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Graft vs. host disease (GVHD) is the major non-relapse complication associated

with allogeneic hematopoietic stem cell transplantation (HSCT). Damage to the

gastrointestinal (GI) tract from acute GVHD is a particularly serious event that can result

in significant morbidity and mortality. Proinflammatory cytokines play a critical role in

the pathophysiology of intestinal GVHD, in part by activating donor T cell populations

which subsequently induce tissue damage. In this review, we summarize pre-clinical data

derived from experimental murine models that have examined the role of inflammatory

cytokine pathways that play critical roles in the pathophysiology of GVHD of the GI tract.

Specific areas of focus are on STAT 3-dependent cytokines (e.g., IL-6, IL-23, and IL-21),

and members of the IL-1 cytokine family, both of which have been shown to induce

pathological damage within the GI tract during this disease. We also review established

and ongoing efforts to translate these pre-clinical findings into the clinic in an effort to

reduce morbidity and mortality due to this complication.

Keywords: graft vs. host disease, inflammatory cytokines, allogeneic hematopoietic stem cell transplantation,
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GRAFT vs. HOST DISEASE

Graft-vs.-host disease (GVHD) is themajor complication that occurs after allogeneic hematopoietic
stem cell transplantation (HSCT) and is the leading cause of transplant-related mortality (1, 2).
Mature T cells, which are present in the donor stem cell graft, are instrumental in the development
of GVHD in HSCT recipients (1, 2). These pathogenic T cells are activated and clonally expand in
response to recognition of a cognate recipient-derived peptide on an antigen presenting cell (APC),
mounting an adaptive immune response against healthy recipient tissues. Current evidence in the
literature suggests that two phases of antigen presentation occur (3). GVHD is initiated by recipient
hematopoietic and non-hematopoietic APCs by a process termed direct alloantigen presentation
(4, 5). Following the elimination of recipient-derived APCs post-transplantation, donor-derived
APCs sustain GVHD by presenting recipient-derived peptides through the indirect pathway (6–9).
Studies have revealed that the most important donor-derived APCs in this process are classical
dendritic cells (7, 9).

GVHD has been divided into two phases, termed acute and chronic, which are distinguishable
based on the timing of onset as well as unique clinical and pathological manifestations
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(10–12). During the acute phase, which is responsible for
significant mortality (13), GVHD targets a restricted set of organs
including the skin, gastrointestinal (GI) tract, lung, and liver
(1, 2, 4). Compelling data in experimental models have shown
that the GI tract plays a primary role in the propagation of this
disease (14, 15). Damage to the gastrointestinal mucosa from
the conditioning regimen results in the release of damage- and
pathogen-associated molecular patterns (DAMPs and PAMPs)
(16, 17), which activate cells of the innate immune system
through the ligation of pattern recognition receptors (PRRs)
(2). This ultimately leads to the generation of clonally-expanded
alloreactive T cells which mediate further damage, creating
an inflammatory cascade (18). From a clinical perspective,
involvement of the GI tract is a major cause of morbidity
and can result in significant complications including protracted
diarrhea, requirement for parenteral nutrition, and infectious
complications due to translocation of bacteria across a damaged
mucosal barrier (19). Given the pivotal role that the GI
tract plays in acute GVHD biology, strategies designed to
reduce inflammation in this target organ have the potential to
significantly decrease morbidity and mortality associated with
this disease.

