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Background: Amide proton transfer (APT) MR imaging has shown great potential in the

evaluation of stroke severity because of its sensitivity to acid environments. However, this

promising MRI technique has not been used to assess treatment efficacy with regard to

stroke recovery.

Purpose: To assess the therapeutic effect of supportive treatment in ischemic stroke

patients using the pH-sensitive APT MRI technique.

Material and Methods: Forty-three ischemic stroke patients at an early stage were

recruited and scannedwith conventional and APTMRI sequences at 3T before treatment.

After treatment, 26 patients underwent a follow-up MRI scan (one to three times on

different days). The magnetization-transfer-ratio asymmetry at 3.5 ppm, usually called

the APT-weighted (APTW) signal, was measured. The APTW signal changes following

treatment were analyzed.

Results: Baseline APTW signal intensities in the infarcted lesions inversely correlated

with baseline stroke severity. Lesion APTW values gradually increased with time in 24

cases (92.3%) with a follow-up MRI scan, showing clinical symptom improvements.

Two cases (7.7%) showed further decreased APTW signal in the follow-up scan,

accompanied by clinical symptom aggravation. Compared to the baseline, significant

APTW signal increases were found for all post-treatment patients (efficacious), whether

based on post-treatment or on stroke onset times. The increase in APTW signal in

the ischemic stroke lesion after treatment was associated with an improvement in

clinical symptoms.

Conclusion: The APTW signal would be a useful imaging biomarker by which to assess

the therapeutic efficacy of ischemic stroke treatment.
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INTRODUCTION

Stroke is one of the leading causes of death, and, due to a
lack of adequate treatments, is a cause of extensive concern
throughout the world (1). China reports more patients with
stroke than anywhere else in the world. It is estimated that
approximately two million new cases are diagnosed annually,
and approximately one million die from the disease (2). For
ischemic stroke, recanalization treatment is an effective way
to increase reperfusion rates and to reduce the final infarct
size, when administered within the first 4.5 h of symptom
onset (3–5). However, due to the time window limitation or
a contraindication, many patients fail to accept thrombolysis
treatment, usually with supportive treatment. The proper choice
of supportive treatment is important for a good outcome. A
reliable predictor of treatment response would play an important
part in the clinic, especially at the early treatment stage, when it is
practical for neurologists to make timely treatment adjustments.

MRI has played an important role in the evaluation of
stroke severity and recovery, as well as in the selection of
therapy regimens (6, 7). Several different kinds of functional
MRI techniques have been used in stroke, for example, diffusion-
weighted imaging (DWI) (8–10), perfusion-weighted imaging
(PWI) (11), and MR angiography (12). Amide proton transfer
(APT) MR imaging (13, 14), a type of chemical exchange
saturation transfer (CEST) imaging (15), has shown promise
in the detection of a separate pH-based acidosis penumbra
in animal stroke models (16–18), even before a diffusion
abnormality. Some early human studies have also proved the
value of APTMRI in stroke (19–22). However, to our knowledge,
no previous studies have been reported about the detection of the
pH environment during the process of supportive treatment. In
this study, we observed the early treatment effects on ischemic
stroke patients using APT-weighted (APTW) (quantified with
the magnetization-transfer-ratio asymmetry at 3.5 ppm), and
explored the potential of pH-sensitive APTW in the management
of ischemic stroke patients at an early stage.

MATERIALS AND METHODS

Subjects
This retrospective study was approved by the Institutional
Review Board of Beijing Hospital. Written informed consent was
acquired from each subject prior to participation in this study.
From April 2014 to March 2015, 61 patients with suspected
stroke were enrolled. The inclusion criteria for this study were:
diffusion-weighted (DW) images showed areas of restricted
diffusion; patients who were not suitable for thrombolysis and
only underwent supportive treatment. The supportive treatment
that these patients underwent mainly included antiplatelet
and anticoagulation therapy, and free radical scavenging. The
exclusion criteria for this study were: a history of head trauma;
central nervous system infection; other neurologic or psychiatric
diseases; or a structural lesion or hydrocephalus on brain
magnetic resonance images. The National Institutes of Health
Stroke Scale (NIHSS) score was used to measure clinical stroke
severity prior to the MR examination. This was performed based

on the level of consciousness (LOC), LOC question, commands,
best gaze, visual field, facial palsy, motor arm, motor leg, limb
ataxia, sensory, best language, dysarthia, and extinction/neglect
of the patient by an neurologist: 0–1: normal or near normal, 1–
4: mild stroke, 5–15: moderate stroke, 15–20: moderate to severe
stroke, and 21–42: severe stroke.

