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Phosphoesterases hydrolyze the phosphorus oxygen bond of phosphomono-, di- or

triesters and are involved in various important biological processes. Carboxylate and/or

hydroxido-bridged dizinc(II) sites are a widespread structural motif in this enzyme class.

Much effort has been invested to unravel the mechanistic features that provide the

enormous rate accelerations observed for enzymatic phosphate ester hydrolysis and

much has been learned by using simple low-molecular-weight model systems for

the biological dizinc(II) sites. This review summarizes the knowledge and mechanistic

understanding of phosphoesterases that has been gained from biomimetic dizinc(II)

complexes, showing the power as well as the limitations of model studies.
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INTRODUCTION

The hydrolytic cleavage of phosphate esters is an important biochemical reaction in living systems,
playing a fundamental role in energy metabolism (Berg et al., 2010), DNA repair (Cowan, 1998),
RNA splicing (Kuimelis and McLaughlin, 1998), and signaling (Berg et al., 2010). It is relevant
to the breaking down of bone material by osteoclasts (bone resorbing cells) in mammals and
to the absorption and mobilization of phosphorus in plants (Cashikar et al., 1997; Oddie et al.,
2000; Cleland and Hengge, 2006; Mitić et al., 2006; Schenk et al., 2013; Daumann et al., 2014). In
certain bacteria phosphotriesterases have evolved that can hydrolyze organophosphates including
insecticides and chemical warfare agents (Donarski et al., 1989; Dumas et al., 1990).

Under physiological conditions, phosphate esters are highly resistant toward hydrolysis (Cleland
and Hengge, 2006). The half-life of a phosphodiester bond in the backbone of DNA has been
estimated to be on the order of hundreds to thousands of millions of years (Williams et al., 1999;
Schroeder et al., 2006). Yet DNAses can cleave DNA within seconds to minutes (Cowan, 1998).
The majority of enzymes that catalyze phosphate ester hydrolysis contain two or more metal ions
in their active site. Zn2+, which is a strong Lewis acid, labile and not redox active, is ideally
suited for biological hydrolysis reactions. The use of metal complexes that mimic the structure and
function of a metalloenzyme is a well-established approach in bioinorganic chemistry to develop
highly effective catalysts modeled after nature and to gain a molecular level understanding of the
enzymatic mechanism. In the late 1970s and 1980s pioneering work by the groups of Sargeson
(Anderson et al., 1977; Jones et al., 1983; Hendry and Sargeson, 1989), Breslow (Gellman et al.,
1986; Breslow et al., 1989), and Chin (Chin, 1991) among others gave the first insight into the
role of the metal ion(s) in the mechanisms of phosphoester hydrolysis by metallohydrolases.
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Using phosphate esters with good leaving groups and kinetically
inertmononuclear Co(III) complexes, metal-catalyzed hydrolysis
reactions were shown to proceed through the following
mechanisms: (i) Lewis acid activation, in which the metal
polarizes the P-O bond and activates the phosphorus for
nucleophilic attack (Figure 1A); (ii) metal hydroxide activation,
in which the metal generates (metal-bound) hydroxide to
act as an efficient nucleophile at pH 7 or as a general
base (Figures 1B,C); (iii) stabilization of the leaving group
(Figure 1D); and (iv) combinations of (i), (ii), and (iii).
Mechanistic information was obtained through detailed kinetic
studies including the measurement of rate-pH profiles and
kinetic isotope effects. The rate accelerations achieved by the
different activation modes could be quantified (Williams et al.,
1999). Kimura and coworkers used macrocyclic dinuclear Zn(II)
complexes to study the relationship between the number and type
of donor atoms and the catalytic efficiency (Koike and Kimura,
1991). Later, the work was extended to dinuclear complexes
that model the cooperativity of the metal ions in bimetallic
hydrolases and to metal complexes, with pendant functional
groups to mimic secondary interactions between the substrate
and amino acid side chains in the active site of metalloenzymes
(Young and Chin, 1995; Kimura, 2000; Daumann et al., 2014).
A lot of what has been learned through the early studies has
informed the rational design of highly efficient catalysts, often
with non-biological metals such as lanthanides (Franklin, 2001;
Liu and Wang, 2009). Metal complex-based hydrolysis catalysts
have been discussed in several excellent review articles (Franklin,
2001; Mancin and Tecilla, 2007; Liu and Wang, 2009; Desbouis
et al., 2012; Yu and Cowan, 2018).

The increasing role of computational chemistry has
led to a renewed interest in mechanistic questions and a
significant number of theoretical and combined theoretical
and experimental studies have been published that investigated
the mechanistic pathways in detail. This review intends to
give a concise account of the contribution of experimental
and computational studies of dinuclear biomimetic zinc(II)
complexes to our current understanding of the mechanistic
details of enzymatic phosphate ester hydrolysis with a focus on
the recent literature.

PHOSPHOMONOESTER HYDROLYSIS

The half-life for the spontaneous hydrolysis of dianionic
phosphomonoesters, ROP(O)2−3 ,

ROP(O)2−3 +H2O → HPO2−
4 + ROH

is on the order of 1012 years at ambient temperature (Lad
et al., 2002). In principle the reaction can proceed through
different mechanisms; a dissociative mechanism involving a PO−

3
intermediate (DN + AN), an associative mechanism with a five-
coordinate phosphorane intermediate (AN + DN) or a concerted
mechanism (ANDN) with an associative or dissociative transition
state depending on the synchronicity of bond formation and
departure of the leaving group.

In nature, the hydrolysis of phosphomonoesters is catalyzed
by phosphomonoesterases such as alkaline phosphatase, purple
acid phosphatase or inositol monophosphatase. The active site
of alkaline phosphatase from E. coli contains two Zn2+ ions
and a Mg2+ ion (Le Du et al., 2002). One of the phosphoryl
oxygens is coordinated by the two Zn2+ ions, which also bind
the nucleophile, a deprotonated serine, and the leaving group,
respectively (Figure 2A). Experimental and theoretical data agree
with a dissociative mechanism (Zalatan et al., 2007; López-Canut
et al., 2009). Probably the best studied phosphomonoesterases
are purple acid phosphatases (PAPs). PAPs are non-specific
hydrolases that cleave a variety of phosphate esters and
anhydrides at acidic pH. They contain a heterodinuclear Fe(III)-
M(II) site and their characteristic purple color is due to a
tyrosinate-to-Fe(III) ligand-to-metal charge transfer at about
560 nm (Mitić et al., 2006). The active site of red kidney bean PAP
in which the divalent metal ion is Zn(II) (Sträter et al., 1995) is
shown in Figure 2B. Although the sequence homology between
PAPs from different sources is low, the seven amino acids that
constitute the primary coordination sphere of the Fe(III)-M(II)
core are conserved in all PAPs. The mechanism proposed by
Klabunde et al. involves the monodentate coordination of the
phosphate ester to the divalentmetal ion followed by nucleophilic
attack by Fe(III)-bound hydroxide (Klabunde et al., 1996). The
strong Lewis acidity of Fe(III) allows the formation of Fe(III)-
OH at acidic pH. For sweet potato PAP an alternative mechanism
with bridging phosphate ester coordination and nucleophilic
attack by a µ-(hydr)oxide was suggested (Schenk et al., 2005).
Ga(III) can replace Fe(III) in the active site and studies indicated
that PAPs can switch between the two mechanisms depending
on the metal ion composition/availability/solubility, the second
coordination sphere, the actual substrate, and the pH value
(“one enzyme–two mechanisms” hypothesis; Mitić et al., 2006;
Smith et al., 2007). While a bridging oxide would be an efficient
nucleophile, the nucleophilicity of a hydroxide that is tightly
bound to two metals should be rather low. It was therefore
suggested that the bridging hydroxide in hydrolytic enzymes
shifts to a (pseudo-)terminal position on binding of the substrate
(Bennett and Holz, 1997; Wang et al., 1999). Computational
evidence for such a µ-OH shift was seen in model systems for
phosphodiesterases and will be discussed in the next section.