STAT3 SIGNALING IN GVHD OF THE GI

TRACT

During the formation of an immune response, the transduction
of signals from the T cell receptor, costimulatory ligands, and
cytokines into the nucleus is required for the differentiation of
naïve T cells into effector lineages. During GVHD, these effector
alloreactive cells are then able to secrete inflammatory cytokines
and acquire cytotoxic capability, leading to tissue damage. Signal
transducer and activator of transcription (STAT) proteins are
responsible for much of these gene expression changes as a
result of signaling through cytokine receptors. Upon ligation
of a cytokine to its receptor, Janus kinases (JAKs) bind to
the cytoplasmic domain of the receptor and become active,
phosphorylating the appropriate STAT proteins, which then
dimerize and translocate to the nucleus where they execute their
function in driving transcriptional changes (20). Of these STAT
proteins, STAT3 is particularly important in T cell pathogenicity
during GVHD (21). In fact, treatment with a small molecule
that inhibits STAT3 phosphorylation (22) or transplantation with
STAT3-deficient T cells (21) significantly reduced GVHD-related
mortality and pathological damage within the colon, providing
support for the premise that STAT3-depednent cytokines play
a prominent role in the induction of inflammation within this
tissue site. Abrogation of STAT3 signaling was associated with
a reduction in donor effector T cells with a corresponding
increase in the number of regulatory T cells (Tregs). These
results suggested that the STAT3 signaling pathway plays a
critical role in balancing the effector and regulatory arms of the
immune system within the context of GVHD. This basic premise
has been confirmed in vitro using human cells where small
molecule inhibition of STAT3 signaling suppressed alloreactive
T cell proliferation while enhancing expansion of induced Tregs

(iTregs) (23). In addition, CD4+ T cell STAT3 activation has
been associated with an increase in TH17 cells and corresponding
pathological damage within the GI tract in patients (23).

In contrast to the proinflammatory nature of STAT3 signaling
in alloreactive T cells, expression of STAT3 in recipient
myeloid cells was found to exacerbate GVHD (24). Notably,
this analysis was limited to LysM-expressing cells, which are
predominantly of the macrophage/monocyte lineage. While
this study did not explore a mechanism for why STAT3
signaling in recipient myeloid cells elicits a paradoxical anti-
inflammatory effect, the authors did note an increase in the
number of donor CD4+ and CD8+ T cells in the spleen and
an elevation in serum IFN-γ and IL-17 in LysM-Cre STAT3fl/−

recipients compared to WT recipients, suggesting that this
subset of recipient myeloid cells might indirectly regulate donor
T cell responses. Interestingly, deficiency in donor myeloid
cells had no impact on overall GVHD severity (24). Thus,
the proinflammatory effects of STAT3 signaling appear to be
mediated through T cells and not myeloid cell populations.
The potential clinical significance of these observations derives
from the fact that a number of the inflammatory cytokines
that have been implicated in the pathophysiology of GVHD,
specifically within the gastrointestinal tract, use STAT3 as part of
their signaling pathway, and therefore are amenable to blockade
with appropriate and specific antibodies. The STAT-dependent
cytokines which have been most critically examined with respect
to GVHD within the GI tract are IL-6, IL-23, and IL-21.

INTERLEUKIN 6

IL-6 is a proinflammatory cytokine that is crucial in initiating
a TH17 immune response. In the presence of IL-6 and TGF-
β, naive T cells are able to differentiate into cells of the TH17
lineage, whereas in the absence of this cytokine, these same
cells are directed to become Tregs (25, 26). Specifically, TGF-
β-induced Foxp3 is able to inhibit the transcriptional activation
of RORγt which prevents the differentiation of TH17 cells from
naïve CD4+ T cells (27). Thus, IL-6 appears to have a pivotal role
in facilitating inflammatory responses by the immune system.
In experimental murine studies, IL-6 and soluble IL-6R levels
have both been shown to be increased in the gastrointestinal
tract during GVHD (28). Moreover, blockade of IL-6 signaling
by the administration of an antibody that binds to the IL-6
receptor significantly reduces GVHD-associated mortality and,
specifically, pathologic damage within the colon (28–30). In one
study (28), this was attributed to a significant increase in the
absolute number of Tregs that was due to augmentation of both
thymic-dependent and thymic-independent Treg production.
Notably, when GVHD protection was dependent solely upon
the ability to generate iTregs, blockade of IL-6 signaling resulted
in a reduction in GVHD severity only within the colon (30).
These results support the premise that IL-6 has an important
role in mediating GVH responses within this tissue site, and
that inhibition of this signaling pathway serves to recalibrate
the effector and regulatory arms of the immune system in the
GI tract. It should be noted that augmented Treg reconstitution
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has not been observed in all studies (29), although this may
be due, in part, to a more abbreviated anti-IL-6R antibody
administration schedule that did not provide sufficient IL-6
blockade to positively affect Treg regeneration. The requirement
for more protracted anti-IL-6R antibody administration to
observe robust Treg reconstitution is supported by findings in a
murine sclerodermatous chronic GVHDmodel (31).

