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This study explored (1) whether growth mixture modeling (GMM) could identify different

trajectories of learning efficiency during a working memory (WM) training programme

for young children diagnosed with Attention Deficit Hyperactivity Disorder (ADHD),

compared with a typically developing (TD) control group, and (2) if learning trajectories

and outcomes were different for simple and complex training tasks. Children completed

simple visuospatial short-term memory (VSSTM) and complex visuospatial WM (VSWM)

tasks for 15min a day, 5 days a week, and for 8 weeks. Parent-reported executive

functioning, and children’s WM and attention control, educational achievement, and IQ

were measured prior to (T1), immediately following (T2) and 3 months after training (T3).

GMManalysis showed thatWM training was represented as one learning curve, and there

was no difference for the trajectories of the ADHD and TD groups. The learning trajectory

for the VSSTM tasks across groups was represented as one learning curve and for the

VSWM tasks there were three learning curves. Learning for the VSSTM tasks and for

most children in the VSWM tasks was characterized by an inverted-U shape, indicating

that training was effective for up to 15 sessions, was stable and declined thereafter,

highlighting an optimal training timeframe. For the VSWM tasks, the two remaining groups

showed either a U-shaped or a high inverted U-shaped trajectory, with the latter group

achieving the highest T1T2 change score (i.e., children showed a lower starting point and

the most gain in terms of learning and post-training performance). There were no broader

benefits of training at post-test or follow-up. Further research should explore who would

benefit most from intensive cognitive training, as well as the potential benefits for mental

health and well-being.
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INTRODUCTION

Developmental research has highlighted that attentional control
skills, including working memory (WM), are positively linked
to several indices of adjustment in childhood and adolescence,
such as emotion regulation (reviews by Hadwin et al., 2016;
Moran, 2016). In addition, research has shown that performance
in WM tasks in children and adolescents is positively associated
with educational achievement in core subjects, including text
comprehension and reading (e.g., Daneman and Carpenter,
1980; Perfetti, 1985; Baddeley, 1986) and mathematical problem
solving (e.g., Bull and Scerif, 2001; Swanson and Beebe-
Frankenberger, 2004). These associations are argued to reflect
cognitive potential that is separate from current knowledge (e.g.,
Gathercole et al., 2004; Phye and Pickering, 2006; Halford et al.,
2007; Cowan, 2014).

Several studies have aimed to improve attentional control via
WM training in clinical populations who experience difficulty
with inattention. Training typically focuses on increasing short-
term memory and WM skills using adaptive procedures that
are delivered across multiple 30–40min sessions each week
(Klingberg et al., 2002, 2005). Task difficulty is typically adjusted
automatically to performance across sessions to maximize
learning at the boundaries of an individual’s competence (Cortese
et al., 2015). Several studies have found that improvements in
WM associated with training is underpinned by neural change
(Vinogradov et al., 2012) and that some degree of adaptability is a
necessary precondition for its continuity (Poldrack and Gabrieli,
2001; Lewis et al., 2009).

Evidence further suggests that WM training represents
one potential avenue for reducing symptoms of inattention
and hyperactivity in Attention Deficit Hyperactivity Disorder

(ADHD) (Klingberg et al., 2002, 2005). Building on evidence
of brain plasticity from rehabilitation science and contemporary

developmental neuroscience, WM training is premised on
the notion that it impacts key brain networks implicated in

ADHD (Vinogradov et al., 2012). Additionally, researchers have
suggested that neuropsychological deficits mediate the pathways
between originating causes and ADHD symptoms. It is argued,

therefore, that improvement in neuropsychological functioning,
including WM, may be a prerequisite for ADHD symptom
reduction (Coghill et al., 2005).

Several recent reviews of research in WM training have
questioned the viability of existing training programs to impact
core symptoms and improve daily functioning in individuals
diagnosed with ADHD (Chacko et al., 2014). These have
highlighted the lack of scientific rigor in existing studies. In
addition, they have raised concerns around goodness of fit
that reflects the heterogeneous symptom profile in ADHD.
For example, researchers have concluded that the results of
WM training studies are inconsistent because of inadequate
controls and ineffective measures to understand change in core
cognitive functioning (e.g., Shipstead et al., 2010). Moreover, a
systematic meta-analytic review of WM training studies with
children and adult populations with ADHD used stringent
criteria for inclusion to ensure that all (N = 23) studies were

either randomized controlled trials or quasi-experiments (Melby-
Lervåg and Hulme, 2013). The review found collective short-
term improvements in practiced skills in clinical populations
diagnosed with ADHD, however, there was no clear evidence for
transfer to broader cognitive functioning or generalization (i.e., a
reduction of ADHD symptoms in daily life).