In contrast to the large number of studies on the catalysis
of phosphodiester hydrolysis, the cleavage mechanism of
phosphomonoesters by biomimetic zinc(II) complexes is little
investigated (Anbu et al., 2012; Zhang et al., 2014a,c; Sanyal
et al., 2015). In recent years, various studies have been aimed
at elucidating the role of the heterodimetallic Fe(III)-Zn(II)
site in PAP. However, the substrate employed is generally the
phosphodiester bis (2,4-dinitrophenyl) phosphate (BDNPP), a
widely used model for the phosphodiester linkages in DNA.
Heterodinuclear Fe(III)-Zn(II) biomimetics that mostly do not
showmonophosphatase activity will therefore be discussed in the
section on phosphodiester hydrolysis.

Phosphomonoester hydrolysis by dizinc(II) complexes is
usually studied using 4-nitrophenyl phosphate as an ester
with a good leaving group (NPP, Figure 3). The mechanism of
the hydrolysis of the NPP2− dianion is generally believed
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FIGURE 1 | Activation modes and rate accelerations for metal-catalyzed phosphate ester hydrolysis. (A) Lewis acid activation. (B) Nucleophile activation. (C) Base

catalysis. (D) Leaving group stabilization.

FIGURE 2 | Active site and mechanism(s) of (A) E. coli alkaline phosphatase and (B) red kidney bean PAP. The image of the dizinc(II) site complex with phosphate in

(A) was created with the PDB 1KHL and associated publication (Le Du et al., 2002). The image of the active site complex with phosphate in (B) was created with the

PDB 4KBP and associated publication (Klabunde et al., 1996). NGL Viewer (Rose et al., 2018) and RCSB PDB.

to be concerted with a loose transition state, while for
phosphomonoester monoanions a dissociative mechanism
involving metaphosphate as the intermediate has not been ruled
out (Cleland and Hengge, 2006; Klähn et al., 2006; Kamerlin
and Wilkie, 2007; Zhang et al., 2014a,c; Sanyal et al., 2015). The
dianion is less reactive than the monoanion due to the higher
negative charge of the transition state.

Kandaswamy and coworkers synthesized dizinc(II)
complexes with a series of dinucleating, oxyimine-based
macrocyclic ligands (Anbu et al., 2012, Figure 3). The dizinc
complex of the symmetric ligand H2L1

a that had the shortest

Zn(II)...Zn(II) distance and the least distorted geometry
hydrolyzed monoanionic NPP− with a higher kcat value than
did the analogous complexes of unsymmetric H2L1

b−f . The
reaction kinetics showed a change in the reaction order at
higher complex concentrations. Zhao and coworkers carried out
DFT calculations to investigate the reaction mechanism (Zhang
et al., 2014a,c). Different competitive catalytic mechanisms were
found, depending on the concentration of the complex. At
high concentrations two dinuclear entities form a hydroxido-
bridged dimer that binds NPP− to give the catalyst-substrate
complex. Substrate coordination to two dizinc(II) entities
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FIGURE 3 | Substrate (NPP) and ligands in dinuclear Zn(II) complexes used to

study phosphomonoester hydrolysis.

is also favored in the medium concentration range. More
relevant to the enzymatic reaction, at low concentrations
NPP− binds in a monodentate fashion to the catalytic species
trans-[Zn2L1a(H2O)(OH)]+ followed by nucleophilic attack by
Zn-OH to give a distorted trigonal bipyramidal phosphorane
transition state (Figure 4). Substrate binding is stabilized by
hydrogen bonding between the P-OH proton and Zn-OH.
Cleavage of the P-O bond to the leaving group and protonation
of the leaving group oxygen occur concurrently. In the case of
unsymmetrical trans-[Zn2L1f (H2O)(OH)]+ hydrogen bonding
between Zn-OH and P=O and between P-OH and Zn-OH exists
in the catalyst-substrate complex (Zhang et al., 2014c). Again,
the theoretical calculations indicated a concerted mechanism
involving simultaneous bond formation to the nucleophile and
breaking of the bond to the leaving group in the transition state.
The P-OH proton forms a H-bond with the leaving group oxygen
in the transition state and proton transfer and P-O bond cleavage
are simultaneous. Modeling of a transition state with one
phosphoryl atom coordinated to both Zn(II) centers of ZnL1f

and one Zn(II) additionally binding to the leaving group oxygen
demonstrated that metal-induced leaving group activation is less
favorable than proton transfer-assisted leaving group departure.
In the calculated mechanisms NPP− binds to the Zn(II) in the
imine site, while the Zn(II) in the oxyimine site provides the
nucleophile. The authors argued that the more electronegative
oxygen atoms next to the imine nitrogens strengthen the Zn-N
bonds and weaken the bond to the nucleophile. However,
the X-ray structure of [Zn2L1c(H2O)2](ClO4).23H2O revealed
no significant differences in the Zn-N and Zn-OH2 bond
lengths between both binding sites. Furthermore, other studies

led to the opposite conclusion that electron-withdrawing
substituents result in a stronger M-OH bond and thus decrease
the nucleophilicity of metal-bound hydroxide by increasing the
Lewis acidity of the metal ion (Coleman et al., 2010).

In the 2:2 complexes [Zn2L22X2] (X = Cl, Br, I) two
Zn(II)L2 entities are linked through two phenoxide bridges. X-
ray analysis revealed the expected trans orientation of the two
halides and Zn(II)...Zn(II) distances around 3.1 Å, i.e., close
to the metal-metal distance in zinc hydrolases (Sanyal et al.,
2015). The phosphatase activity toward NPP2− was studied in
aqueous DMF, although it is not clear if the dinuclear structure
is retained in solution. Theoretical calculations were described
in the same paper and suggested that the D-cis form of the
dinuclear complex is slightly more catalytically favorable than
the D-trans form. In contrast to the macrocyclic complexes, a
concerted reaction mechanism involving bidentate coordination
of the phosphomonoester to both Zn(II) was found to be most
favorable. One of the phenoxide bridges is replaced with a
hydroxide so that Zn retains the more stable five-coordinate
geometry. This bridging hydroxide serves as the nucleophile as
proposed for sweet potato PAP (Figure 2B).

PHOSPHODIESTER HYDROLYSIS

Hydrolysis of DNA Model Substrates
It is assumed that the uncatalyzed hydrolysis of phosphodiesters
proceeds via a concerted mechanism with a loose transition
state (Hengge, 2002). An example for a Zn(II) containing
phosphodiesterase is P1 nuclease that cleaves single-stranded
RNA and DNA into mononucleotides. P1 nuclease has
a trimetallic active site; Zn3 binds to the phosphodiester
group, while a hydroxide that bridges Zn1 and Zn2 at a
distance of 3.2 Å is believed to act as the nucleophile
(Volbeda et al., 1991; Figure 5).

Many phosphodiesterase mimics have been designed with
bridging acetate ligands and it is generally assumed that these
are substituted by terminal and/or bridging hydroxide ligands in
aqueous solution. It has also been shown that phosphodiesters
can readily replace carboxylate ligands in dizinc(II) complexes
(Daumann et al., 2013). The most popular models for the
phosphodiester linkages in DNA are bis(2,4-dinitrophenyl)
phosphate, BDNPP, and bis(4-nitrophenyl) phosphate, BNPP,
(Figure 6) that are usually converted to 2,4-dinitrophenyl
phosphate and 4-nitrophenyl phosphate without further
hydrolysis of the respective monoester taking place.

Based on kinetic data, X-ray analysis of the complex
cocrystallized with a phosphodiester and binding studies, the
following mechanisms have been assigned to dinuclear zinc(II)
catalysts; (i) monodentate coordination of the phosphodiester
to one Zn(II) and nucleophilic attack by OH bound to the
other Zn(II) (Bazzicalupi et al., 2004; Jarenmark et al., 2010;
Pathak et al., 2018) or to the same Zn(II) (Massoud et al., 2016);
(ii) nucleophilic attack by Zn-OH on the bridging substrate
(Bazzicalupi et al., 1997, 2004; Daumann et al., 2012, 2013; Brown
et al., 2016) and (iii) nucleophilic attack of the bridging substrate
by a bridging hydroxide (Das et al., 2014, 2018; Montagner et al.,
2014; Daver et al., 2016). As discussed above, a shift of µ-OH to a
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FIGURE 4 | Catalytic species and proposed mechanism for NPP− hydrolysis by the dizinc(II) complex of H2L1
a.

FIGURE 5 | (A) Active site of nuclease from Aspergillus oryzae with a coordinated phosphate. (B) Mechanism of phosphodiester hydrolysis catalyzed by P1 nuclease.