Of the 61 patients, 12 were excluded due to small infarcted
regions (<2–3mm), and six were excluded due to motion
artifacts during the MRI scan. As a result, 43 patients (33 men
and 10 women; mean age, 64.9 years; range, 44–84 years; Table 1)
were included in this study. The first scan was performed prior
to treatment for all patients. Some of these patients continued
to undergo MRI scanning after treatment, one to three times on
different days. The numbers ofMRI scans for the 43 patients were
as follows: 17 patients with one MRI scan; 13 patients with two
MRI scans; eight patients with three MRI scans; and five patients
with four MRI scans. In total, 26 patients had follow-up scans.
The median onset of symptoms until the first research MRI scan
was 3 days (ranging from 6 h to 8 days).

MRI Acquisition
All subjects were imaged on a 3 Tesla Philips MRI system
(Achieva 3.0T; Philips Medical Systems, Best, The Netherlands),
with an eight-channel head coil. The patients were scanned
shortly after the neurological assessment. Axial T2-weighted,
T1-weighted, fluid-attenuated inversion recovery (FLAIR), and
DWI sequences, were acquired prior to APTW imaging. The
APTW imaging slice for each patient was located in the largest
hyperintensity area on the DW images. APTW imaging was
performed using a 2D single-slice sequence, based on pseudo-
continuous wave, off-resonance RF irradiation (saturation
duration, 800ms; power level, 2 µT), and a single-shot, turbo-
spin-echo readout. We set the APTW position parameters,
including the AP, FH and RL the same as the slice of DWI
to further improve registration. The other parameters were
as follows: repetition time, 3,000ms; turbo-spin-echo factor,
54; field of view, 230mm × 221mm; matrix, 105 × 100
(reconstructed to be 400 × 400); slice thickness, 6mm. A multi-
offset, multi-acquisition APTW imaging protocol, similar to
previous studies (23–25), was used. The 31 offsets were 0, ±0.25,
±0.5,±0.75, ±1 (2), ±1.5 (2), ±2 (2), ±2.5 (2), ±3 (2), ±3.25
(2), ±3.5 (8), ±3.75 (2), ±4 (2), ±4.5, ±5, ±6 ppm (the values
in parentheses were the number of acquisitions, which was 1,
if not specified). An unsaturated image was acquired for signal
normalization. The acquisition time was 3min 12 s.

Imaging Processing
The APTW imaging analysis was performed using the Interactive
Data Language (ITT Visual Information Solutions, Boulder, CO).
To reduce possible motion artifacts during the scanning, the
acquired APTW image series for each case was registered to the
saturated image at 3.5 ppm, using a rigid-body transformation
with three degrees of freedom (26). Then, the z-spectrum (Ssat/S0,
in which Ssat and S0 are the signal intensities with and without
selective RF irradiation, respectively, plotted as a function of
saturation frequency offset, relative to water) was organized and
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TABLE 1 | Basic patient demographic data.

Patient no. NIHSS at

arrival

Time since

symptom

onset

Hemisphere Lesion

location

Territory

affected

Symptoms Treatment Follow-

up

MRI

Follow-up time

(since symptom

onset)