A further meta-analysis considered the effect of cognitive
training on ADHD symptoms, comparing reported outcomes
across individuals who were blind or not blind to the
intervention group (Sonuga-Barke et al., 2013). The analysis
showed significant positive change in parent and teacher reported
ADHD symptoms, however, this effect was lost when blinded
assessments were analyzed. Moreover, a further meta-analysis
showed that reported improvements dropped substantially and
became statistically non-significant when only blinded measures
were considered (Cortese et al., 2015).

Reviews of this evidence highlight that WM training
for individuals diagnosed with ADHD leads to short-term
improvements in WM functions that are directly taught.
Increasingly, however, the proposed effectiveness ofWM training
to improve inattention and the quality of daily life more broadly
for children and young people diagnosed with ADHD has been
met with skepticism. Given that ADHD is a neuropsychological
heterogeneous disorder (Nigg et al., 2005; Willcutt et al., 2005;
Noreika et al., 2013), then the promise of the effectiveness ofWM
training may only apply to a subgroup of individuals who show
specific processing impairments (Cortese et al., 2015).

The current study extended previous work to explore the
possibility that training outcomes were moderated by individual
characteristics. Specifically, we used growth mixture modeling
(GMM) to investigate individual differences in training efficiency
by analyzing trajectories of learning performance across an
extended series of training sessions (Muthén and Muthén, 1998;
Muthén and Shedden, 1999). GMM is a widely applied data
analysis technique used to identify unobserved heterogeneity in
a population and to describe and examine longitudinal change
within these sub-populations (Nylund et al., 2007; Ram and
Grimm, 2009). The results will have significant implications for
understanding the development of key cognitive skills known
to impact emotion regulation and learning and that can be
delivered in an educational context for the benefit of children and
young people.

We used an intensive computer WM training protocol that
was developed in-house and delivered over 40 sessions and
across 8 weeks to young typically developing (TD) children and
those given a diagnosis of ADHD. In addition, we measured
learning post-training and 3 months later to assess its impact
on taught (near transfer) and novel (far transfer) tasks. We
investigated three research questions to consider (1) whether
trajectories of learning in performance during WM training (i.e.,
an index of training efficiency) were different between individuals
diagnosed with ADHD vs. TD controls; (2) whether GMMwould
allow us to identify sub-groups with different trajectories of
training efficiency for simple and complex training tasks and
(3) if different trajectories were associated with near and far
transfer in non-trained outcomes. Near transfer tasks included
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WM tasks completed by the children. Far transfer tasks included
constructs that are known to be associated with performance in
WM training (i.e., educational achievement and IQ) (Holmes
et al., 2009; Jaeggi et al., 2010; Dahlin, 2011; Rudebeck et al.,
2012). In addition, we also explored parent reported general
behavior and cognitive ability in offspring.

MATERIALS AND METHODS

The study was registered via the ISRCTN registry as a
retrospective trial (https://doi.org/10.1186/ISRCTN15153056).

Participants
We recruited one-hundred-and-twenty-six children from pre-
school and primary schools located in theWarsaw area of Poland.
Sixty-one TD children were free of developmental disability and
any other emotional or behavioral disorders (mean age = 6.70,
SD = 0.39, range = 5.90–7.50). Sixty-five children (mean age =
6.70, SD = 0.39, range = 5.90–7.50) met diagnostic criteria for
ADHD (American Psychiatric Association, 2000). In addition,
five children in this group had a comorbid disorder including
oppositional defiant disorder (N = 2) or autism spectrum
disorder (N = 3). No one in the group was using psychotropic
medication (e.g., methylphenidate) for ADHD disorder. The
WM training group was made up of N = 126 children (N = 65
children diagnosed with ADHD and N = 61 typically developing
children; see Figure 1).

