and the structure near the branch point is tortuous in (C). Inserts: Higher magnifications of the white

squares. The initial position (blue dots) deviates from the branch point location. The optimized branch points (yellow dots) are the average from three corresponding

branch points (pink dots). The distances between initial and optimized branch points in (A–C) are 1.4, 4.8, and 3.6µm, respectively.

structure in Figure 5B appears more challenging. These image
characteristics may challenge the current tracing algorithms and
the branch points in the initial skeletons (blue dots, inserts of
Figures 5B,C) deviate from their real positions. As described in
the methods section, our model generated three corresponding
branch points (pink dots, inserts of Figures 5A–C) on different
joint segments, thereby suppressing interferences induced by
the characteristics described above. The average of these three
positions determines the optimized branch points (yellow dots,
inserts of Figures 5A–C), which can better reflect the real
branch point positions. These results indicate that our model is
effective for detecting the optimized branch point even under
complex conditions.

We furthermore verified that our model can effectively correct
the skeletons generated by different tracing algorithms. We used
NeuroGPS-Tree (Quan et al., 2016), NeuronStudio (Rodriguez
et al., 2009), and APP2 (Xiao and Peng, 2013) to evaluate
three image stacks. The first image stack contains a tortuous
neurite (Figure 6A), and the other two contain a branch structure
(Figures 6B,C). The initially traced skeletons are displayed in
red, yellow, and green curves, and the initial branch points
are represented by hollow dots. These initial skeletons and
branch points are different, deviate from reality and were
optimized by our model. The optimization results are displayed
with xy perspective view (Figures 6A–C), and with xz and yz
perspective views (Figure S2). From the optimization results,
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FIGURE 6 | Adjusting skeletons of initial reconstructions derived from NeuroGPS-Tree, NeuronStudio, and APP2 using our model. (A) A neurite with a tortuous

structure (gray square). The initial skeletons (red, yellow, and green, NeuroGPS-Tree, NeuronStudio, and APP2, respectively) and the optimized results (purple, our

model) are shown; (B,C) Datasets with a branch structure (gray square), (C) contains additionally tortuous neurites near the branch point. The branch point position is

shown before (hollow dots) and after (solid dots) the optimization by our model; (D) Distance between optimized skeletons generated from different initial

reconstructions of the tortuous structure in (A). Ns: NeuronStudio, GPS-Tree: NeuroGPS-Tree; (E,F) Higher magnifications of the branch points in (B,C). Different

colored spheres indicate the branch point positions determined by our model, derived from each initial skeleton of other tracing algorithms.

we conclude that the initially traced results can be corrected to
almost the same skeletons (purple curves) and branch points
(solid dots).We quantified these properties (Figures 6D–F) by
first evaluating the consistency of the corrected skeletons with
tortuous structures. We resampled the points on the corrected
skeletons from the start point with the same x-coordinates
to ensure that the distance between the x-coordinates of two
adjacent points is 1µm. We took 51 resampled points on
each of these three skeleton points. As two adjacent resampled
points form a segment, we then separately calculated the
distance between the matched-pair segments (Lee et al., 2007).
A segment on the skeleton and its nearest segment on the
other skeleton were defined as a matched-pair segment. The
small distances between these matched-pair segments indicate
consistency among the corrected skeletons. The quantified results
(Figure 6D) also indicate that these corrected skeleton points
have similar locations. Similarly, the average distance between
any two optimized branch points (red, yellow, and green
solid dots in Figures 6B,C) is presented in Figures 6E,F. The
two distance values for Figures 6B,C are 1.06 and 1.35µm,
respectively, vs. 1.74 and 5.23µm for the initial branch points.
These results show that our model can be applied to other tracing

methods and creates a consistent skeleton independent of the
initially provided parameters.