1 6 1 day R Parietal and

occipital lobe

MCA Paralysis of left

limbs

aspirin, atorvastatin Y 6, 34 days

2 5 3 days L Corona

radiata

MCA Activity disorder of

right limbs

aspirin, atorvastatin, low

molecular weight heparin

Y 4 days

3 5 2 days L Corona

radiata

MCA Paralysis of right

limbs and

right-sided

hypesthesis

aspirin, atorvastatin, low

molecular weight heparin

Y 4 days

4 11 2 days R Basal ganglia MCA Activity disorder of

left limbs

aspirin, atorvastatin, low

molecular weight heparin

Y 6 days

5 10 19 h R Basal ganglia MCA Left-sided

hypesthesis

aspirin, atorvastatin, low

molecular weight heparin

Y 6 days

6 10 2 days L Basal ganglia MCA Limb weakness

and alalia

aspirin, atorvastatin, low

molecular weight heparin

Y 4 days

7 2 1 day R Corona

radiata

MCA Left limb

weakness

aspirin, clopidogrel,

atorvastatin

Y 2, 7days

8 3 2 days L Parietal lobe MCA Right limb

weakness

aspirin, clopidogrel,

atorvastatin

Y 3, 8, 38 days

9 1 1 day R Corona

radiata and

parietal lobe

MCA Left limb

weakness

aspirin, clopidogrel,

atorvastatin

Y 2, 7 days

10 2 10 h L Corona

radiata and

insular lobe

MCA Right limb

weakness

aspirin, atorvastatin Y 2 days

11 5 20 h R Parietal and

parietal lobe

MCA Left limb

weakness

aspirin, clopidogrel,

atorvastatin

Y 2, 8 days

12 2 6 h L Corona

radiata

MCA Right limb

weakness and

alalia

aspirin, atorvastatin Y 2, 8 days

13 3 12 h L Centrum

ovale

MCA Right limb

weakness and

dizziness

aspirin, rosuvastatin

calcium, low molecular

weight heparin

Y 2, 8 days

14 10 1 day R Frontal,

parietal,

temporal and

occipital lobe

MCA Left limb

weakness

warfarin N

15 9 9 h R Frontal,

parietal and

temporal lobe

MCA Salivation and

alalia

warfarin N

16 11 20 h R Temporal,

occipital,

insular lobe

and corona

radiate

MCA Left limb

weakness

warfarin N

17 1 3 days R Cerebellar

hemisphere

PCA Dizziness aspirin, clopidogrel,

atorvastatin

N

18 14 2 days L Corona

radiata,

occipital lobe

and insular

lobe

MCA Right limb

weakness

clopidogrel, atorvastatin,

low molecular weight

heparin

N

19 13 3 days L Corona

radiata

MCA Paralysis of right

limbs

clopidogrel, atorvastatin,

low molecular weight

heparin

N

20 14 1 day R Corona

radiata

MCA Paralysis of left

limbs

clopidogrel, atorvastatin,

low molecular weight

heparin

N

(Continued)
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TABLE 1 | Continued

Patient no. NIHSS at

arrival

Time since

symptom

onset

Hemisphere Lesion

location

Territory

affected

Symptoms Treatment Follow-

up

MRI

Follow-up time

(since symptom

onset)