WM Training Intervention
The computerizedWM training was developed by the first author
and was based on a published WM training program (Thorell
et al., 2009). Because children younger than 7 years typically rely
on visuospatial STM and WM (e.g., Hitch and Halliday, 1983;
Hitch et al., 1988), training included only visuospatial training
tasks. Five visuospatial short-termmemory (VSSTM) tasks based
on a similar theme were included. In two tasks, participants were
shown the position of a target (presented for 1,000ms) in a series
of 4 × 4 matrices and they were asked to recall its location by
using the mouse to tap the squares on the computer screen.
With progression multiple targets appeared at the same time and
were displayed for 2,000ms. The third VSSTM task required the
participant to tap the squares on the computer screen to identify
the position of a previous target in a series of 2 × 5 matrices.
In the last two VSSTM tasks the child was shown the position
of a target in an irregular place and had to recall all positions by
tapping the mouse in each position on the computer screen.

Three visuospatial WM (VSWM) tasks used moving stimuli
that switched into targets to change color one by one and the
target (presented for 1,000ms) was held in a different color.
When the last target was shown, the stimuli stopped moving, the
child was asked to point to the targets in the order of appearance.
In the first two tasks all stimuli moved in regular way around
circle and then around an irregular figure. In the last task the
movement was irregular.

Each task had six levels of difficulty, and each of these
had three sub-levels. Task performance was recorded as the
highest score obtained in each session and where each level

corresponded to the number of items that the child had to
remember. There were 2 items at level 1 and 7 items at level 6.
Learning (training efficiency) was calculated across eight blocks
each with five training sessions (the possible score range for each
block was 1–18).

The training interface provided children with feedback for
correct and incorrect performance (a smiley or sad face). The task
was continuously adapted across training so that the difficulty
level reflected current performance (i.e., three correct trials were
required in order to advance to the next level, and for each
incorrect trial, difficulty decreased by three sublevels). Children
were asked to complete three tasks per session. The training was
scheduled so that children worked on each task equally across 40
training sessions.

Pre- and Post-training Measures of
Transfer
Working Memory
Our primarymeasure of memory improvement was derived from
a tablet-based test ofWorkingMemory Capabilities (Test pamiȩci
roboczej- TPR, Educational Research Institute) (Kaczan et al.,
2014), designed for children aged 6 and 7 years. It measures three
aspects of STM/WM (Oberauer et al., 2003, 2008), including a
counting span task, a set switching task and a task that measured
memory for spatial locations.

With respect to the counting span task, children counted balls
that were the same color as a target box (located at the bottom
in the left corner of the screen on each trial) and ignored balls
of a different color. The number of balls to be counted on each
screen varied from one to five. On each trial children were asked
to count the number of balls displayed and to remember and
repeat them in the order of appearance. Children completed two
practice trials followed by two sets of two, three, four and five
screens (eight sets in total, presented in a quasi-random order, so
that the difference in number of items to be remembered between
adjacent screens was not bigger than two). Scores represent the
proportion of correctly recalled balls.

In the set switching task, children were presented with a
series of drawings of boys’ or girls’ emotional faces (happy or
sad) presented in a square divided into four quarters (Rogers
and Monsell, 1995). The task was to switch between decision
making criterions that included a YES/NO response; “YES” to
a BOY’S face (if the face appeared in the upper quarter of the
screen and irrespective of emotion) or a HAPPY face (if the
face appeared in the lower quarter and irrespective of gender),
and “NO” otherwise. The task had 6 practice trials and five sets
of 12 trials, where the criterion (between gender and emotion)
switched after two trials and child response triggered the next
trial. On each trial, accuracy was recorded and scores reflected
the proportion of correct trials.

In the spatial location memory task children were asked
to remember the position of 2–5 ladybirds that appeared
sequentially on a matrix (6 × 6 squares) and across 12 trials
(there were three trials at each level of difficulty). The test starts
with a training trial with two objects (ladybirds). Performance
reflects the mean accuracy of remembered sequences between
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FIGURE 1 | shows the flow of participants through each stage of the study. Blue frames display participants through the intervention described in the article. *To deal

with missing data we used Expectation Maximization (EM).

the presented elements and where higher scores (expressed as a
proportion of correct responses) reflected increased accuracy.

Executive Attention
Attentional control was measured using a version of the Erikson
Flanker task (Eriksen and Schultz, 1979). Participants were asked
to identify a centrally presented target (happy face vs. unhappy)
and to ignore flanker faces that were the same (congruent trials)
or different (incongruent trials) to the central face. All children
completed 6 practice trials (3 congruent and 3 incongruent)
and 2 blocks of test trials. Each block included 32 randomly
presented trials; 22 congruent (11 happy and 11 unhappy faces)
and 10 incongruent trials. The main outcome measure in this
task is a conflict score, calculated by subtracting the mean RT
of the incongruent items from the mean RT of the congruent
items on correct trials and where higher scores indicate increased
distractor interference from flanker stimuli.