The image in (A) was created with the PDB 5FBA and associated publication (Koval et al., 2016). NGL Viewer (Rose et al., 2018) and RCSB PDB.

terminal position in mechanism (iii) would render the attacking
hydroxide a better nucleophile. Das et al. carried out DFT
calculations on the hydrolysis of BDNPP by the unsymmetric
dinuclear Zn(II) complex [Zn2L3(µ-OH)]+ (Figure 7) which
indicated that in the first step the phosphodiester binds to

Zn1 in the N3O2 site followed by a concerted step with a
transition state in which µ-OH is shifted toward Zn1 and
the substrate adopts a bridging coordination mode (Das et al.,
2014). DFT studies on the dizinc(II) complex of an analogous
N5O2 ligand containing two 1-methylimidazole moieties (Das
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FIGURE 6 | Chemical structures of the DNA models BDNPP and BNPP.

et al., 2018) and on the related unsymmetric dizinc(II) complex
[Zn2L4(µ-OH)(OH)] found the same mechanism (Daver et al.,
2016). By contrast, DFT calculations of the hydrolysis of
BNPP by trans-[Zn2(L1a)(H2O)(OH)]+ suggested a stepwise
mechanism involving nucleophilic attack by a terminally
Zn-bound hydroxide and formation of the phosphorane
intermediate as the rate-determining step (Zhang et al., 2014b).
In the calculated mechanism bridging substrate binding also
takes place in a stepwise manner with the phosphodiester binding
initially via one phosphoryl oxygen to one Zn(II), followed
by the formation of a second coordination bond between the
nucleophile-binding Zn(II) and the other phosphoryl oxygen.
This pathway appears to be favored over a concerted mechanism
and over bridging OH acting as the nucleophile. It was noted that
the macrocyclic ligand provides a rigid coordination sphere for
the dizinc(II) site and imposes a relatively fixed Zn(II)...Zn(II)
distance of 3.047 Å, close to the distance between the two
phosphoryl oxygens in a phosphodiester (ca. 2.7 Å), which of
course should affect the preferred mechanistic pathway.

The ability to provide a (metal-bound) hydroxide
at physiological pH value is obviously a key feature
of metallophosphatases—or in fact of any hydrolytic
metalloenzyme. Binding to two Zn2+ ions in dinuclear model
systems can decrease the pKa of the Zn-bound water to below 8;
however, as discussed above, a bridging coordination mode of
the hydroxide is detrimental to its nucleophilicity. Meyer and
coworkers developed a class of highly preorganized pyrazolate-
based dizinc(II) complexes that allowed the systematic variation
of the Zn(II)...Zn(II) distance (Bauer-Siebenlist et al., 2005;
Meyer, 2006). By choosing the appropriate side arms, a large
Zn(II)...Zn(II) separation could be enforced that accommodated
a Zn-(H)O...HO(H)-Zn motif in which a Zn-bound hydroxide
is held by strong hydrogen bonding in an intramolecular O2H3

bridge (Figure 8). It was shown that the formation of the
Zn-(H)O...HO(H)-Zn unit brings about a similar decrease in
the pKa of Zn-OH2 to around the physiological pH as does the
formation of the tightly bridged Zn-(µ-OH2)-Zn motif.

Another question addressed in model studies concerns the
role of Zn-alkoxide. In some metallohydrolases, alcohol moieties
are involved in the enzymatic mechanism (Weston, 2005). An

example is alkaline phosphatase, whose two Zn2+ ions bind a
phosphate ester in a bridgingmode which is then nucleophilically
attacked by a serine alcoholate. In the next step the P-O
bond of the phosphorylated serine intermediate is cleaved
following nucleophilic attack by a Zn-bound hydroxide. Alkaline
phosphatase catalyzes the hydrolysis of phosphomonoesters
under basic conditions. However, model studies were carried
out with BDNPP and are therefore discussed in this section.
For mononuclear Zn(II) complexes it has been shown that a
coordinated alcohol is a better nucleophile than a coordinated
water (Koike et al., 1995; Xia et al., 2003; Livieri et al., 2004).
On this basis, Chen et al. proposed a mechanism involving
nucleophilic attack by a Zn-bound alcoholate for the reaction
of [Zn2HL5]2+, with BNPP giving a “transition complex” with
the transesterification product covalently attached to the catalyst
(Chen et al., 2005). However, the regeneration of the active site
remained an open question. Daumann et al. studied the reaction
in a H16

2 O/H18
2 O/acetonitrile mixture (Daumann et al., 2012).

The observation that 18O was incorporated into the hydrolysis
product demonstrated the participation of a Zn-OH nucleophile
and a reaction pathway analogous to that of alkaline phosphatase
seems possible (Figure 9A). The dinucleating macrocycle HL6

containing an alcohol pendant was designed by Bazzicalupi et al.
to model alkaline phosphatase (Bazzicalupi et al., 1999). The
dizinc(II) complex contains a Zn-OR and a Zn-OH function
and on the basis of 31P NMR data and the characterization
of the isolated BNPP cleavage product sequential nucelophilic
attack by Zn-OR and Zn-OH was proposed (Figure 9B). The
complex proved to have a higher reactivity than the parent
complex lacking the pendant alcohol group, consistent with Zn-
OR presenting the better nucleophile. In contrast to the proposed
mechanism for [Zn2HL5]2+, the P-O bond to 4-nitrophenolate
is cleaved in the second step which is more in line with its better
leaving group property compared to that of the ligand side arm.
In other reported model complexes a Zn-bound alcohol group
may also adopt the role of an acid catalyst and protonate the
leaving group oxygen (Yashiro and Kawahara, 2004).

A DFT study of the cleavage of BDNPP by
[Zn2H4L7(OH(2))]2+/3+ revealed a 10.6 kcal mol−1 higher
energy barrier for alkoxide-mediated attack than for hydroxide-
mediated attack (Brown et al., 2016). Liu et al. observed a
93:7 ratio of hydrolysis to ethanolysis product of methyl-
(2-chlorophenyl) phosphate in the presence of [Zn2L8]4+

when the reaction was carried out in ethanol containing 3.8
vol% water (Liu et al., 2008a). A detailed analysis taking into
account the ionization constant of water in ethanol and the
kinetics of the reaction demonstrated that the catalytically
active species is [Zn2L8(µ-OH)]3+ and confirmed the large
selectivity for activating water as a nucleophile over ethanol.
It is also noteworthy that this dizinc(II) complex provides an
extremely high rate acceleration of 17 orders of magnitude
over the background reaction in 96.2:3.8 ethanol/water (v/v)
which is in the same order as the acceleration rates observed
for highly efficient enzymatic phosphodiester hydrolysis. The
contribution of a synergistic medium effect to this enormous
rate enhancement will be discussed in the next section. The
catalysis of the methanolysis of a series of methyl aryl phosphate
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FIGURE 7 | Chemical structures of ligands H2L3 – H2L12 and the dinuclear Zn(II) complexes [Zn2L3(µ-OH)]
+, [Zn2L4(µ-OH)(OH)], and [Zn2L8(µ-OH)]

3+.
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FIGURE 8 | Pyrazolate-bridged dizinc(II) complexes with the Zn-O2H3-Zn

motif.

diesters in methanol by the same complex was investigated and
the kinetic data were found to be consistent with a two-step
mechanism with rate-limiting formation of the phosphorane
intermediate following nucleophilic attack of the bridging
substrate by a monocoordinate Zn-methoxide (Neverov
et al., 2008). Maxwell et al. reported DFT calculations on
the [Zn2L8(µ-OCH3)]3+-mediated cleavage of 4-nitrophenyl
methyl phosphate which gave three viable mechanisms with
comparable energy barriers (Maxwell et al., 2013). In all three
mechanisms the methoxide dissociates from one Zn(II) and
nucleophilic attack on the bridging substrate and expulsion
of the leaving group are concerted. The mechanisms differ in
whether µ-OCH3 acts as the nucleophile or as a general base
by deprotonating an external CH3OH and in whether leaving
group departure is assisted by direct metal-binding or via a
metal-bound solvent molecule.