The potential efficacy of IL-6 blockade for the treatment and
prevention of GVHD has also been examined in humans. This is
due to the availability of tocilizumab which is a humanized anti-
IL-6R antibody that has been FDA-approved for the treatment
of patients with rheumatoid and juvenile arthritis (32, 33).
Off label use of tocilizumab has therefore been possible in
HSCT patients. Initial studies using tocilizumab have been in
patients with steroid refractory (SR) GVHD. A total of three
studies comprising 31 patients have reported results on the
use of tocilizumab for the therapy of SR acute GVHD (34–
36). In nearly all patients (i.e. 30/31), treatment was instituted
for disease involving the lower GI tract. In two of the three
studies, response rates (PR and CR) were quite similar (67 and
69%, respectively). In a third trial, however, responses were
observed in only 44% of patients and were short-lived. One
potential explanation for the discrepancy in these results is that
the majority of patients in this latter trial had concurrent liver
GVHD, and tocilizumab has not been shown in any study to
have any efficacy for the treatment of disease in the liver. The
reasons for this are not entirely clear, although the fact that one
of the primary side effects of tocilizumab is transaminitis suggests
that this agent may induce some degree of liver inflammation
which could be deleterious in the setting of concurrent
liver GVHD.

Inhibition of IL-6 has also been examined for the prevention
of acute GVHD in allogeneic HSCT patients. The first report
was by Kennedy et al. (37) who treated 48 patients (median
age 48) with a single dose of tocilizumab on the day prior to
transplantation in addition to standard immune suppression
consisting of tacrolimus and methotrexate. The primary end
point of the study was grade 2–4 acute GVHD at day
100. Conditioning was with either total body irradiation and
cyclophosphamide (myeloablative) or fludarabine andmelphalan
(reduced intensity) and patients were transplanted with stem cell
grafts from either HLA-matched sibling or matched unrelated
donors. The incidence of grades II-IV and III-IV acute GVHD
at day 100 was 12 and 3%, respectively, which was lower than
historical controls, although this was not a randomized trial
nor were the patients demographically matched to a historical
or contemporaneous cohort. Of note, GVHD in the GI tract
occurred in only 8% of patients and it was not specified as to
whether this involved the lower or upper GI tract. Therefore,
it is possible that the incidence of lower tract GI GVHD
was even lower which is noteworthy given studies that have
shown that upper GI tract GVHD is generally responsive to
modest doses of steroids and does not impact overall survival
(38, 39). Immune reconstitution was also preserved in these
patients which suggested that blockade of IL-6 signaling did
not deleteriously impact overall immunity (37). Flow cytometric
and gene expression analysis of both monocytes and CD4+ T

cells of patients treated with Tocilizmab revealed that there was
a reduction in STAT3 phosphoyrylation and an attenuation in
expression of STAT3-driven genes (37), demonstrating that IL-
6 is a prominent inducer of this signaling cascade in human
patients during GVHD.

A more recent study (40) also administered tocilizumab in
addition to tacrolimus and methotrexate for the prevention
of GVHD in an older aged population (median age 66)
who underwent reduced intensity or myeloablative stem
cell transplantation. All patients received busulfan-based
conditioning which distinguished this trial from the previous
publication. The tocilizumab administration schedule, however,
was identical to that employed in the study of Kennedy et al. The
cumulative incidences of grades II-IV and III-IV acute graft vs.
host disease were 14 and 3% at day 100 which was similar to that
observed in the prior trial. Importantly, we observed that there
were no cases of GVHD of the lower gastrointestinal tract within
the first 100 days. To provide additional context to these results,
the authors obtained a control population from the database
of the Center for International Blood and Marrow Transplant
Research consisting of patients who were demographically
matched for age, performance status, conditioning regimen,
disease, and donor type, but who had received only tacrolimus
and methotrexate for GVHD prophylaxis. This analysis revealed
a lower cumulative incidence of grades II-IV acute graft vs. host
disease (17 vs. 45%) and a significant increase in grades II-IV
acute graft vs. host disease-free survival at 6 months (69 vs. 42%)
in patients who were treated with tocilizumab, tacrolimus, and
methotrexate. Collectively, these studies provided evidence that
inhibition of IL-6 signaling had efficacy for the prevention of
GVHD in the GI tract in allogeneic HSCT patients.