Parent-Reported Executive Abilities
We used a Polish version of the Behavior Rating Inventory of
Executive Function (BRIEF) (Gioia et al., 2000a). The parent
report BRIEF estimates executive function abilities in children
ranging from 5 to 18-years-old. It includes two domains (i)

behavioral regulation (inhibition, shifting and emotional control)
and (ii) metacognition (initiation, WM, planning, organization
of materials and monitoring). The questionnaire has 86 items
and 72 are used to compute the final score (Gioia et al., 2000a).
Answers are given on a 3-point Likert scale (0-never to 2-often,
making a total possible global score from 0 to 144 (and sub-scale
scores for behavioral regulation and metacognition; maximum
scores of 56 and 88 respectively). Parents are asked to rate
behavior in relation to the context of their child’s everyday home
setting (Gioia et al., 2000b). This questionnaire was adapted from
an existingmeasure that was independently translated into Polish
by two researchers (both fluent in English). The final version
was based on these two translations and a back translation and
was evaluated by a group of experts (child psychiatrists and
psychologists specializing in ADHD). Questionnaire items were
accepted as final when the original and back-translated versions
were identical or very similar.

Educational Achievement
We used the tablet based Test of Knowledge and Competences
(Test UmiejȩtnościnaStarcieSzkolnym–TUNSS; Educational
Research Institute) (Kaczan et al., 2014), designed to measure
knowledge and skill in mathematics, reading and writing in
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6- and 7-year-olds. (1) The numeracy skills scale includes
numbers, measurement, space and shape, relationships
and interconnections. (2) The writing skills scale measures
visuomotor, visuospatial and audiolingual skills, penmanship
and writing. (3) The reading skills scale measures audiolingual,
audiovisual and reading skills. The test is completed individually
and it includes an introductory phase (aimed at building a
relationship with children and to familiarize them with the tablet
and program) and a test phase. In the test phase the child is asked
to complete a maximum of 10 tasks from each scale (reading,
writing and numeracy skills) and the TUNSS score provides
an estimate of a child’s skill levels in each area. The score was
computed as a variable theta (normal distribution, scale with M
= 0 and SD= 1) for each scale (reading, writing and numeracy).

IQ
We used the Raven’s CPM (Raven et al., 1986) to measure
general intelligence. The test is designed for 4–10-year-olds and
consists of 36 items in three sets that test a child’s ability to
complete continuing patterns, to perceive spatial relations and
for abstract thinking. The items are presented in the form of
incomplete patterns or matrices and children are asked to choose
the missing element from a given set of possible answers. Each
item was scored 1 for correct answer or 0 for incorrect answer.
The maximum score is 36. Figure 2 presents a summary of all
pre- and post-tests, follow up measures and WM training tasks.

Procedure
This study was approved by the Institutional Research Ethics of
Empirical Research with the Participation of People as Persons
Researched. Parents and children were invited to take part in the
study via a letter and each provided informed written consent.
The children were asked to practice on the training task for
15min a day on their personal computers at home, 5 days a
week for 8 weeks. There were two inclusion criteria for both
groups: participants were required to have an IQ score of ≥85,
and we asked for an overview of the child’s educational and social
functioning, as reported by their teacher.

Participants were assessed individually in the University of
Social Sciences and Humanities laboratory at three different
time points; prior to training (pre-test/T1), post-test-no more
than 1 week after training was completed (T2) and follow up-
3 months after completing training (T3). All assessments were
conducted by research staff in a laboratory, where children also
completed the working memory, attention control measures,
educational achievement, and IQ test. Additionally, parents of
children completed the BRIEF scale.

RESULTS

Statistical Analysis
We contrasted the training trajectories for the ADHD and the
control (typical develop children–TD) groups by using latent
growth curve modeling (LGCM) for time series data from the
eight training blocks (one block made up 5 training sessions)
(Duncan et al., 2011). First, an intercept-only model (a model
with an assumption of no change in time) and then models

with linear and quadratic slopes were estimated. The fit of
individual models and comparisons between models were based
on the chi-square value (χ2), the normed chi-square (χ2/df),
the non-normed fit index (also known as Tucker–Lewis Index,
TLI), the Comparative Fit Index (CFI), the Root Mean Square
Error of Approximation (RMSEA), the Standardized Root Mean
Square Residual (SRMR), and the Information Criteria Indexes:
the Bayesian Information Criterion (BIC), and the Akaike
Information Criterion (AIC).