21 6 1 day L Posterior limb

of internal

capsule and

thalamus

MCA Activity disorder of

right limbs

aspirin, atorvastatin, low

molecular weight heparin

Y 2, 12, 32 days

22 7 3 days L Corona

radiata and

external

capsule

MCA Paralysis of right

limbs

aspirin, atorvastatin Y 10, 32 days

23 6 3 days L Corona

radiata

MCA Right limb

weakness

aspirin, clopidogrel,

atorvastatin

N

24 5 10 h L Corona

radiata and

insular lobe

MCA Paralysis of right

limbs and alalia

aspirin, atorvastatin Y 2, 8, 39 days

25 8 1 day L Corona

radiata

MCA Alalia aspirin, atorvastatin, low

molecular weight heparin

Y 2, 8 days

26 7 17 h L Insular,

temporal and

frontal lobe

MCA Right limb

weakness and

alalia

aspirin, clopidogrel,

atorvastatin

Y 3 days

27 4 1 day L Insular MCA Sensory aphasia

and paralysis of

right limbs

aspirin, clopidogrel,

atorvastatin

Y 2 days

28 3 3 days R Frontal and

parietal lobe

MCA Paralysis of left

limbs

aspirin, clopidogrel,

atorvastatin

Y 4 days

29 1 2 days L Temporal and

occipital lobe

MCA Right limb spasm aspirin, atorvastatin Y 3 days

30 12 1 day L Frontal and

parietal lobe

MCA Paralysis of right

limbs and alalia

aspirin, rosuvastatin

calcium, low molecular

weight heparin

N

31 2 6 days L Parietal lobe MCA Paralysis of right

limbs and alalia

aspirin, atorvastatin Y 7, 12, 45 days

32 3 4 days L Parietal lobe MCA Alalia aspirin, atorvastatin Y 7, 8, 31 days

33 8 4 days R Temporal and

parietal lobe

MCA Paralysis of left

limbs

aspirin, clopidogrel,

atorvastatin

Y 7 days

34 1 6 days L Temporal and

occipital lobe,

thalamus and

callosum

PCA Numbness of right

limbs

aspirin, atorvastatin N

35 10 6 days L Frontal and

occipital lobe

MCA Alalia aspirin, rosuvastatin

calcium, low molecular

weight heparin

N

36 2 4 days L Corona

radiata and

basal ganglia

MCA Right limb

weakness

aspirin, clopidogrel,

atorvastatin

N

37 5 6 days R Corona

radiata,

temporal and

frontal lobe

MCA Weakness of both

lower limbs and

dizziness

aspirin, atorvastatin Y 11 days

38 10 5 days L Frontal,

parietal,

temporal and

occipital lobe

MCA Paralysis of right

limbs

aspirin, rosuvastatin

calcium, low molecular

weight heparin

N

39 3 4 days L Parietal lobe MCA Right limb

weakness

aspirin, clopidogrel,

atorvastatin

N

(Continued)
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TABLE 1 | Continued

Patient no. NIHSS at

arrival

Time since

symptom

onset

Hemisphere Lesion

location

Territory

affected

Symptoms Treatment Follow-

up

MRI

Follow-up time

(since symptom

onset)

40 5 7 days L Corona

radiata

MCA Paralysis of right

limbs

aspirin, atorvastatin N

41 8 4 days L Corona

radiata,

frontal and

occipital lobe

MCA Paralysis of right

limbs

aspirin, clopidogrel,

atorvastatin

N

42 2 4 days R Basal ganglia MCA Left limb

weakness

aspirin, rosuvastatin

calcium, low molecular

weight heparin

N

43 1 4 days R Frontal lobe MCA Left limb

weakness

aspirin, atorvastatin Y 11 days

corrected for the B0 field inhomogeneity effect on a voxel-by-
voxel basis, as reported before (23–25, 27, 28). CEST imaging is
quantified through the magnetization transfer ratio (MTR = 1–
Ssat/S0) asymmetry (MTRasym) analysis with respect to the water
resonance (25):

MTRasym(offset) = MTR(+offset)−MTR(−offset)

=
[

Ssat(− offset)-Ssat(+ offset)
]

/S0.
(1)

Specifically for APTW imaging at the offset of 3.5 ppm, we have:

MTRasym(3.5ppm) = APTR+MTR’asym(3.5ppm), (2)

where APTR is the proton transfer ratio for the amide
protons associated with mobile cellular proteins and peptides
in tissue, and MTR′asym consists of various nuclear Overhauser
enhancement (NOE) effects of the upfield non-exchangeable
protons (such as aliphatic protons) of cellular macromolecules
and metabolites (29, 30), including the inherent MTRasym of the
solid-phase magnetization transfer effect (25).

For the quantitative APTW image analysis, the DW images
co-registered to the saturated image at 3.5 ppm and the
corresponding APTW image (26) were used as the anatomical
reference to draw regions of interest (ROIs). For each infarct
lesion, similar to a few previous reports (27, 28), several small
ROIs (Figure 1) were manually selected (100∼125 pixels each)
on the hyperintense brain regions on DW images by a radiologist
who was blinded to patient outcome. The number of ROIs
selected depended on the size of the lesion. Theoretically, the
lowest APTW value may correspond to the lowest pH in the
lesion, a value in which one is interested. Thus, instead of the
mean value for each case, the lowest APTW value and the
corresponding z-spectrum and MTRasym spectrum data were
recorded. The value of contralateral normal-appearing white
matter (CNAWM) mirrored the lesion ROIs was also measured
for each case. The sulci, hemorrhage, or vessels evident on
standard MRI sequences were always avoided. The CNAWM
was relatively homogenous, and only one ROI was selected. The

FIGURE 1 | An example of the ROI selection for quantitative APTW image

analysis on a DW image. Several ROIs (red, 100∼125 pixels each) were

selected within the infarcted lesion, and a ROI (green, 100∼125 pixels) was

selected within the CNAWM for comparison.

APTW difference between an ischemic lesion and the CNAWM
(namely, APTW contrast) was also analyzed. In addition, for each
infarct lesion, the whole infarct lesion was also manually drawn
on the hyperintense brain regions on DW images as ROI.