INTERLEUKIN 23

IL-23 is a member of the IL-12 family, signals through STAT3,
and is secreted by DCs, as well as other APCs such as
macrophages and monocytes (41). This cytokine shares a p40
subunit with IL-12, but also contains an IL-23-specific p19
component. The p19/p40 complex binds to a heterodimer
of IL-12Rβ1, which is shared with the IL-12 receptor and
a unique IL-23 receptor subunit that together is present on
memory/activated T cells, DCs and macrophages (42). Early
studies demonstrated that IL-23 plays a critical role in disorders
such as experimental allergic encephalomyelitis (EAE) (43),
collagen-induced arthritis (44), and inflammatory bowel disease
(45) implicating this cytokine as a pivotal mediator in the
pathogenesis of inflammatory disorders and autoimmunity. Pre-
clinical murine BMT studies have demonstrated that IL-23
has a selective role in the promotion of inflammation within
the colon during acute GVHD. In addition, this cytokine also
functions as a critical mediator linking mucosal injury and LPS
translocation that occurs as a consequence of the conditioning
regimen to subsequent proinflammatory cytokine production
and GVHD-associated pathological damage (46, 47). In these
murine models, transplantation of IL-23–deficient marrow grafts
or the administration of a p19-specific antibody resulted in
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a significant amelioration in the severity of acute GVHD.
This was shown to be due to the preferential reduction in
colonic GVHD-induced pathology, accompanied by a decrease
in proinflammatory cytokine production within this target
organ. Donor, as opposed to host, APC production of IL-23
was demonstrated to be crucial for inducing GVHD-associated
inflammation in the colon. These findings established that IL-
23 has a novel organ-specific role in GVHD biology within the
context of a broader systemic inflammatory disorder. Further
mechanistic studies revealed that the proinflammatory effects
of IL-23 were mediated at least in part by IFN-γ, not IL-17,
and that an intact upstream LPS/TLR4 signaling pathway was
required for IL-23-mediated colonic inflammation. Moreover,
blockade of this pathway did not abrogate the graft vs. leukemia
effect when tested in both acute and chronic models of
leukemia (46).

More recent studies have shown that blockade of the IL-
23 receptor using either genetic or antibody-based approaches
similarly protect mice from lethal GVHD and pathological
damage in the colon (47). In the course of these studies, a
unique colitogenic CD4+ T cell population was identified that
constitutively expresses the β2 integrin CD11c, has a biased
central memory phenotype, possesses innate-like properties
by gene expression analysis, and has augmented expression
of the gut-homing molecules, α4β7 and CCR9. Adoptive
transfer of these cells resulted in increased overall mortality,
proinflammatory cytokine production, and pathology specifically
in the colon. The pathogenicity of these cells was critically
dependent upon co-expression of the IL-23 receptor. The fact
that these CD4+ T cells possess an innate-like transcriptional
signature suggests that they are positioned at the interface of
the innate and adaptive immune systems where they are able to
mediate early inflammatory events during GI tract GVHD.

There are currently two p19-specific antibodies (i.e.,
guselkumab and tildrakinumab) that have received FDA
approval for the therapy of psoriasis (48, 49). However,
specific blockade of the IL-23 signaling pathway has not been
examined for the prevention or treatment of GVHD in humans.
Ustekunimab which binds to the p40 subunit and thereby inhibits
both IL-12 and IL-23 has been administered to patients for the
prevention of GVHD in a randomized, placebo-controlled study
(50). The results of this trial showed that patients treated with
Ustekunimab had no difference in the incidence of grades 2–4
acute or chronic GVHD, and there was no specific protective
effect on the severity of GVHD within the GI tract. Interestingly,
despite the lack of effect on GVHD, there was a significant
reduction in transplant-related mortality which translated to
an improvement in survival. However, since the trial was not
powered to assess these clinical outcomes and therefore were
not the primary endpoints of the trial, the significance of these
findings is not entirely clear.