A non-significant χ
2 test indicates a good model fit, although

its use is not free from limitations, especially for small sample
sizes. Thus, the ratio of χ

2 to degrees of freedom was also
used, with values lower than 2 assumed to be satisfactory
(Tabachnick and Fidell, 2007). The TLI and CFI threshold values
of 0.90 indicate satisfactory fit, whereas values above 0.95 indicate
good fit (Hooper et al., 2008). For a well-fitting model, the
RMSEA should be close to 0: values below 0.05 indicate a good
model fit and a value of 0.08 represents reasonable errors of
approximation, whereas the SRMR should be below 0.10. The
model with the lower information criterion values are preferable
as they indicate better fit. The group comparison (ADHD vs.
TD) was based on χ

2 Wald test. The maximum likelihood (ML)
as estimator was applied (Muthén and Muthén, 1998). Factor
loadings corresponded directly to the blocks timing.

We then used growth mixture modeling (GMM) to identify
sub-groups of individuals across groups with distinct training
trajectories using data from the eight training tasks. GMM
was performed with Mplus Version 7.3 (Muthén and Muthén,
1998). GMM allows the existence of latent homogeneous sub-
populations of individuals within heterogeneous samples to be
identified (i.e., the latent classes of individuals characterized
by different learning curves). The maximum likelihood with
robust standard errors (MLR) as estimator was applied (Muthén
and Muthén, 1998). Factor loadings corresponded directly to
the blocks timing. Both linear and quadratic slopes were
estimated. Analyses were performed separately for (1) all training
tasks combined, and for (2) VSSTM training tasks and (3)
VSWM training tasks separately, and models for 1–4 classes
were computed.

The models were compared using the Bayesian Information
Criterion (BIC), the Akaike Information Criterion (AIC), the
Bootstrap Likelihood Ratio Test (BLRT), the Vuong-Lo-Mendell-
Rubin Likelihood Ratio Test (VLMRLRT), the entropy value, the
subsample size, and practical usefulness of the latent training
efficiency curve classes (Jung andWickrama, 2008; Duncan et al.,
2011). The model with the lower BIC and AIC values, greater
entropy value (>0.80) indicated good fit (Jung and Wickrama,
2008; Duncan et al., 2011). The BLRT and VLMRLRT tests
compare two models with different parameters. Significant p-
values of tests indicated that the estimated model is preferable
over a model with one fewer latent class (Nylund et al., 2007).
The results were replicated to avoid local solutions (Jung and
Wickrama, 2008).

Finally, we compared the subgroups identified using GMM
in terms of pre-, post-intervention changes in our transfer
of training measures. In order to compare training effects
for sub-groups of children with different trajectories using
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FIGURE 2 | presents a summary of all pre- post-tests, follow up measures and WM training tasks.

one-way ANOVA analyses (SPSS Version 22) with GMM
sub-group membership as baseline (pretest outcome measures)
and change indicators including (1) pretest—posttest (T1T2)
and (2) pretest—follow-up (T1T3) as the dependent (created
by standardized regression residuals) (Duncan et al., 2011).
Increasingly positive scores indicated positive change, scores that
tend to zero reflect no change, and negative scores indicate
negative change.

Missing Data
Missing training efficiency data varied between 2.2 and 28% per
participant across training blocks. In order to maintain the full
time series missing data was modeled using Full Information
Maximum Likelihood (FILM) estimation with robust standard
errors (Asparouhov and Muthen, 2010). This approach uses all
observations in the dataset to produce the maximum likelihood
estimation parameters without imputing data and is reported
to be one of the best approaches currently available to handle
missing time series data (Graham, 2009). Missing data in
non-trained outcome measures (working memory, executive
attention, educational achievement and IQ) varied from 1.1 to
28.9% across all measures. We used Expectation Maximization
(EM) (Dong and Peng, 2013) to deal with missing pre- and post-
intervention data, that were imputed with maximum likelihood
values (Acock, 2005; Schlomer et al., 2010; Dong and Peng, 2013).
Additionally Missing Value Analysis (Little’s MCAR test) was
consistent with a “missing at random” assumption for training
tasks and non-trained outcomemeasures (Chen and Little, 1988).