In addition to the dataset collected with Micro-optical
Sectioning Tomography system, i.e., MOST dataset (Gong et al.,
2013), our detection method can be applied to other datasets
like those from the BigNeuron project. Two typical datasets
were selected for this purpose. One dataset includes a pyramidal
neuron with an abundance of neurites. Some of these neurites
have low signal intensities and are severely masked by noise.
The other dataset includes a neuron surrounded by noisy points,
especially around the soma area. We reconstructed these two
neurons with NeuroGPS-Tree and revised the skeletons with our
model. The initial and optimized skeletons seem to be similar
(Figures 7A,B, right panels) in most regions. However, the initial
tracing failed in a few branch structures with small angles
(Figures 7C,D) and the optimized skeleton is superior in locating
these branch points. These results indicate that our model
can accurately detect skeleton points when a region presents a
complex branch structure in a noisy background. We also noted
that our model is efficient in terms of computation time. The
optimized skeletons for these two neurons in Figures 7A,B were
detected in about 202 and 55 s, respectively. The two tests were
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FIGURE 7 | Optimizing neuronal trees from the BigNeuron project with our model. (A,B) Left panel: Original data [checked6_mouse_tufts,

(A); checked_mouse_korea, (B)] from the BigNeuron project. Right panel: Reconstructions before (blue) and after (yellow) optimization. We shifted the optimized

reconstruction from the initial one for a clear demonstration; (C,D) enlarged views of (A,B), respectively. Location of branch points before (blue dot) and after (yellow

dot) optimization. Distances between blue and yellow dots are 3.2 and 2.1µm.

TABLE 2 | Measurements on initial and optimized reconstructions in Figures 4, 5,

and 7.

Data id

(source)

Total

length*

(µm)

Total

length**

(µm)

Local

branch

angle* (◦)

Local branch

angle** (◦)

1 (Figure 4A) 258 252 N/A N/A

2 (Figure 4B) 138 135 N/A N/A

3 (Figure 4C) 184 168 N/A N/A

3 (Figure 5B) 1,035 1,030 49 43

4 (Figure 5C) 276 270 70 71

5 (Figure 7A) 13,611 13,861 41 43

6 (Figure 7B) 18,847 18,818 42 46

*Initial reconstruction; **Optimized reconstruction; N/A: Not available.

carried out on a computer workstation (Intel R© Xeon R© CPU
3.46 GHz computing platform, Quadro K4000 3G GPU, 192 GB
RAM,Windows 7). The data size is 1455× 1455× 500 voxels for
Figure 7A and 2715× 4011× 141 voxels for Figure 7B.

Neurites lengths and branching angles of neurons are
important morphological features. We used these two features
to measure the traced neurites (Figures 4–7). The detailed
operation is described in Section Measuring morphological
features of a neuronal reconstruction and their related
morphometric measurements can be found in Tables 2, 3.
Note that, the datasets in Figure 5A are the same one tested
in Figure 6B. Thus, we only listed their measurements in
Table 3 to avoid redundant information. The results in Table 2

suggest that our optimization method can yield about 10%

change in branching angle and increase more than 200µm
when measuring total length of traced neurites in Figure 7A.
In addition, when using NeuroGPS-Tree, NeuronStudio and
APP2 to reconstruct the same neurites, the reconstructions in
general are different. In this case, our optimization method can
make these different reconstructions consistent, as indicated in
Table 3. The results show that our optimization method achieves
almost the same length (data 1 in Table 3) and local branch angle
(data 2–3 inTable 3) from different initial reconstructions, which
are consistent with the conclusion drawn from the quantitative
results in Figures 6D–F.

Correcting the initial skeleton in large-scale images is a
difficult task. Our identification method has been integrated into
our tool, Global Tree reconstruction system — GTree (https://
www.biorxiv.org/content/early/2018/01/02/223834), and can
correct a large-scale traced skeleton. To verify this point, we
used a dataset that contains 4295 × 7401 × 1625 voxels (voxel
size, 0.3 × 0.3 × 1 µm3; Figure 8A). The original voxels were
merged into the new voxels with a size of 0.6 × 0.6 × 1 µm3 in
our analysis, which helps to weaken the anisotropic property of
the dataset. This merged voxel size drops into the range from 0.5
× 0.5 × 0.5 µm3 to 2 × 2 × 2 µm3, which GTree recommends.
There are a certain number of complex structures around branch
points and tortuous neurites in this large-scale dataset. We
selected 11 locations (blue blocks) where the initial skeleton
obviously deviates from the neurite centerlines. Our model
can successfully correct these initial skeletons, and a typical
example is shown in Figure 8B (white arrow). Additionally,
red blocks in Figure 8A indicate areas in which the branch
point needs to be adjusted. These initial branch points were
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TABLE 3 | Measurements on initial reconstructions from NeuroGPS-Tree (Tree), NeuronStudio (Ns) and APP2, and their optimized reconstructions in Figure 6.