INTERLEUKIN 21

IL-21 is produced by CD4+ T cells, CD8+ T cells, and NKT
cells, while the receptor for IL-21 is expressed on T cells, B cells,

NK cells, dendritic cells macrophages, and epithelial cells (51).
The role of IL-21 in the biology of GVHD has been examined
in a number of murine transplantation models (52–55). A
common finding in all of these studies has been that blockade
of IL-21 signaling by either antibody-based strategies or genetic
approaches is able to significantly reduce the severity of GVHD.
In some instances, this was shown to be due to an increase in
the reconstitution of Tregs accompanied by a commensurate
reduction in the expansion of donor effector T cells, suggesting
that blockade of IL-21 signaling recalibrates the effector and
regulatory arms of the immune system, similar to IL-6 blockade.
Notably, several studies have confirmed that blockade of IL-21
signaling results in decreased pathological damage specifically
within the GI tract (52–55). More recently, tissue from the GI
tract of patients with active GVHD also revealed increased IL-21
expression in mononuclear cells in the colon when comparted to
samples obtained from patients with no GVHD (56), suggesting
that IL-21 may play a role in gastrointestinal GVHD in humans
as well. As of yet, however, there have been no trials examining
whether blockade of IL-21 signaling is able to reduce the severity
of GVHD in humans.

INTERLEUKIN 1 FAMILY MEMBERS

Interleukin-1 (IL-1) was one of the first cytokines described
and was named for the soluble product of macrophages during
inflammation (57). Since then, IL-1 has been discovered to be not
a single gene product but a family of cytokines (58), collectively
referred to as the “IL-1 superfamily” (59, 60). Most of the genes in
the IL-1 family are clustered together on the same chromosome,
likely attributable to a gene duplication event that is evident in
their similarity in sequence, structure, and function (61). IL-1
family cytokines direct a host of events in the immune system
ranging from acute inflammatory processes initiated by the cells
of the innate immune system (57), to T cell differentiation (62),
to the regulation of inflammation (63, 64). In this section, we
will focus on the “classical” IL-1 cytokines (IL-1α and IL-1β) as
well as the IL-1 receptor antagonist (IL-1RA), which binds the
IL-1 receptor and blocks binding of other ligands but elicits no
signaling itself (64). Furthermore, we will discuss new insights
into the role of IL-33, another IL-1 family member, and its
cognate receptor ST2 in mediating inflammation in the GI tract
during GVHD.

INTERLEUKIN 1

A role for the IL-1 family in the biology of GVHD was first
postulated in 1991 when increased levels of IL-1α mRNA was
detected in the skin of GVHD recipients in an MHC-matched,
minor antigen mismatched murine transplant model (65). In
addition, the administration of a recombinant human IL-1Ra was
found to significantly increase survival in transplant recipients
(66), supporting a role for this cytokine in the pathophysiology of
this disease. Subsequent studies yielded more conflicting results,
raising the issue as to whether this observed variability might,
to some extent, be model-specific (66, 67). These preclinical
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studies, however, did lay the foundation for human trials
testing the efficacy of IL-1 blockade which were conducted in
patients with steroid-refractory GVHD. In a phase I/II trial,
which involved a 7 day continuous infusion of recombinant
IL-1Ra, 10 out of 16 patients had an overall reduction in
GVHD grade, including 8 out of 11 patients with GI-tract
involvement who showed improvement (68). In another phase
I/II trial using a recombinant IL-1 decoy receptor, eight of 14
patients had an overall reduction in GVHD grade, with 2 of
6 patients with GI tract involvement showing organ-specific
improvement (69). The largest clinical trial examining anti-IL-
1-directed therapy was conducted nearly a decade after the
initial observation in murine models (70). This was a double-
blind, placebo-controlled trial involving 186 patients in which
the study arm consisted of treatment with an IL-1 receptor
antagonist for GVHD prophylaxis. The primary endpoints of this
study were event-free survival, overall survival, and incidence of
GVHD. Unfortunately, patients that received IL-1Ra treatment
had no improvement in any of these outcome measures. Notably,
recombinant IL-1Ra was administered in the peritransplant
period, with IL-1Ra levels in the serum returning to baseline by
day 14 (70), before most patients develop acute GVHD. Whether
this administration schedule may have been responsible for the
lack of any perceived effect is not clear and the ability of IL-
1 blockade to prevent GVHD within the GI tract in humans
remains unproven.