Training Compliance
Ninety participants (71% overall), 41 TD (67%) and 49 ADHD
(75%), completed 15 or more training session within 8 weeks
(our minimum compliance criteria). Fifteen children did not
initiate training, 21 children withdrew before finishing 15
sessions. Overall, compliance to the intervention was good, in the
context of a long and intensive home-based intervention parent-
supported intervention delivered via the Internet (40 sessions
over 8 weeks). Across 90 participants, 94% (N = 85) finished 20
sessions (1 block), 91% (N = 82) finished 25 (2 blocks), 88% (N
= 79) finished 30 (3 blocks), 72% (N = 65) finished 35 (4 blocks),
and 62% (N = 56) finished 40 sessions (5 blocks).

Process Measures
Compliance was defined as completing ≥15 of the 40 training
sessions within a 8-week period. Using this algorithm, each child
was categorized as compliant or noncompliant to treatment.

Does Training Efficiency Follow Different
Trajectories Between ADHD and TD
Groups?
Table 1 shows the fit indicators for the unconditional growth
models (stability, linear and quadratic change) based on all
training (VSSTM and VSWM) tasks performed over 8 blocks of
training. For all outcomes the quadratic slope model fitted better
than the intercept-only and linear models, thus, the assumption
of quadratic change over training in the whole sample is
preferred, over the assumption of no change or linear change.

Means and variance of intercept and slopes in each task were
significantly different from zero (see Table 2). When group was
considered as a whole there was a significant increase and then
decrease in latent tasks scores across time (i.e., the quadratic slope
has a negative sign). There was also a significant slope factor
variance. That means that children differed, not only in their
initial latent task scores, but also in their training trajectories over
time. However, the training trajectories of ADHD and TD groups
did not differ significantly across all tasks (χ2 Wald test = 0.155,
df = 1, p = 0.694), for the VSSTM (χ2 Wald test = 0.895, df =
1, p= 0.344), and the VSWM (χ2 Wald test= 3.706, df = 1, p=
0.054) tasks.

Are There Sub-groups of Individuals
Marked by Different Trajectories of
Learning/Training Efficiency?
Table 3 presents the descriptive statistics for performance across
training sessions for all tasks, and for the VSSTM and VSWM
tasks separately and for the participant group as a whole. Models
were generated for the total group of participants and across 8
blocks of training efficiency (see Table 4). With respect to all
training tasks, the entropy value and the AIC value supported a
two-class model, whereas the BIC value supported the one-class
solution. VLMRLRT and the BLRT tests indicated that two- or
more-class models were not superior to the one-class solution.
Based on these indices, the one-class model was considered as
the best fit model. With respect to the VSSTM, the AIC, the
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TABLE 1 | Fit indicates for latent growth curve modeling (LGCM) models based on all memory training tasks (WMT) combined, and for visuospatial short-term training

tasks (VSSTM) and visuospatial working memory training tasks (VSWM) over 8 learning sessions and across the whole sample (N = 90).

Loglikeli-hood AIC BIC χ
2 Df P χ

2/df RMSEA CFI TLI SRMR

WMT

Intercept −1282.75 2585.50 2610.49 322.47 34 0.000 9.48 0.307 0.537 0.618 0.245

Linear −1258.32 2542.65 2575.15 273.62 31 0.000 8.83 0.295 0.610 0.648 0.295

Quadratic −1168.11 2368.11 2408.22 93.20 28 0.000 3.33 0.161 0.895 0.895 0.080

VSSTM

Intercept −1261.02 2542.03 2567.03 231.01 34 0.000 6.79 0.254 0.597 0.668 0.321

Linear −1248.46 2522.91 2555.41 205.89 31 0.000 6.64 0.250 0.642 0.677 0.259

Quadratic −1176.02 2386.03 2428.53 61.01 27 0.000 2.26 0.118 0.930 0.928 0.129

VSWM

Intercept −1283.75 2587.50 2612.50 112.93 34 0.000 3.32 0.161 0.830 0.860 0.113

Linear −1264.13 2554.26 2586.76 73.69 31 0.000 2.38 0.124 0.908 0.917 0.107

Quadratic −1251.79 2537.59 2580.08 49.01 27 0.006 1.81 0.095 0.953 0.951 0.073

AIC, Akaike’s Information Criterion; BIC, the Bayesian Information Criterion; RMSEA, the Root Mean Square Error of Approximation; CFI, the Comparative Fit Index; TLI, the non-normed

fit index; SRMR, the Standardized Root Mean square residual.