Bosch et al. investigated the role of the second coordination
sphere and the influence of hydrogen bonding on substrate
binding and catalytic activity (Bosch et al., 2014). The presence
of amino and pivaloylamide substituents in ortho position to
the pyridine nitrogen in HL9–H2L12 led to lower Michaelis-
Menten constants and thus higher catalytic efficiencies for
hydrolysing BDNPP compared to the unsubstituted complexes.
The orientation of the substituents (symmetric substitution
in HL9 vs. unsymmetric substitution in HL10) had a crucial
influence on the shape of the rate-pH profile (sigmoidal vs.
bell-shaped), the kinetic pKa value, the turnover number, and
the maximum reaction rate. The authors also studied the
effect of product inhibition and found that at high pH, the
dizinc(II) complex of HL9 formed a less stable product-catalyst
complex than [Zn2L11], resulting in higher catalytic activity for
the former.

For some of the active site mimics that hydrolyzed a DNA
model substrate, the DNase activity was also evaluated using
plasmid DNA. While there are examples for DNA cleavage
activity (Peralta et al., 2010; Anbu et al., 2012; Montagner et al.,
2014; Silva et al., 2017; Camargo et al., 2018), it is apparent
that factors that are not important for simple phosphodiesters

affect the hydrolysis of macromolecular DNA. Binding to a
phosphodiester group in DNA can be sterically hindered by
a bulky organic ligand (Massoud et al., 2016). On the other
hand, metal complexes can show binding preferences for certain
nucleotide sequences or structural motifs due to specific ligand-
DNA interactions (Camargo et al., 2018). Thus, model studies as
those described in this section should not be seen predominantly
as a predictive tool for developing efficient DNA cleavage agents,
but as a means of studying the role of a dizinc(II) entity in the
hydrolysis of the extremely stable phosphodiester linkages that
form the backbone of DNA.

Cleavage of RNA Dinucleotides and RNA
Model Substrates
Examples for biological RNA cleavage by a dimetallic site
are ribozyme reactions (Steitz and Steitz, 1993) and HIV
reverse transcriptase (Davies et al., 1991). RNA is more easily
cleaved than DNA due to the 2′-OH group of the ribose
ring which can act as an internal nucleophile. As shown in
Figure 10, intramolecular attack on the phosphorus leads to the
formation of a 2′,3′-cyclophosphate. Thus, RNA is not cleaved by
hydrolysis but through transesterification. Whether this reaction
proceeds by a stepwise mechanism via a pentacoordinated
phosphorane intermediate or by a concerted mechanism via a
pentacoordinated transition state has been debated. Evidence
is now in favor of a two-step process in the case of the
base-catalyzed reaction (Perreault and Anslyn, 1997; Oivanen
et al., 1998; Lönnberg et al., 2004). At physiological pH the
pentacoordinate phosphorane is monoanionic and relatively
stable so that it can undergo pseudorotation. As a consequence,
migration of the phosphodiester group to the 2′-position of
the ribose ring can compete with RNA cleavage (Figure 10). In
line with the principle of microscopic reversibility the leaving
group has to depart from an axial position as the nucleophile
attacks at an axial position. Under alkaline conditions the
dianionic phosphorane is too short-lived and pseudorotation to
an intermediate with the 3′-oxygen and a negatively charged
oxygen in the axial positions is too energetically unfavorable for 3′

→ 2′ isomerization to occur. Experimental and computational
data suggest that the reaction switches to a concerted pathway
involving a dianionic pentacoordinate transition state, when the
transesterification to the cyclophosphate is catalyzed by metal
ions (Bunn et al., 2007; Humphry et al., 2008; Tsang et al., 2009;
Edwards et al., 2010). Isomerization is not possible in this case.

2-Hydroxypropyl-p-nitrophenyl phosphate (HPNP,
Figure 10) is a popular model for the phosphodiester linkages
in RNA. The enhanced catalytic activity of various dinuclear
zinc(II) complexes relative to their mononuclear analogs is
usually attributable to double Lewis acid activation of HPNP
adopting a bridging coordination mode. Like the catalysis of
the hydrolysis of DNA models, HPNP transesterification is
often more efficiently catalyzed by dizinc(II) complexes with
unsymmetric ligands that have more available coordination
sites to bind the substrate and water/hydroxide for base catalysis
(Carlsson et al., 2004; Jarenmark et al., 2008). As the 2′-OH group
is an internal, thus more efficient nucleophile, Zn-OH does not
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FIGURE 9 | Sequential involvement of a Zn-OR and Zn-OH nucleophile in the cleavage of BNPP by [Zn2HL5]
2+(A) and [Zn2L6(OH)]

2+ (B).

participate in the reaction mechanism as a nucleophile but serves
as a base catalyst. Depending on the model complex and the
solvent system, different conclusions were reached regarding
the question of whether Zn-OH acts as a general or a specific
base catalyst. In general base catalysis, deprotonation of the
2′-OH group by Zn-OH occurs concurrently with nucleophilic
attack, while in specific base catalysis the 2’-oxyanion is
formed in a pre-equilibrium step prior to rate-determining
substrate cleavage.

The dinuclear Zn(II) complex of L8 is one of the most efficient
RNA/HPNP cleavage catalysts reported to date. In methanol,
in the presence of one equivalent CH3O− [Zn2L8]4+ gives a
108-fold rate acceleration of the cleavage of HPNP over the
methoxide-catalyzed reaction (Neverov et al., 2006). Tsang et al.
carried out a kinetic analysis of the transesterification of different
2-hydroxypropyl-aryl and alkyl esters by [Zn2L8(OCH3)]3+ and
found that the reaction proceeds through a transition state
in which the departure of the leaving group has progressed
to 45% (Tsang et al., 2009). A DFT study by Maxwell et al.
revealed three plausible, competing mechanisms, all involving
bridging substrate coordination (Maxwell et al., 2013): (i)
direct nucleophilic attack by the metal-bound HPNP alkoxide
concurrent with the cleavage of the leaving group bond—
the departure of the leaving group is assisted by a terminally
bound methanol acting as an H bond donor; (ii) rate-limiting

nucleophilic attack through a general base mechanism leading
to a phosphorane intermediate—subsequent bond cleavage
is assisted by metal binding and (iii) nucleophilic attack
through a general base mechanism and leaving group departure
occurring in concert—the expulsion of the leaving group is
assisted by hydrogen bonding with a terminally coordinated
methanol. While experimental data were reported for the
[Zn2L8(OCH3)]3+-promoted transesterification of HPNP and 2-
hydroxypropyl-phenyl phosphate that are consistent with both
a concerted and a stepwise mechanism, it has been argued
that a stepwise pathway may be more likely because a strong
electrostatic interaction between the highly charged dizinc(II)
site and the putative dianionic phosphorane should stabilize
the intermediate and the transition state leading to it (Bunn
et al., 2007). Energetics calculations indicated that the transition
state of the catalyzed reaction is stabilized by about −21 to
−23 kcal mol−1 relative to the transition state of the methoxide
reaction. The charge of a phosphodiester increases from −1
to −2 when the catalyst-substrate complex proceeds to the
transition state. It has been predicted that the coordination of
two metal ions to a phosphate ester monoanion has the same
effect as neutralizing it. It is believed that substrate binding to
[Zn2L8(OCH3)]3+ in alcoholic medium takes place in two steps
(Bunn et al., 2007); The substrate binds initially as a monodentate
ligand to one Zn2+ ion and then rearranges to the catalytically
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FIGURE 10 | RNA cleavage and 3′ → 2′-isomerization via intramolecular attack by 2′-OH and the RNA model HPNP.

active species with a bridging coordinationmode allowing double
Lewis acid activation. For substrates with a good leaving group
such as 4-nitrophenolate this rearrangement is rate-determining
and the following steps of the transesterification reaction are
fast. In the case of substrates with a poor leaving group
complete equilibrium binding of the substrate occurs and the
rate determining step is a chemical one that depends on the
pKa value of the leaving group. Nucleophilic attack is rate-
determining when the pKa of the leaving group is lower than that
of the nucleophile. When the leaving group pKa is greater, fission
of the leaving group bond becomes rate-limiting. The change
of the rate-determining step from formation to breakdown of
the phosphorane intermediate manifests itself as a break in the
Brønsted plot (plot of logkcat vs. leaving group pKa) at the point
where the effective pKa of the leaving group and the nucleophile
are the same. For the transesterification in ethanol in the presence
of [Zn2L8(OC2H5)]3+, general-base catalyzed deprotonation of
the 2′-OH group by Zn-OC2H5 was proposed. Specific-base

catalysis by an external ethoxide could be excluded, because
the cleavage rate in ethanol exceeded the diffusion limit (Liu
et al., 2008b). Support for concerted nucleophilic attack and
loss of the leaving group comes from a study of the reaction
of [Zn2L8(OR)]3+ with a stable phosphonate analog of HPNP
(Edwards et al., 2010). If the slow cleavage of 2-hydroxypropyl
phenyl phosphonate were to proceed via a five-coordinate
phosphorane intermediate, isomerization to 1-hydroxypropyl
phenyl phosphonate should be observed, which was not the case.