Statistical Analysis
All data were analyzed using the statistical package SPSS16.0
(Chicago, IL). Pearson’s correlation analysis was performed
between the baseline APTW signals and NIHSS at arrival. For
patients with more than one scan, the longitudinal signal changes
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in stroke after treatment were analyzed. We grouped the patients
using a time frame similar to that reported in the literature (6).
We divided the patients according to post-treatment duration
(a time interval between the beginning of treatment and MRI
scanning): ≤ 96 h; 4 ∼ 7 days; 8 ∼ 21 days; and ≥ 22 days. A
one-way analysis of variance (ANOVA) test, followed by the least
significant difference (LSD) post-hoc test, was used to analyze the
differences in APTW between pre-treatment and post-treatment
with different post-treatment durations. We also divided the
patients according to the onset times: ≤96 h; 4 ∼ 7 days; 8 ∼

21 days; and ≥22 days. APTW MRI signal differences between
stroke patients with and without treatment at the same onset
time were analyzed by an independent-samples t-test. Pearson’s
correlation analysis was performed for the APTW signals with
onset time or post-treatment time. The level of significance was
set at P < 0.05.

RESULTS

Correlation Between Baseline APTW
Signals and NIHSS at Arrival
Both lesion APTW values and APTW contrast values had
significant correlations with the NIHSS at arrival (Figure 2;
r = −0.491; p = 0.001; r = −0.425; p = 0.004, respectively),
while the correlation between pre-treatment ADC and NIHSS at
arrival was not significant (r = 0.01, p = 0.949). No significant
correlation was found between CNAWM APTW values and the
NIHSS at arrival (r =−0.170; p= 0.275).

Change of MTRasym Spectra After
Treatment
The average z-spectra of the ischemic stroke lesions and
CNAWM for the pre-treatment and post-treatment groups were
demonstrated (Supplementary Figure S1). Figure 3 compared
the average MTRasym spectra of the ischemic stroke lesions
and CNAWM pre-treatment and at several time points post-
treatment. The CEST effect was clearly visible in the offset range
of 1–4 ppm in the MTRasym spectra. As reported before (25),
the presence of the nuclear Overhauser enhancement (NOE)
effects (29, 30) upfield from the water resonance caused a negative
background for the asymmetry analysis of the z-spectra, leading
to the negative CEST signals to be observed in the offset range of
>4.5 ppm in the MTRasym spectra. Notably, most CEST signals
in the offset range of 2–5 ppm at pre-treatment were decreased in
the ischemic stroke lesions, compared to CNAWM. The maximal
change appeared at the offset of 3.5 ppm, where the amide
protons of mobile proteins and peptides resonate. The APTW
signal intensities of the ischemic stroke lesion increased gradually
with post-treatment duration (negative values to positive values),
and became even higher than those in the CNAWM at 8 ∼

21 days and ≥22 days post-treatment (0.65 ± 0.39% vs. 0.51
± 0.19%, 0.82 ± 0.79% vs. 0.21 ± 0.35%, respectively, also
see Table 2).

Change of APTW Signals After Treatment
Of 26 patients with follow-up scans after supportive treatment,
24 (92.3%) showed gradually increased APTW signal in the

infarcted lesion with time, accompanied by an improvement in
clinical symptoms. Figure 4 shows a typical case with effective
treatment at 1, 6, and 34 days post-onset. At 1 day post-
onset, DW images showed a hyperintensity in the lesion on the
right frontal and parietal lobes, the APTW images showed a
hypointensity in the same region, and the NIHSS was 6. At 6 days
post-onset, DW images still showed the hyperintensity in the
lesion, while the APTW images showed a considerable increase,
and NIHSS decreased from 6 to 3. As for 34 days post-onset,
DW images showed a hypointensity in the lesion. However, the
APTW images had a further increased signal, which was even
higher than that in the contralateral hemisphere, perhaps due
to cystic liquefactive necrosis (31, 32). The NIHSS fell to 2, with
further clinical improvement.