TABLE 2 | Means and variances in latent growth curve modeling (LGCM).

Intercept Slope linear Slope quadratic

M (SE) SD2 (SE) M (SE) SD2 (SE) M (SE) SD2 (SE)

WMT 9.219** (0.174) 2.729** (0.407) 0.872** (0.081) 0.398** (0.083) −0.133** (0.012) 0.006** (0.002)

VSSTM 9.712** (0.179) 2.473** (0.459) 0.861** (0.099) 0.567** (0.137) −0.121** (0.014) 0.008* (0.002)

VSWM 8.680** (0.224) 3.866** (0.647) 0.335* (0.097) 0.440** (0.135) −0.038* (0.012) 0.006* (0.002)

WMT, all training tasks; VSSTM, visuospatial short term memory tasks; VSWM, visuospatial working memory tasks; *p < 0.01; **p < 0.001.

BIC values, as well as the VLMRLRT test, supported the one-
class model. In contrast, the p-values of the BLRT test indicated
that the two-class model was superior ion. Based on these
indicators, but primarily the meaningfulness of the identified
curves of training efficiency and class sizes, the one-class model
was chosen. With respect to the heterogeneity of the learning
curve of VSWM, the AIC and the BIC values supported the four-
or one-class model respectively. The remaining indices supported
the three-class solution. Based on the meaningful curves of
training efficiency the three-class model was considered as the
best fitting model.

According to GMM analyses, the whole sample (N = 90)
across all WMT tasks represented an inverted U-shaped category
(intercept = 9.22, SE = 0.17, slope = 0.87, SE = 0.09, quadratic
= −1.13, SE = 0.01, p < 0.001), indicating gradual increase to
Block 3 (15 sessions), followed by stability and then a decrease
thereafter (see Figure 3A). Similar results were found for VSSTM
tasks performance. Here training efficiency patterns followed a
curvilinear trajectory, increasing to Block 3, stability and followed
by a decrease (intercept = 9.71, SE = 0.18, slope = 0.86, SE =

0.09, quadratic = −0.11, SE = 0.01, p < 0.001), see Figure 3B.
The analysis for the VSWM produced a three-class model. In
this case, more than half of the sample (N = 69; 76.7%) was
characterized by an inverted U-shaped (see class 2; intercept =
8.41, SE = 0.23, slope = 0.47, SE = 0.08, quadratic = −0.06,
SE = 0.01, p < 0.001), with performance, increasing to block 3,

stability and subsequently decrease. The second group (class 1,
N = 14; 15.5%) was characterized by a U-shaped curve, with the
highest starting scores then deterioration of performance up to
block 5 and then slight increase (intercept = 10.05, SE = 0.83,
slope=−0.94, SE= 0.25, quadratic= 0.13, SE= 0.03, p< 0.001).
The smallest group (class 3; N = 7; 7.8%) was characterized by
a high inverted U-shaped curve (intercept = 7.48, SE = 0.99,
slope = 2.15, SE = 0.26, quadratic = −0.24, SE = 0.03, p <

0.001), highlighting the lowest starting scores and the highest
improvement in performance across training (see Figure 3C).

Do GMM Training Trajectory Groups
Predict Transfer to Different Measures?
Table 5 presents the descriptive statistics for outcome measures
for the three trajectory groups (from GMM in VSWM training
tasks). Considering associations between learning and change
between pretest-posttest (T1T2) outcome measures, the results
showed a statistical trend toward significance for group for the
spatial location memory task [F(2,89) = 2.60, p = 0.080, η

2

= 0.06]. Here, the class 3 achieved the highest change T1T2
score in spatial location memory task (M =0.39, SD = 0.18).
Furthermore, class 1 had a trend toward a significant greater
improvement in T1T2 spatial location memory task (M =0.32,
SD = 0.13), compared with sub-group class 2. All other results
were not significant.
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TABLE 3 | Performance for working memory tasks for the typically developing and children with ADHD over 8 blocks (each with 5 sessions) for all working memory

training tasks (WMT) combined, and for visuospatial short-term training tasks (VSSTM) and visuospatial working memory training tasks (VSWM) separately (N = 90).