In contrast to the general-base catalyzed cleavage of HPNP by
[Zn2L8(OC2H5)]3+ in ethanol, experimental data for the related
dizinc(II) complex [Zn2L13(OH2)]3+ (Figure 11) have been
interpreted in terms of both general and specific base catalysis.
Concerted nucleophilic attack and leaving group loss with
specific-base catalysis in aqueous solution is now favored (Iranzo
et al., 2003b; Yang et al., 2005; Humphry et al., 2008). Likewise,
two conflicting computational studies were reported that came to
different conclusions. DFT calculations that were most consistent
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FIGURE 11 | Chemical structures of ligands HL13–HL25 and the dinuclear Zn(II) complexes [Zn2L13]
3+, [Zn2L14(H2O)2]

3+, [Zn2L15]
4+, [Zn2L16]

4+ and

[Zn2L17]
4+.

with the experimental data found the substrate to bind via the two
phosphoryl oxygens in a bridging mode and via the nucleophilic
2′-OH group. The pre-equilibrium step involving the activation
of the 2′-OH group through specific-base catalysis by Zn-OH is
followed by the concerted nucleophilic attack and cleavage of the
leaving group bond (Gao et al., 2011). Similar to the mechanism
(i) in the DFT study of [Zn2L8]4+, [Zn2L13]3+ alters the loose
transition state of the uncatalyzed reaction to a more associative

or tight one. The second theoretical study published earlier
found the same substrate binding mode but proposed a two-step
pathway with general base catalysis (Fan and Gao, 2010). It was
pointed out that the large rate accelerations of the cleavage of
RNA models provided by [Zn2L13]3+ were due to the dominant
role of electrostatics in stabilizing the dianionic transition state
(Iranzo et al., 2003b; Yang et al., 2005, 2007). The densely charged
core of two close packed Zn2+ ions binds the transition state
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with high affinity, leading to a transition state stabilization that
is ca. 50% of that estimated for the corresponding enzymatic
reaction. Kinetic analysis revealed 2.1 kcal mol−1 of greater
stabilization of the transition state for the cleavage of uridylyl(3′

→ 5′)uridine (UpU) compared to the transition state for
the cleavage of uridine-3′-4-nitrophenyl phosphate (UpPNP)
which demonstrates that the transition state stabilization of the

developing negative charge on the leaving group oxygen of UpU
is stronger than the stabilizing interaction between the catalyst
and the C-2′ oxyanion nucleophile at the rate-determining
transition state of UpPNP cleavage (O’Donoghue et al., 2006).

Mikkola, Williams and coworkers studied the hydrolysis
of HPNP, UpU, and uridine-3′-alkyl phosphates by
[Zn2L14(H2O)2]3+ and observed that the complex not

FIGURE 12 | Chemical structures of ligands HL26 - H2L31 and the catalytically active species [(OH)FeL27a−d(µ-OH)Zn(H2O)]
+, [FeL30(OH)(H2O)Zn(H2O)]

2+, and

[FeL30(OH)(µ-OH)Zn(H2O)]
+.
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only provides an enormous 106-fold rate acceleration of the
cleavage reaction in aqueous solution, but also catalyzes the
isomerization to the corresponding uridine-2′-alkyl phosphates
(Feng et al., 2006; Linjalahti et al., 2008; Korhonen et al., 2012).
This means that the dizinc(II) entity stabilizes the phosphorane
intermediate sufficiently to allow pseudorotation, and is clear
evidence for a stepwise mechanism. It was proposed that
the expulsion of the leaving group is the rate-determining
step and is general-acid catalyzed. Cocrystallization of the
zinc(II) complex with 4-nitrophenyl phosphate confirmed
that the phosphoryl oxygen atoms of the bridging phosphate
ester are in hydrogen bonding distance of the four amino
substituents. By serving as second-sphere H-bond donors, the
amino groups contribute to the stabilization of the dianionic
phosphorane and provide a further 103-fold rate enhancement
of the cleavage of HPNP compared to the unsubstituted complex
due to tighter binding of the substrate to the catalyst and
to the transition state. Again, it becomes clear that charge
neutralization by an electrophilic catalyst plays a dominant
role. The dinuclear complex stabilizes the phosphorane to
the same extent as complete neutralization of one negative
charge and to an extent that enables 3′ → 2′ isomerization.
The isomerization is catalyzed less efficiently than the cleavage
reaction. While binding to the zinc(II) complex stabilizes the
phosphorane, it restrains its conformational change required for
isomerization to occur.

Interestingly, Mohamed and Brown found that the dizinc(II)
complexes of L15, L16, and L17—having amino, acetamido
and methyl substituents, respectively—gave similar increases in
kcat for the cleavage of HPNP in methanol (Mohamed and
Brown, 2010). The kinetic data were interpreted to suggest
that hydrogen bonding effects are important for catalysis, but
less so for substrate binding. The key conclusion, however,
was that the creation of a hydrophobic pocket by the methyl
substituents is just as effective as hydrogen bonding. By contrast,
methylation of the coordinating nitrogens in L8 reduces the
catalytic efficiency and the synergism between the two Zn2+

FIGURE 13 | Synthetic phosphotriesters and organophosphates.

ions, most likely due to steric effects that impair substrate
binding (Song et al., 2012).

Besides introducing substituents, the linker between the
two triaza macrocycles in L8 was varied (Liu et al., 2009;
Guo et al., 2011). When more rigid aromatic linkers were
employed, the synergistic effect of the two metals varied between
5- and 700-fold (Guo et al., 2011). Replacing the propylene
linker in L8 with a butylene linker led to an increase in the
activation energy 1Gcat of around 1–1.6 kcal mol−1, which was
attributed to a less tightly bound substrate-catalyst complex at
the transition state (Liu et al., 2009). The presence of the 2-
propoxy linker in [Zn2L13]3+ leads to a 37,000-fold decrease
in the catalytic activity toward HPNP in methanol compared
to [Zn2L8(OCH3)]3+ (Mohamed et al., 2009). Possible reasons
for this include the reduction in Lewis acidity of the Zn2+ ions,
the higher coordination number of the Zn2+ ions, decreased
stabilization of the negative charge development in the transition
state and the loss of conformational flexibility (Mohamed et al.,
2009; Maxwell et al., 2013). DFT calculations showed that the
Zn(II)...Zn(II) distance in [Zn2L8(OCH3)]3+ expands from ca.
3.6 Å to over 5 Å in the intermediates and transition states
(Maxwell et al., 2013). Likewise, the dinuclear Zn(II) complex
of L18 is more active in methanol than the analogous complex
of HL19 (Mohamed et al., 2009). Energetics calculations showed
a greater stabilization of 3.7 kcal mol−1 of the transition state
by the former compared to the latter. Interestingly, the situation
seems to be different in aqueous solution. In water, the bridging
linker is believed to be crucial to achieve cooperativity between
the metal ions (Iranzo et al., 2003a; Morrow, 2008). There is no
doubt about the importance of medium effects.While the zinc(II)
complex of HL13 is an efficient catalyst in aqueous solution,
in ethanol it accelerates the transesterification of HPNP by an
impressive 12 orders of magnitude relative to the background
reaction at the same s

spH (Bunn et al., 2007). It has been
proposed that the reduced polarity of the solvent results in
desolvation of the ionic components and a better solvation
and stabilization of the charge-dispersed transition state (Bunn
et al., 2007; Korhonen et al., 2012). The effect of a lower
dielectric constant on the binding of ions of opposite charge
will increase the catalyst-substrate binding constant. Energetics
calculations gave a 1G

6=

stab of−21 kcal mol−1 for the [Zn2L8]4+-
mediated cleavage of HPNP in methanol which is close to
the 1G

6=

stab expected for highly efficient phosphodiesterase
enzymes (Bunn et al., 2007).