We quantitatively assessed the APTW signal changes before
and after treatment. For the 24 patients with effective treatment,
a significant increase in APTW values in the infarcted lesions
was observed at all four time points post-treatment (Table 2).
A significant NIHSS decrease was also seen at all time points
post-treatment. In addition, we observed the significant APTW
signal difference between the pre-treatment and post-treatment
patients with the same post-onset time (Table 3). At two post-
onset times of ≤96 h and 4–7 days, the APTW signal intensities
were significantly higher in the post-treatment patients than in
the pre-treatment patients, consistent with improved NIHSS in
the post-treatment patients, while the CNAWM APTW showed
no significant differences. The data for two later post-onset
times of 8–21 days and ≥22 days were not analyzed because
no untreated subjects had been recruited. This corresponded to
significant correlations between lesion APTW signal intensities
and post-treatment time (Figure 5B) or stroke onset time
(Figure 5C) for the treated patients.

The remaining two patients (7.7%) showed further decreased
APTW in the infarcted lesion on the second scan (the first scan
after treatment), accompanied by clinical symptom aggravation.
For example, the first case was scanned at 3 days post-onset,
showing the DWI hyperintensity and APTW hypointensity
(lesion APTW = −1.10%) on the right frontal lobe, with an
NIHSS of 3. One day later (post-treatment), DW images still
showed a hyperintensity in the lesion, while APTW images
showed further decreased signal (lesion APTW=−1.91%), with
an increase of the NIHSS to 6. The symptoms of this patient
further worsened, and his NIHSS reached 8 at 11 days post-
onset. These two patients whose treatment was ineffective were
excluded from the quantitative analysis in Tables 2, 3.

DISCUSSION

Based on our results, baseline pre-treatment APTW signals
correlated, inversely and significantly, with the baseline NIHSS,
even though the infarction occurred in different regions
of the brain. After treatment, most patients (over 90%)
showed a gradually increasing APTW MRI intensity over time,
accompanied by clinical symptom improvements and, therefore,
an improvement in NIHSS; however, few patients showed a
clearly decreasing APTWMRI intensity, accompanied by clinical
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FIGURE 2 | Correlations between pre-treatment APTW signal intensities and NIHSS at arrival. Significant correlations were found between lesion APTW values and

NIHSS (r = −0.491; p = 0.001) (A), as well as APTW contrast values and NIHSS (r = −0.425; p = 0.004) (C). No significant correlation were found between

CNAWM APTW values and NIHSS (r = −0.170; p = 0.275) (B).

FIGURE 3 | The average MTRasym spectra (mean ± standard error) of the ischemic stroke lesions (red line) and CNAWM (green line). (A) Pre-treatment, n = 43; (B)

≤96 h post-treatment, n = 18; (C) 4∼7 days post-treatment, n = 14; (D) 8∼21 days post-treatment, n = 3; and (E) ≥22 days post-treatment, n = 7.

symptom aggravation. APTW MRI is most likely sensitive to
intracellular acidosis in stroke, including in animal models
(33–36) and in patients (19–22), because of its sensitivity to
pH changes. The increase in APTW MRI intensity indicates
amelioration of intracellular acidosis, or relief of brain tissue
ischemia and hypoxia. This explains the improvement in clinical
symptoms. In contrast to this, the decrease in APTW MRI
intensity indicates an aggravation of brain tissue ischemia and
hypoxia, which would result in more serious clinical symptoms.
It appears that APT imaging can provide unique information
about post-treatment status and make the therapeutic effect
visible. This also makes it possible to predict treatment effect
by observing the APTW MRI signal changes after supportive
treatment, especially the changes on the first scan after treatment.
Increased APTW values may predict a good treatment effect,
and decreased APTW values may predict a poor treatment effect

at the very beginning of supportive treatment, which will help
neurologists to make proper adjustment to treatment. Thus, the
APTW signal may have the potential to serve as a new predictable
imaging biomarker, additional to the MRI biomarkers listed in
the review of Kidwell (37).

To explore the effect of supportive treatment on ischemia,
we investigated longitudinal changes in APTW signal intensities
based on post-treatment duration and onset time (Tables 2, 3,
as well as Figure 5). For the patients with effective treatment,
increased APTW values were observed with post-treatment
duration, likely indicating the pH increase, which could be used
to explain the improved symptoms and NIHSS improvement.
For the onset times ≤96 h and 4–7 days, the APTW MRI
signals of the treated patients were significantly higher than
those of the untreated patients, which may have indicated a
pH increase. Note that the change in APTW between these
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TABLE 2 | Comparisons of APTW signal intensities (mean ± SD; % of the bulk water signal) for pre-treatment and post-treatment groups and P-values when comparing

to pre-treatment.