INFLAMMASOME SIGNALING

With the discovery of the inflammasome (71) there has been
renewed interest in the role of IL-1 cytokines in gastrointestinal
GVHD. This is due to the fact that the GI tract is a source
of innate immune activating pathogen- and damage-associated
molecular patterns (15), some of which can cause activation
and assembly of the inflammasome. In the case of one
particular NLRP3, the ligation of TLR4 by lipopolysaccharide
(LPS) causes the up regulation of inflammasome substrates
and components such as pro-IL-1β and NLRP3 (72), as well
as the deubiquitination and stabilization of NLRP3 (73). As
a complementary step, the ligation of the purinergic receptor
P2X7 by ATP provides the second step in inflammasome
activation, ultimately leading to the assembly of NLRP3
with ASC, cleavage of pro-caspase-1, and caspase-1-mediated
conversion of pro-IL-1β to its secreted and biologically active
form (73).

Jankovic and colleagues provided the first evidence that the
NLRP3 inflammasome is important in the pathophysiology
of gastrointestinal GVHD (74). This report showed that in a
MHC-mismatched murine model, pretransplant but not post-
transplant treatment of mice with an IL-1 receptor antagonist
or an IL-1β blocking antibody prevented GVHD. Furthermore,
they showed that the NLRP3 inflammasome was required for
production of IL-1 in the GI tract and corresponding lethality
post-transplant. Biopsies from patients with GVHD had a
higher proportion of cleaved (active) caspase-1 staining cells by
immunohistochemistry compared to biopsies from transplant

patients without GVHD. PBMCs isolated from patients with
GVHD produced more IL-1β than those from BMT patients
without GVHD and healthy controls. These results provide
strong evidence that the NLRP3 inflammasome/IL-1β pathway is
involved in the pathogenesis of gastrointestinal GVHD and that
further investigation into these pathophysiological mechanisms
is warranted to determine whether this will have potential
therapeutic implications. In this regard, it is noteworthy that
transplantation of microRNA(mir)-155-deficient dendritic cells
has also been shown to cause less GVHD in the GI tract due to
defective inflammasome activation (75). This observation could
potentially be exploited clinically using antagomir administration
to inhibit mir-155.

INTERLEUKIN 33/ST2 AXIS

One of the more recently identified pathways in GVHD biology
is the IL-33/ST2 axis. IL-33 is a member of the IL-1 superfamily
that has been identified as an alarmin and is released during cell
injury and necrosis to initiate the immune response (76). IL-33
is produced primarily by a variety of non-hematopoietic cells
which include endothelial cells, fibroblasts, and epithelial cells in
the intestines and bronchi. Within the GI tract, in particular, IL-
33 is expressed by α-SMA+ subepithelial myelofibroblasts which
have also been termed pericryptal fibroblasts (77). Release of
IL-33 leads to binding to its membrane receptor, ST2, which is
expressed on a large number of immune cells (i.e., TH2 cells,
regulatory T cells, type 2 innate lymphoid cells, macrophages,
and granulocyte populations) (78). Notably, a soluble form of the
receptor, sST2, lacks transmembrane and cytoplasmic domains
and serves as a decoy receptor to IL-33, hampering the ability of
this cytokine to elicit and effect in target cells (76).