Data id (source) Total length*(µm) Total length** (µm) Local branch angle* (◦) Local branch angle** (◦)

Tree Ns APP2 Tree Ns APP2 Tree Ns APP2 Tree Ns APP2

1 (Figure 6A) 72 71 66 67 67 68 N/A N/A

2 (Figure 6B) 276 273 246 270 265 249 56 59 69 63 62 63

3 (Figure 6C) 318 309 311 309 305 309 122 127 96 114 112 108

*Initial reconstruction; **Optimized reconstruction; N/A: Not available.

FIGURE 8 | Optimization of a reconstructed skeleton in a large-scale dataset. (A) In the initial skeleton (yellow) provided by GTree, 11 locations with tortuous

structures (blue blocks) and seven locations with complex branch structures (red blocks) are highlighted. Two typical examples are shown in (B,C) as indicated;

(B,C) A tortuous neurite and a complex branch structure, with the initial (blue) and optimized (yellow) skeletons; Inserts: Higher magnifications of the white squares.

revised by our model, and an example is presented in Figure 8C

(blue and yellow dots). These results demonstrate that our
model can be automatically applied to initial skeletons of axonal
datasets, which will help to minimize the manual revision of
large-scale skeletons.

DISCUSSION

At present, many tracing algorithms (Rodriguez et al., 2009; Xiao
and Peng, 2013; Quan et al., 2016) have difficulties detecting
branch points or intermediate points. This is mainly caused
by three issues. The first issue is that a number of methods
adapt a simple way to detect branch points around complex
branch structures. The detection procedure can be summarized
as follows: First, trace a neurite, estimate, and label its shape;
second, trace another neurite, and stop tracing when the current
tracing point connects to the labeled region or is classified as
a background point. Third, after the tracing steps, detect the
traced skeleton point that is nearest to the current tracing point,
which can be regarded as the branch point. This procedure
indicates that an effective detection of a branch point requires
the accurate tracing of branch structures and neurite shapes,

which is a challenging problem. The second issue causing
difficulties for tracing algorithms is that many algorithms (Bas
and Erdogmus, 2011; Xiao and Peng, 2013; Li et al., 2016;
Quan et al., 2016; Skibbe et al., 2018) neglect the tortuous
structure of neurites or even introduce a penalty term to
generate a smooth skeleton (Vasilkoski and Stepanyants, 2009).
Thirdly, designing a neuron tracing algorithm is a complicated
problem. In this case, considering too much situations will
increase the algorithm complexity and reduce its robustness.
Thus, in the initial skeleton provided by a variety of tracing
algorithms, intermediate or branch points commonly deviate
from their real positions. A feasible way to overcome these
restrictions may as follows. Tracing algorithms provide the
initial reconstructions and then these initial reconstructions
are corrected automatically. Our method was motivated by
the requirement to develop a better approach to automatically
optimize the traced neuronal skeletons.

Although the majority of neurites exhibit a smooth structure,
tortuous segments exist and are sparsely distributed along
neurites. These morphological characteristics prevent existing
tracing algorithms from depicting neurite structures correctly,
especially in tortuous regions. In essence, a tortuous structure in
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a mainly smooth neurite can be described as a situation where
non-zeros exist in a null sequence. This situation is closely related
to the case that a Lasso-based model (Tibshirani et al., 2005)
can well handle. Thus, we considered the L1-norm function
as a penalty term in our model. Note that employing the L2-
norm function in the identificationmodel can accurately describe
the smoothness of neurites, but will lead to failures in the
identification of the skeleton in tortuous segments (see Figure 3).