For [Zn2L19(µ-OH)]2+, a medium effect on the reaction
pathway was also described (Selmeczi et al., 2007). DFT
calculations indicated that the hydroxypropyl arm of the bridging
HPNP is oriented at the hydrogen bonding distance to the µ-OH
group. This H-bond facilitates the deprotonation of the attacking
nucleophile by the hydroxido bridge. In aqueous solution, a
further proton transfer to an external hydroxide takes place,
while in a non-aqueous medium (DMSO), the protonated µ-
OH2 shifts to a terminal position. In both cases DFT calculations
agreed with the concurrent deprotonation of 2′-OH and P-
O bond formation, leading to a pentacoordinate phosphorane
which, however, appears to be not as viable in the non-aqueous
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medium. In DMSO, the µ2-κ1O:κ1O′-bridging coordination
mode of the cyclophosphate product is in equilibrium with the
cyclophosphate forming a monoatomic bridge. This “phosphate
shift” was not observed in aqueous solution.

Bim et al. studied dinuclear Zn(II) complexes with the
conformationally constrained bis-polyazamacrocycles L20 – L22

(Bím et al., 2016). Only [Zn2L20]2+ showed catalytic activity
in aqueous buffer. Kinetic data and DFT calculations were
consistent with two mechanistic scenarios with similar energy
barriers and with the substrate coordinating via the two
phosphoryl oxygens to both Zn and via the deprotonated 2-
hydroxy group to one Zn (Zn1). In mechanism (1) nucleophilic
attack and dissociation of the leaving group take place in two
steps. In (2) an additional water molecule binds to Zn2 and
the mechanism becomes a one-step process. By contrast, DFT
calculations for the unsymmetric complex [Zn2L4(µ-OH)(OH)]
clearly favor a concerted associative mechanism for HPNP
transesterification (Daver et al., 2016). While the deprotonation
of the 2-OH nucleophile in a pre-equilibrium step was proposed
on the basis of experimental data (Jarenmark et al., 2010),
the DFT calculations indicated a significantly lower energy
barrier for a general-base mechanism in which the deprotonation
of the bridging HPNP by Zn-OH and nucleophilic attack
occur concomitantly.

Three-metal cooperativity was recently reported for the
trinuclear complex [Zn3(L23)2(H2O)4].H2O.2DMF (Joshi et al.,
2018). It was suggested that the cooperative action of the three
metals comprising double Lewis acid activation of the bridging
HPNP and base catalysis by the third Zn2+ ion is assisted by
the cup-shaped cavity of the complex. The trinuclear complex
gives a ca. 4-fold higher kcat value than the analogous dinuclear
complex [Zn2(L24)2(H2O)2](ClO4)2, for which monodentate
substrate coordination to Zn1 and base catalysis by Zn2-OH
were proposed.

As discussed in a previous section, there are conflicting data
in the literature on the correlation between the catalytic activity
of phosphoesterase models and the Lewis acidity of the metal
ion(s). Arora et al. compared the rate acceleration of HPNP
transesterification provided by [Zn2L25(H2O)x(OH)y]n+ and
the analogous Co(II) and Mn(II) complexes and found a linear
correlation of the rate constant k2 with the Zeff/r value of the
metal ion (Arora et al., 2012). Thus, Lewis acid activation of the
phosphorus is more important than activation of the nucleophile
in this case. It may be relevant that the nucleophile is an internal
one that is per se more efficient than the external one for general
phosphate ester substrates.

As is evident from the above, in the majority of studies
the model substrate HPNP was used. Some caution must
be exercised when applying conclusions drawn from these
analyses to RNA. It has been pointed out in the literature that
the 2-OH group in HPNP is more flexible than the ribose
2′-OH and also has a higher pKa value (Korhonen et al.,
2012). Hydrophobic and π-stacking interactions between the
linker moiety or heteroaromatic binding site of a dinuclear
ligand and the 4-nitrophenyl group have been demonstrated
to enhance substrate binding and to increase the catalytic
activity (Bazzicalupi et al., 2004). Leivers and Breslow showed
that this can incorrectly suggest cooperativity between two
metal centers (Leivers and Breslow, 2001). Furthermore, the
literature shows that the rate-determining step depends on
the nature of the leaving group, when the reaction proceeds
through the AN+DN mechanism (vide supra). Mikkola and
coworkers published a comprehensive analysis of the dizinc(II)
complex-mediated cleavage of uridine-3′-aryl and uridine-3′-
alkyl phosphates. The observed cooperativity of the twometals in
dinuclear catalysts changes with the acidity of the leaving group
of the substrate. In the case of alkyl groups, the cooperativity
decreases with decreasing acidity, whereas in the case of aryl

FIGURE 14 | (A) Active site of OpdA and OPH. (B) View of the active site region of the X-ray structure of phosphotriesterase isolated from Pseudomonas diminuta

created with the PDB 1HZY and associated publication (Benning et al., 2001). NGL Viewer (Rose et al., 2018) and RCSB PDB.
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phosphates the cooperativity increases with decreasing acidity—
i.e., as nucleophilic attack becomes more rate-determining.
They concluded that there is no universal mechanism for
the transesterification of RNA and its analogs that covers all
substrate-catalyst combinations (Korhonen et al., 2013).

Phosphodiester Hydrolysis Catalyzed by
Heterodinuclear Fe(III)Zn(II) Complexes
Following earlier work by Borovik and Que and by Wieghardt
and coworkers who synthesized heterodinuclear, carboxylate-/
hydroxide-bridged Fe(III)/M(II) complexes to model iron-oxido
proteins (Borovik et al., 1988; Hotzelmann et al., 1992), a number
of biomimetic studies were targeted specifically at the mechanism
of the heterodinuclear Fe(III)Zn(II) site of plant PAPs. Pathak
et al. reported the Fe(III)Zn(II) complex of the symmetric ligand
HL26 (Pathak et al., 2018), but usually unsymmetric ligands with
the two binding sites differing in the number and/or nature of the
donor atoms are employed to stabilize the heterodimetallic site
(Figure 12). H2L27

a was specifically designed to provide a hard
N2O4 site for the trivalent Fe(III), and a softer N3O3 site for the
divalent Zn(II) in the presence of additional bridging carboxylate
or hydroxido ligands and to model the terminal tyrosinate
ligand in PAP (Lanznaster et al., 2002; Neves et al., 2007). Single
crystal structures of both the acetate- and hydroxido-bridged
complexes, [Fe(III)Zn(II)L27a(µ-CH3COO2)2]ClO4 and
[(H2O)Fe(III)Zn(II)L27a(µ-OH)](ClO4)2, could be obtained
showing that the M(III)...M(II) distance decreases from 3.490(9)
to 3.040(1) Å when the carboxylate ligands are replaced with a
µ-OH ligand. The Fe(III)...Zn(II) distance in the latter is slightly
shorter but comparable to that of 3.20 Å in red kidney bean
PAP (Klabunde et al., 1996).

While in the majority of the Fe(III)Zn(II) complexes
of HL26–H2L31 the metals are bridged by two acetates
in the solid state, in solution dissociation of the acetate
ligands leads to [(H2O)FeL(µ-OH2)Zn(H2O)]n+, [(H2O)FeL(µ-
OH)Zn(H2O)](n−1)+, [(OH)FeL(µ-OH)Zn(H2O)](n−2)+, and
[(OH)FeL(µ-OH)Zn(OH)](n−3)+ species, depending on the pH
value (Lanznaster et al., 2002; Neves et al., 2007; Peralta et al.,
2010; Piovezan et al., 2010; Jarenmark et al., 2011; Roberts et al.,
2015; Pathak et al., 2017). Rate-pH profiles and potentiometric
titration data indicate that [(OH)FeL(µ-OH)Zn(H2O)]n+, which
is present in weakly acidic solution is the catalytically active
species. In all cases the kinetic data are consistent with the
mechanism of PAP proposed by Klabunde et al. (Figure 2B,
Klabunde et al., 1996). The phosphodiester replaces the Zn-
bound water in a monodentate binding mode while Fe(III)-OH
acts as the nucleophile.