Pre-treatment ≤ 96h post-treatment 4 ∼ 7 d post-treatment 8 ∼ 21 d post-treatment ≥22 d post-treatment

(n = 43) (n = 18) (n = 14) (n = 3) (n = 7)

Lesion APTW −1.01 ± 0.91 −0.45 ± 0.63 −0.23 ± 0.53 0.65 ± 0.39 0.82 ± 0.79

P-value – 0.004 <0.001 <0.001 <0.001

CNAWM APTW 0.36 ± 0.45 0.34 ± 0.42 0.19 ± 0.52 0.51 ± 0.19 0.21 ± 0.35

P-value 0.905 0.211 0.572 0.394

APTW contrast −1.37 ± 0.87 −0.80 ± 0.68 −0.42 ± 0.38 0.14 ± 0.27 0.61 ± 0.59

P-value 0.002 <0.001 <0.001 <0.001

NIHSS 6.0 ± 3.9 3.2 ± 1.6 3.1 ± 1.4 2.5 ± 0.7 1.4 ± 0.5

P-value – 0.006 0.002 <0.001 <0.001

CNAWM, contralateral normal-appearing white matter; NIHSS, National Institutes of Health stroke scale. Bold values means that P < 0.05.

FIGURE 4 | APTW, DW, FLAIR, and T1-weighted (T1W) images of a representative patient with ischemic stroke (male, 52 years old) at 1 day (A), 6 days (B), and 34

days (C) post-onset (or pre-treatment, 5 days, and 33 days post-treatment). DW images showed a hyperintensity in the lesion on the first and second scans, but

hypointensity on the third scan. APTW images showed gradually increased signal intensity values in the corresponding lesion area. The NIHSS was 6, 3, and 2 at 1, 6,

and 34 days post-onset, respectively. Note that the geometry and location of the slice was not positioned very well at the last time point.
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TABLE 3 | Comparisons of APTW signal intensities (mean ± SD; % of the bulk water signal) for pre-treatment and post-treatment groups with different stroke onset times.

Onset time ≤96 h Onset time 4 ∼ 7 days Onset time

8 ∼ 21 days

Onset time

≥22 days

Pre-

treatment

(n = 30)

Post-

treatment

(n = 12)

P-value Pre-

treatment

(n = 13)

Post-

treatment

(n = 11)

P-value Post-

treatment

(n = 12)

Post-

treatment

(n = 7)

Lesion −1.13 ± 1.05 −0.33 ± 0.61 0.019 −0.75 ± 0.45 −0.30 ± 0.34 0.011 −0.05 ± 0.69 0.82 ± 0.79

CNAWM 0.43 ± 0.50 0.46 ± 0.28 0.862 0.20 ± 0.26 0.19 ± 0.50 0.938 0.27 ± 0.57 0.21 ± 0.35

APTW contrast −1.56 ± 1.01 −0.79 ± 0.51 0.017 −0.95 ± 0.46 −0.49 ± 0.32 0.013 −0.31 ± 0.57 0.61 ± 0.59

NIHSS 6.3 ± 4.2 3.2 ± 1.6 0.002 5.5 ± 3.7 3.1 ± 1.4 0.048 2.4 ± 0.8 1.6 ± 0.6

CNAWM, contralateral normal-appearing white matter; NIHSS, National Institutes of Health stroke scale. Bold values means that P < 0.05.

FIGURE 5 | (A) Correlation analyses between APTW and onset time for the untreated patients, showing no significant correlations for lesion APTW (r = 0.043;

p = 0.784), CNAWM APTW (r = −0.187; p = 0.229), and APTW contrast (r = 0.142; p = 0.362). (B) Correlation analyses between APTW signal intensities and

post-treatment time for the treated patients. Lesion APTW (r = 0.537; p < 0.001), CNAWM APTW (r = −0.127; p = 0.422), and APTW contrast (r = 0.631; p <

0.001). (C) Correlation analyses between APTW signal intensities and onset time for the treated patients. Lesion APTW (r = 0.484; p = 0.001), CNAWM APTW

(r = −0.211; p = 0.179), and APTW contrast (r = 0.625; p < 0.001). Both (B,C) show significant correlations for lesion APTW and APTW contrast, but no significant

correlations for CNAWM APTW.

two untreated patient groups may reflect spontaneous recovery,
which can be supported by the decrease NIHSS. The untreated
patients with an onset time of 8–21 days and ≥22 days were

not analyzed in this study, because there were no cases collected,
which is not practical in the clinic. However, we could still
see an increasing tendency in APTW signals after treatment
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in patients who had an onset time of 8–21 days. These results
may indicate that the pH value of the infarction increased and
cerebral alkalosis occurred at a late stage after treatment. This
might be indicative of the influence of treatment, which would
result in a pH increase for the relief of intracellular acidosis in the
infarcted region.