Besides the tortuous structures in neurites, the complex
branch structure also challenges the existing algorithms for
achieving a faithful reconstruction result. Difficulties originate
from multiple aspects such as tortuous structures, sharp changes
in signal intensity, and different neurite diameters in the
proximity of a branch point. Existing parameter models have
difficulties in describing these various characteristics and thus fail
to detect the branch points in some cases. Instead of constructing
a parameter model, we designed an optimization problem for
detecting a branch point, which is based on the following facts:
A branch point locates where two neurite segments connect with
each other; it can also be considered as the terminal end of one
of these neurites. Because of this structure, all the influences, i.e.,
signal intensity and radius scale variations, from direct-connect
segments should be considered. In our optimization model, we
used simulation data instead of real datasets to eliminate the
influence to some extent. Furthermore, we achieved an average
branch point position by iteratively running the model, which
will provide a more robust result.

The real skeleton of a tubular structure generally refers to its
centerline. With automatic algorithms or even manual edit, it is
impossible to completely obtain the real skeleton of a tubular
structure. This is because no standard definition is available to
characterize the real skeleton in images of tubular structures.
Similarly, it is also hard to define the optimal skeleton of a
tubular structure. In our model, the optimized skeleton refers
to a solution to the designed optimization problems in which
the centerline points are shifted to depict the actual neurite
morphology while their signal intensities aremaintained at a local
maximum, as far as possible. Thus, the optimized skeleton is
usually closer to the real skeleton, compared to the initial skeleton
provided by other algorithms. Based on these assumptions, the
initial skeletons acquired from different tracing algorithms can
be optimized and lead to similar results in our model (Figure 6).
This indicates that our detectionmethod is compatible with other
tracing algorithms, provides consistent results, and benefits the
following analysis.

It is worth noting that our optimization model has been
limited by some cases. Our model focuses on optimizing the
position of the bifurcation point at present. For a multifurcation
point, considering that it exists in few cases, our model has no
special design to obtain its optimized position. In this case, a
multifurcation can be divided into two or more bifurcations, and
we can optimize the positions of these bifurcations to correct the
position of this multifurcation point. However, the optimization
accuracy will decrease because bifurcations interference with
each other. In addition, the goal of our model is optimizing the
skeleton of a neuron, and the skeleton data generated by the
tracing methods is used as the input. The input skeleton data

is required to be manually checked when high precision tracing
results cannot be generated. This is because the errors in the input
dataset like spurious links between traced neurites can decrease
the performance of our model. Finally, our model used the signal
in the neighboring region of traced neuron skeleton for the traced
skeleton optimization.When neurons are densely distributed, the
neighboring region usually contains morphological information
from other neurons and this situation will negatively influence
the optimization results. In the future, we will aim at this case
and eliminate the interferential morphological information by
segmenting and identifying the shape of the target neuron.
Namely, our method will combine with the reconstructed shape
for generating more accurately traced neuron skeleton.

In conclusion, we propose two models for optimizing
the positions of intermediate points and branch points
derived from an initial skeleton. These two models are based
on the characteristics of neuronal morphology. Our results
show that our method is effective when applied to various
datasets including the MOST and BigNeuron datasets. The
successful application of our method under different conditions
demonstrates that it can generate a reconstructed skeleton that
reflects reality better and will, therefore, have a positive impact
on subsequent research.
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Figure S1 | The distance between optimized and initial branch point as a

function of square of sigma. Here, sigma refers to the Gaussian kernel width.

Figure S2 | y-z and x-z perspective view displays of the reconstructions and

original image stacks in Figure 6. (A1,A2) display the original image and

reconstructions in Figure 6A from y-z and x-z views, respectively. The initial

reconstructions from three tracing methods (red, yellow, and green,

NeuroGPS-Tree, NeuronStudio and APP2, respectively) and their optimized

reconstructions (purple, our model) are shown; (B1,B2) and (C1,C2) are the same

image stacks shown in Figure 6B,C, respectively. The colors of these

reconstructions depict the same meaning in (A1,A2). The positions of the

optimized branch point (solid dots) are given.
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