In preclinical studies, IL-33 and sST2 have both been shown
to be increased in the blood of mice during GVHD (79, 80). IL-
33 is specifically increased in the GI tract where it is produced
by non-hematopoietic cells in both murine models and patients
with stage IV acute GVHD (79). The mechanism by which
the IL-33/ST2 axis manipulates GVHD is complex. Transplant
recipients that are deficient for IL-33 are protected from GVHD
and administration of IL-33 in the early post transplantation
period (days 3–7 post-transplant) was shown to exacerbate this
disease (79), suggesting a proinflammatory role. Post-transplant
IL-33 administration was associated with reduced survival,
higher serum TNF-α, and an increased number of infiltrating
intestinal donor T cells (79). Of note, post-transplantation
blockade of IL-33 with an sST2-Fc receptor fusion protein
also attenuated GVHD. In contrast, peri-transplant IL-33
administration (days −10 to +4) attenuated disease (81). This
reduction in GVHD severity was associated with an increase in
recipient mST2+ regulatory T cells, a cell population that is able
to survive after total body irradiation. A reduction in GVHD was
also observed in mice that received peritranspant sST2 blockade,
which potentiates the effects of IL-33 due to an inhibition of
its decoy receptor (80). Notably, sST2 blockade did not affect
expression of mST2 on specific lymphocyte populations, such
as TH2 cells and regulatory T cells (80). These data indicate a
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paradoxical role for IL-33/ST2 signaling in GVHD, whereby early
treatment of IL-33 downregulates inflammation in the GI tract,
whereas administration of IL-33 is proinflammatory once disease
has been established. Thus, the pro or anti-inflammatory effects
of IL-33 in GVHD appear to be highly schedule dependent.While
the reasons for this are still not completely clear, this disparity
could be due to differences in cell populations which populate the
gastrointestinal tract at various stages post-transplantation. For
example, recipient Tregs of which there is an ST2+ subset which
can be expanded with peritransplant IL-33 treatment are present
early post-transplantation and can suppress GVHD (81). In fact,
the depletion of Tregs during peritransplant IL-33 administration
results in the loss of protection against GVHD (81). Conversely,
IL-33 signaling appears to act primarily on ST2+ conventional T
cells later post-transplantation resulting in an exacerbation of the
disease (79). The temporal effects of IL-33 in these models may
also be, to some extent, dose-dependent, as mice which received
IL-33 peritransplant and were protected from GVHD received
more than twice the dose over a much longer treatment window
(81) than those that received posttransplant IL-33 (79).

In allogeneic HSCT patients, ST2 has emerged as a powerful
biomarker that is predictive for GVHD severity in patients.
Specifically, biomarker panels obtained early post transplantation
which incorporated ST2 have been shown in several studies to
be predictive for increased non-relapse-related mortality (82–
84). In addition, in one of these studies (83), severe GI tract
GVHD was also significantly greater in those patients who were
in the cohort with highest levels of ST2. ST2 has also emerged
as a critical component of a biomarker panel that has been
shown to be predictive for response or lack thereof in steroid
refractory acute GVHD (85). This disease carries a particularly
high mortality which is typically attributable to disease involving
the GI tract which is often the proximate cause of death. To
date, there have been no clinical studies which have attempted
to interrupt signaling through the IL-33/ST2 pathway in order
to reduce inflammation. However, recent efforts to develop small
molecule inhibitors that interfere with this pathway has shown
promise in murine studies where there has been a reduction in
sST2 plasma levels, reduced GVHD, and improved survival (86).
Thus, these data provide hope that targeting of this pathway may
soon be clinically feasible.