The effect of substituents in para position to the terminally-
bound phenolate oxygen in H2L27

a−d confirms the role of
Fe(III) as the provider of the nucleophile. Electron-withdrawing
groups (NO2, Br) lead to a decrease in the hydrolysis rate, while
electron-donating groups (CH3) enhance the phosphodiesterase
activity (Peralta et al., 2010). The higher the electron-donating
property of the ligand, the lower the Lewis acidity of the
metal ion is and the weaker the M-OH interaction is. When
there is less pull of the electron density by the metal, the

metal-bound hydroxide presents a stronger nucleophile. The
observation that the analogous Ga(III)Zn(II) complex ofH2L27

a

hydrolyses BDNPP more efficiently than does the Fe(III)Zn(II)
complex is also in line with nucleophilic attack by M(III)-OH
(Smith et al., 2007). The authors of the study attributed the
higher catalytic activity of the Ga(III)Zn(II) complex to the
importance of the higher lability of Ga(III) compared to Fe(III)
when product release is the rate-determining step. However, the
difference in the pKa value of Ga(III)-OH2 (pKa = 5.59) and
Fe(III) (pKa = 4.86) may also suggest that Ga(III) provides a
stronger nucleophile.

Ferreira et al. carried out DFT calculations on the reaction
mechanism of the hydrolysis of dimethyl phosphate by the
closely related complex [(OH)FeL28(µ-OH)Zn]+ (Ferreira et al.,
2008). The optimized structure of the substrate-catalyst complex
showed that substrate binding is stabilized by a H-bond between
Fe-OH and a phosphoryl oxygen with a Gibbs free energy
variation of −55.1 kcal mol−1. The hydrolysis reaction proceeds
by a two-step associative mechanism. The first, rate-determining
step involves the nucleophilic attack of Fe-OH at the Zn-bound
phosphodiester resulting in the pentacoordinate phosphorane
intermediate. The movement of the OH group toward the
phosphorus and P-O bond formation is accompanied by a fast
proton transfer fromOH to the phosphoryl oxygen. In the second
step, the simultaneous proton transfer from P-OH to the leaving
group oxygen and breaking of the leaving group bond lead to the
release of CH3OH.

H2L29
a , H2L29

b, and H2L29
c were synthesized to model

secondary interactions between the phosphate ester substrate
and positively charged amino acid residues in the active site
of PAP (Silva et al., 2017). The presence of the side chains
in H2L29

b and H2L29
c led to a decrease in the pKa value of

Fe(III)-OH2 by 0.6 and 0.8 pH units compared to the parent
complex and to a shift of the redox potential of Fe(III) to less
negative values. This was rationalized by hydrogen bonding
between the ammonium group of the side chain and the
bridging hydroxide as observed in the optimized solid-state
structures of [FeL29b(OH)(µ-OH)Zn(H2O)](ClO4)2 and
[FeL29c(OH)(µ-OH)Zn(H2O)](ClO4)2. The higher kcat and
lower Km values of [FeL29b(OH)(µ-OH)Zn(H2O)](ClO4)2
and [FeL29c(OH)(µ-OH)Zn(H2O)](ClO4)2 compared to
[FeL29a(OH)(µ-OH)Zn(H2O)](ClO4)2 reflect the enhanced
binding affinity of the substrate for the side-chain bearing
complexes. The changes in Km were found to correlate with
the proximity of the side chain to the phosphate group in
the optimized structures of the catalyst-substrate complexes.
Camargo et al. attached one and two pyrene moieties via a
diamine spacer to the ortho position of the phenol ring in
H2L27

a (Camargo et al., 2018). They suggested that the 6-fold
increase in Kass for BDNPP was due to H-bond formation and
hydrophobic interactions between pyrene and 4-nitrophenol.
The determination of the activation parameters for BDNPP
hydrolysis revealed a decrease of 1H 6= by ca 10 kJ mol−1 with
respect to the corresponding complex having a carbonyl group
as a substituent, and this was attributed to hydrogen bonding
and the stabilization of the negatively charged transition state.
However, this favorable enthalpic contribution was offset by a
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less favorable 1S6=, probably due to a higher degree of structural
organization in the transition state.

The unsymmetric ligand H2L30 provides an N2O2 and an
NO3 site. The speciation plot and rate-pH profile suggest
that its Fe(III)Zn(II) complex mimics the mechanistic
flexibility of PAP (Roberts et al., 2015). At a low pH,
[FeL30(OH)(H2O)Zn(H2O)]2+ is the active species and
the terminally bound OH acts as the nucleophile. At higher
pH, the bridging OH of [FeL30(OH)(µ-OH)Zn(H2O)]+

becomes the nucleophile. [FeL30(OH)(µ-OH)Zn(H2O)]+ is
the better catalyst. Jarenmark et al. synthesized [FeZnL4(µ-
CH3COO)2(CH3OH)]PF6 to model the distinct donor atoms
as well as the different coordination numbers of Fe(III) and
Zn(II) in PAP (Jarenmark et al., 2011). The complex hydrolyzes
BDNPP and also shows some activity toward HPNP. At high pH
the complex converts to an inactive µ-oxido-bridged dimer of
heterodinuclear dimers.

HL9, HL10, and H2L31 contain sterically demanding
pivaloyl-amide substituents. A detailed kinetic analysis of
the hydrolysis of BDNPP by the respective heterodinuclear
Ga(III)Zn(II), homodinuclear Zn(II)2, mononuclear Zn(II), and
Ga(III) complexes gave insight into the influence of the
secondary coordination sphere, the effect of the properties of the
binding site and the role of the heterodinuclear site (Bosch et al.,
2016). Hydrogen bonding capacity shifts the pH optimum to
higher pH values. The presence of H-bond donating substituents
also leads to higher hydrolysis rates and higher catalytic
efficiencies, especially when the two H-bond donors are located
proximal to the Zn(II) site. The Ga(III)Zn(II) complex of HL9

hydrolyses BDNPP faster and with larger turnover numbers than
the corresponding HL10 complex. However, the introduction of
the H-bond donating substituents decreases the substrate affinity,
which may be a steric effect. A comparison of HL9 and H2L31

showed that the pH optimum shifts to lower pH values when the
binding site becomes more electron-rich. The catalytic activity of
the heterodinuclear complex of HL10 is greater than the sum of
the activities of the mononuclear Zn(II) and Ga(III) complexes
confirming the cooperativity of the metals in the dimetallic site.
The Ga(III)Zn(II) complex of HL9 hydrolyzes BDNPP about 20
times faster at pH 7 than the dizinc(II) complex. Interestingly,
Km is three times higher for the Ga(III)Zn(II) complex. A weaker
substrate affinity of the heterodinuclear complex compared to
the corresponding homodinuclear Zn(II)2 complex was also seen
for [Fe(III)Zn(II)L26(µ-CH3COO)2]2+(Pathak et al., 2018). It
appears that the electronic effect of the heterodimetallic site on
substrate and/or nucleophile activation is more important than
the formation of the catalyst/substrate complex.

Hydrolysis of Phosphotriesters and
Organophosphates
Due to their neutral charge phosphotriesters are more easily
hydrolyzed at pH 7 than phosphodi- and -monoesters.
The mechanism of the uncatalyzed reaction is believed to
be associative with both a two-step addition-elimination
and a concerted pathway being possible. Phosphotriesters
do not occur naturally. Synthetic organophosphate triesters

have been widely used as pesticides and insecticides (e.g.,
paraoxon, parathion, Figure 13). In mammals, they cause
nerve and organ failure due to their ability to inhibit
acetylcholinesterase and some highly toxic organophosphorus
compounds such as sarin and soman are employed as chemical
warfare agents (Raushel, 2002). Bacterial phosphotriesterases
can degrade phosphotriesters and their analogs into less
toxic diesters and have probably evolved in response to
the intense application of synthetic organophosphates in
agriculture (Donarski et al., 1989; Dumas et al., 1990).

Two of the best-studied phosphotriesterases are the
Zn-containing organophosphate degrading enzymes from
Agrobacterium radiobacter (OpdA) and organophosphate
hydrolase from Pseudomonas diminuta (OPH).
Glycerophosphodiesterase from Enterobacter aerogenes (GpdQ)
is also known to hydrolyze organophosphate triesters. OpdA
and OPH share a high sequence and structure homology

FIGURE 15 | Chemical structures of ligands HL32 - H2L34 and

[Zn2(HL34
a)2(OH)]

−.
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(Yang et al., 2003). In their active site two Zn2+ ions, referred
to as α- and β-site are bridged by a carboxylated lysine side
chain and a hydroxide/water (Benning et al., 2001; Figure 14).
Small-molecule models of OpdA have been previously reviewed
(Daumann et al., 2014).