The APTW signal quantified from MTRasym(3.5 ppm), as
used in this study, was contaminated with the upfield NOE
signal from mobile and semisolid proton types (29, 30). To
obtain more pure APT signal, several alternative APTW imaging
analysis or acquisition approaches have been proposed recently
(38–42), such as Lorentzian-line-fit analysis and Bayesian model-
based analysis (43). For example, it has been shown recently on
stroke patients (44) that APTW imaging quantification using the
extrapolated semi-solid MT model reference approach (41, 42)
can achieve not only more pure APTW signals but also higher
detection sensitivity, which may allow reliably delineation of
ischemic penumbra tissues. However, these methods typically
require a longer acquisition time, and their use for the routine
practice requires further validation. Further, according to the
theory (45), in addition to tissue pH, some other tissue factors
(amide proton concentration, water proton concentration, and
T1 of water) may affect the measured APTW signal. However,
it is very important to realize that the contributions of tissue
water content and T1 to APTW are mostly compensated in
many diseases, as discussed in the previous papers (13, 46).
Notably, in spite of its complexity, some recent numerical
simulation studies (47, 48) have clearly demonstrated that the
APT effect in tissue is actually not associated with water T1 at
the saturation power of 2 µT used in this study. Consequently,
the fact that the APTW signal increased during stroke recovery
may suggest the amelioration of intracellular acidosis or even
the occurrence of cerebral alkalosis, consistent with some early
31P MR spectroscopy studies (49, 50), but further validation
is required.

In order to determine the robustness of the multiple small
ROI selection method used, we further evaluated the mean
APTW values and mean APTW contrasts across the infarct
area drawn in the whole hyperintense brain regions on DW
images (Supplementary Results). The lowest APTW seemed to
provide more or similar information than the mean APTWof the
whole lesion.

Some other limitations to this study should also bementioned.
First, we used 2D APT sequences in this study, and thus, only
one slice was evaluated. To minimize possible error, we chose
the central slice with the largest infarct size. In a planned
future study, 3D APT sequences, as reported in the literature
(51), would be used. Second, some other factors which may
correlate with the treatment effect, such as the residual stenosis or
occlusion of the affected vessel(s), the collateral flow, the degree
of diffusion-perfusion mismatch, and the infarct volumes, were
not analyzed in the present study. Third, the sample number
was relatively small, and MRI scans had the very heterogeneous
time points. Because of the sample size limitation, we did not
statistically analyze the difference between the effective and
ineffective (only two cases) treatment groups, although we could
infer that a significant decrease in APTW signal could be found

after treatment. Further analysis with more samples is needed
in the future. Fourth, in this work, we focused on the recovery
at sub-acute and early chronic stages post-stroke. A further
study with patients at hyper-acute and acute stages will be
performed in the near future. Finally, a further study should be
performed to determine the utility of APTW signal as imaging
biomarker to predict the final outcome of patients. The utility
of APTW in the decision of thrombolysis and endovascular
treatment of acute stroke patients, particularly in a multicenter
trial, should be another interesting study to be performed in
the future.

CONCLUSION

APTW MRI is a promising non-invasive technique with
which to characterize pH changes in the infarcted lesion in
ischemic stroke patients. The increase in APTW signals in
comparison to CNAWM may indicate an improvement in
clinical symptoms, while a decrease in APTW signals may
indicate a worsening of clinical symptoms. These findings
would provide a new insight into the microenvironmental
change in the ischemic stroke lesion with treatment. Therefore,
APTW MRI can enable a visual assessment of the therapeutic
effect because of its sensitivity to pH changes, and the
APTW signal could serve as a useful surrogate biomarker
with which to quantify the therapeutic effect of ischemic
stroke treatments.
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