OTHER CYTOKINES

Granulocyte-Macrophage Colony

Stimulating Factor (GM-CSF)
GM-CSF was originally characterized and designated as a
hematopoietic growth factor which could promote myelopoiesis
in the bone marrow. However, more recent studies have
demonstrated that GM-CSF is largely redundant in the
development of the hematopoietic system as mice deficient in
either the cytokine or its receptor have only limited defects in
steady-state myelopoiesis (87, 88). Rather, GM-CSF has been
implicated as a key signaling molecule which is able to activate
the innate immune system in autoimmune and proinflammatory
syndromes such as experimental autoimmune encephalomyelitis

(EAE) and rheumatoid arthritis (89). In EAE, for example,
GM-CSF is required for the induction of autoimmunity (90,
91) and serves as a conduit between CD4+ T cells and
CCR2+ macrophages (92). In the latter cell population, GM-
CSF institutes a proinflammatory transcriptional program which
facilitates pathological damage within the central nervous system
(92). Recently, a role for GM-CSF in GVHD has been posited
by Ulrich et al. who described a population of BATF-dependent
IL-7Rhi T cells that produce GM-CSF (93). In this report,
which primarily focused on inflammation in the gastrointestinal
tract, GM-CSF−/− T cells induced less GVHD in the colon
as evidenced by reduced colonoscopy and clinical scores, as
well as increased overall survival. This finding was replicated
in a MHC-mismatched and haploidentical transplant models
by Tughes et al. (94). Interestingly, GVHD was attenuated
when GM-CSF receptor deficient bone marrow donors were
used, suggesting that the proinflammatory effects of GM-CSF
are at least in part mediated through donor myeloid cells.
However, a mechanism or specific target myeloid populations
for GM-CSF signaling were not definitively established. Thus,
further studies are needed to elucidate the full role of
this proinflammatory cytokine. Given that mavrilimumab
(95), an anti-GM-CSF receptor alpha monoclonal antibody,
and MOR103 (96), a humanized anti-GM-CSF antibody, are
currently in clinical trials for the treatment of rheumatoid
arthritis and multiple sclerosis, respectively, GM-CSF could
represent a new target for the prevention of GVHD in the
GI tract.

Interferon-Gamma (IFN-γ)
Donor T cells with a TH1 cytokine phenotype have an important
role in the pathophysiology of GVHD (1, 2). The signature
cytokine of these cells, IFN-γ, has also been demonstrated to
induce pathological damage in the GI tract during GVHD.
However, inhibition of IFN-γ signaling has divergent effects
on GVHD target organs in pre-clinical murine models.
Specifically, these studies have shown that mice transplanted
with IFN-γ deficient grafts have reduced pathology in the GI
tract (14, 97), but rapidly develop an idiopathic pneumonia
syndrome (IPS)-like disease early post-transplantation resulting
in increased mortality (97–99). The protective effect of IFN-γ is
mediated through host non-hematopoietic cells, likely the lung
parenchyma itself (97, 99), which inhibit the production of IL-
6 by signaling through the IFN-γR (99). In contrast, IFN-γR
signaling in T cells appears to be proinflammatory. A reduction in
GVHD severity was observed when recipients were transplanted
with IFN-γR-deficient T cells (97, 100). Additionally, reduced
pathological damage occurred in the GI tract of these recipients
without a commensurate increase in tissue damage in the
lung (100). This was attributable to reduced expression of the
chemokine receptor, CXCR3, which altered trafficking into this
tissue site. To date, likely due to the divergent effects observed
with inhibition of IFN-γ signaling in these pre-clinical models,
there have been no clinical studies targeting this pathway to
ameliorate GVHD in the GI tract.
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CONCLUSIONS

The GI tract is the target organ which induces the most profound
morbidity in patients who develop GVHD after allogeneic HSCT,
and is responsible for much of the mortality associated with
this disease. Inflammatory cytokines have been shown to play a
pivotal role in this process and serve to amplify the pathogenic
effects of alloreactive donor T cells. Ongoing research, primarily
in murine models, has identified a number cytokines (IL-6, IL-
21, IL-23, IL-1, IL-33, GM-CSF) and cytokine pathways (e.g.,
STAT3 signaling dependent, inflammasome-mediated) that are
operative in the pathophysiology of GVHD of the GI tract.
Notably, many of these cytokines or specific pathways can be
targeted with existing, clinically available antibodies or small
molecules designed to inhibit their activity in human transplant

recipients. Thus, there is now optimism that the further evolution
of this work will lead to the rational development of new
strategies designed to reduce the severity of this complication in
man and ultimately result in improved overall survival.
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