The mechanism of enzymatic phosphotriester hydrolysis was
investigated in theoretical studies that indicated an associative
pathway involving binding of the phosphoryl oxygen to the β-
site and nucleophilic attack by the bridging hydroxide (Ely et al.,
2010, 2011). On substrate coordination, the µ-OH bond to the
β-site weakens and the bridging hydroxide shifts to a pseudo-
terminal position. However, like PAPs, phosphotriesterases
appear to exhibit mechanistic flexibility. Experimental and
theoretical studies showed that in the case of the Co(II) form
of OpdA under alkaline conditions, the µ-OH group shifts to
the β-site following substrate binding and a hydroxide or water
from the environment coordinates terminally to the α-site to
act as the reaction-initiating nucleophile (Ely et al., 2010, 2011).
There is also evidence that the rate-determining step varies
with the nature of the leaving group. For leaving groups with
a pKa > 7, P-O bond cleavage seems to be rate-determining
(Ely et al., 2010). Based on kinetic and crystallographic data
and computational modeling of the Fe(II)Zn(II) form of OpdA
Jackson et al. proposed that the bridging hydroxide serves as a
base and deprotonates a water molecule terminally coordinated
to the α-site (Jackson et al., 2008). However, such a mechanism
appears unlikely for the dizinc(II) form of OPH (Kim et al., 2008).

To address the need for effective bioremediators to
decontaminate organophosphate-containing water and soil,
biomimetic zinc(II) sites have been assembled into metal-organic
frameworks or onto graphene oxide, and promising catalysts are
described in the recent literature (Jacques et al., 2008; Ma et al.,
2017; Xia et al., 2017). However, detailed mechanistic studies
using model complexes and phosphotriesters are rarely reported
and most of our current mechanistic understanding of dizinc(II)
phosphotriesterases stems from theoretical studies such as those
described above. In contrast to the polymer and metal organic
framework-based active catalysts, little success has been achieved
so far in the development of low-molecular-weight dizinc(II)
phosphotriesterase mimics. Only modest phosphotriesterase
activity was observed for the small number of dinuclear
zinc(II) complexes investigated (Figure 15). The low activities
of [Zn2L32(µ-CH3COO)(CH3COO)2(H2O)] (Tamilselvi and
Mugesh, 2010) and [Zn2L33(µ-CH3COO)(CH3COO)2(H2O)]
(Umayal and Mugesh, 2011) toward 4-nitrophenyl diphenyl
phosphate was attributed to inhibition by the phosphodiester
hydrolysis product that binds in a bridging mode to the
dizinc(II) site. Two of the few examples of dizinc(II) complexes
with phosphotriesterase activity were reported by Guo et al.
(Guo et al., 2015). [Zn2L5]+ and [Zn2L7]− hydrolyze sarin
at 303K with kcat/Km values of 0.051 and 0.11 s−1 M−1,
respectively. DFT calculations confirmed a stepwise associative
mechanism with a pentacoordinate phosphoryl intermediate.
One of the Zn1-bound alkoxides serves as a general base
and deprotonates an incoming water nucleophile which
attacks the phosphorus of the Zn2-coordinated substrate. In
the catalyst-substrate complex the incoming water molecule

hydrogen bonds to Zn-OR and to another alkoxide that
bridges Zn1 and Zn2. P-Ow bond formation and proton
transfer from the water molecule to the terminal alkoxide occur
simultaneously. The higher catalytic activity of [Zn2L7]− was
attributed to the higher basicity of the alkoxide groups in L7

compared to L5.
Penkova et al. investigated the hydrolysis of paraoxon by a

series of dinuclear pyrazolate complexes (Penkova et al., 2009).
The Zn(II)...Zn(II) distances in [Zn2(HL34a)2(pyridine)2],
[Zn2(HL34b)2(CH3COO)2], [Zn2(H2L34

c)2(NO3)2] and
(imH)2[Zn2(L34d)2(H2O)4] (imH = imidazolium) range from
3.75 to 4.115 Å, i.e., are longer than those in phenoxide-
bridged enzyme models and close to the metal-metal
distance in alkaline phosphatase (4.0 Å, Stec et al., 2000).
Based on the kinetic data and speciation in solution it
was proposed that the phosphotriester binds monodentally
to one Zn(II) of [Zn2(HL34a)2(OH)]−, while the other
Zn(II) provides a metal-bound hydroxide as the nucleophile.
[Zn2(L34d)2(H2O)4]2− gave a two-fold lower rate acceleration
compared to [Zn2(L34a)2(OH)]−, which was attributed to the
lack of Zn-OH. The relatively small difference in activity between
[Zn2(L34a)2(OH)]− and [Zn2(L34d)2(H2O)4]2− led the authors
to the conclusion that Lewis activation is more important for
efficient catalysis than metal hydroxide activation. Although the
rate constants for the uncatalyzed cleavage of paraoxon and the
RNA model HPNP are comparable, the pyrazolate complexes
cleave HPNP with a second order rate constant that is about
one order of magnitude larger than that for the hydrolysis of
paraoxon. This was rationalized with the bridging coordination
of the phosphodiester to the dizinc(II) site allowing for double
Lewis acid activation.

CONCLUDING REMARKS

It is hoped that this review has shown that the metal catalysis
of what appears to be a rather simple chemical reaction has
been and continues to be a challenging research question.
Model studies using dinuclear zinc(II) complexes have given
insight into the possible roles of the Zn2+ ions in the
dimetallic active sites of phosphatases, the potential effects
of metal-substrate interaction on transition state stabilization
and the contribution of the different interaction modes to the
lowering of the overall energy barrier. In this regard small-
molecule biomimetics have proven to be extremely powerful
tools. Less has been learned from small-molecule phosphatase
models on the actual mechanistic pathway of the natural
enzymes, e.g., distinguishing between a monodentate substrate
coordination/terminal Zn-OH nucleophile mechanism and a
bridging substrate coordination/µ-OH nucleophile mechanism
for a specific phosphoesterase and this is not the aim
of model studies. There is no universal mechanism for
the catalysis of phosphate esters by dinuclear dizinc(II)
phosphoesterases. Even when a particular phosphoesterase is
considered, there is accumulating evidence that phosphoesterases
with a low substrate specificity hydrolyze different substrates by
distinct mechanisms.
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Small-molecule enzyme models have inherent limitations.
They lack the pre-organization of enzymatic sites and the
surrounding protein matrix that supports the correct substrate
orientation and provides a hydrophobic environment. While
the latter has been modeled by non-aqueous media and model
systems are increasingly designed to take secondary interactions
into account by introducing substituents with hydrogen bonding
functionality, it is still (and probably will always be) impossible
to mimic the complexity of natural enzymes. Studies in non-
aqueous solvents showed a clear effect of the medium on
the catalytic activity, but an effect on the mechanism (e.g.,
ANDN vs. AN+DN) must also be considered. Most experimental
studies using small-molecule phosphatase models rely on kinetic
data, which highlights the inherent difficulty that the data can
support different, kinetically equivalent mechanisms. The use
of 4-nitrophenyl esters as DNA and RNA models has been
criticized in the literature (Menger and Ladika, 1987) and a
few caveats have been pointed out in this review. On the other
hand, systematic studies with different phosphate esters have
shown changes in the mechanism and the rate-determining step,

when the leaving group was changed and thus contributed to a
better fundamental understanding of metal-catalyzed phosphate
ester hydrolysis.

In contrast to the large amount of data that has been
collected on the cleavage of phosphate esters at biomimetic
dizinc(II) sites, little attention has been paid to the regeneration
of the catalyst. After hydrolysis of the phosphotri-, di- or
monoester, the resulting diester, monoester or ortho phosphate
will be coordinated in a bridging mode and will bind
more strongly to the catalyst as the anionic charge has
increased. Ejection of the hydrolysis product would require
nucleophilic attack of water on the metal(s). Obviously, the
regeneration of the dizinc(II) site is important for catalytic
turnover and there is a clear need for future work in
this direction.
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