Tasks Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8

M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

WMT 9.22 (1.66) 10.19 (2.06) 10.77 (2.30) 10.54 (2.11) 10.57 (2.36) 10.08 (2.38) 9.27 (1.95) 9.15 (2.07)

VSSTM 9.68 (1.70) 10.56 (2.04) 11.04 (2.41) 11.32 (2.17) 11.27 (2.54) 11.21 (2.65) 10.13 (2.16) 10.16 (2.37)

VSWM 8.60 (2.04) 9.16 (2.30) 9.50 (2.45) 9.38 (2.28) 9.03 (2.11) 9.04 (2.31) 9.24 (2.30) 9.06 (2.03)

TABLE 4 | Fit indices for GMM models based performance for WM tasks for the typically developing and clinical intervention groups over 8 blocks (with including 5

sessions) for all tasks combined (WMT) and for visuospatial short term memory (VSSTM) and visuospatial working memory tasks (VSWM) separately (N = 90).

Model Log likelihood Entropy AIC BIC VLMRLRT (p-value) BLRT (p-value) Class sizes (n)

WMT

1 class −1168.11 - 2368.23 2408.22 - - 90

2 class −1157.16 0.971 2358.33 2413.32 0.297 0.109 5/85

3 class −1156.95 0.842 2363.91 2426.40 0.650 0.375 63/4/23

4 class −1153.74 0.716 2369.48 2446.98 0.555 0.999 11/25/6/48

VSSTM

1 class −1176.02 - 2386.03 2428.53 - - 90

2 class −1186.85 0.698 2411.69 2459.19 0.127 0.000 27/63

3 class −1168.17 0.734 2386.33 2448.83 0.170 0.267 36/20/34

4 class n/aa n/a n/a n/a n/a n/a n/a

VSWM

1 class −1251.79 - 2537.59 2580.08 - - 90

2 class −1259.12 0.778 2557.12 2604.61 0.040 0.000 74/16

3 class −1245.23 0.863 2540.46 2602.95 0.028 0.030 14/69/7

4 class −1237.52 0.714 2537.04 2614.54 0.379 0.500 5/39/34/12

AIC, Akaike’s Information Criterion; BIC, the Bayesian Information Criterion; VLMRLRT, the Voug-Lo-Mendel-Rubin Likelihood Ratio Test; BLRT, the Bootstrap Likelihood Ratio Test. Best

fitted parameters are bolded.
aModel did not converge.

DISCUSSION

The current study extended previous research to utilize GMM
to explore learning/training efficiency during an extended WM
training protocol for TD children and children given a diagnosis

of ADHD. We examined performance curves using GMM
across 40 training sessions (represented in 8 blocks) to explore

performance between groups and across the sample. In addition,

we investigated whether child characteristics were important in
understanding individual differences in learning. Furthermore,
we considered learning for simple and complex training tasks
on training efficiencyand transfer to tasks that were conceptually
similar to trained tasks (near transfer), as well as those not
associated with training (far transfer).

Considering group differences in training efficiency, the
results showed that young children diagnosed with ADHD did
not differ from the TD group in their learning trajectories, and
where this result was evident for all training tasks combined and
when considering training on learning simple VSSTM, as well
as more complex VSWM tasks. Specifically, the results showed
that across groups learning during WM training (across all WM
and for simple short termmemory tasks) was characterized by an
inverted-U highlighting initial learning (increased performance

to block 3; around 15 training sessions), stability and then gradual
decrease in performance. When learning more complex tasks
(VSWM), three independent learning curves were identified;
most children followed the same inverted-U trajectory described
above, and two smaller groups were characterized by a U-shaped
curve (a high starting point, followed by initial deterioration and
then increase) or a sharp inverted-U, that showed the largest
increase in learning over the first three blocks. Further analysis
highlighted that this latter group showed the lowest pre-training
WM scores and the highest T1T2 change.

The results provide a novel set of findings associated with
training WM in young children. They highlight that across
training tasks learning was most evident in the first 15 training
sessions, it then remained stable and showed some deterioration
thereafter. The results indicate thatWM training is most effective
in the short term, and that young children (at least in this sample)
did not benefit from an extended approach to training. These
results contradict previous findings from adult samples, where a
greater number of training sessions was linked to more effective
outcomes (Jaeggi et al., 2008; Schmiedek et al., 2010). This
difference raises the possibility that the motivation for intense
and sustained intellectual effort across weeks in young children
is different compared with adults. It is possible that adults have
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FIGURE 3 | latent learning curve over 8 blocks for all tasks in all working memory training tasks (WMT; A), visuospatial short-term training tasks (VSSTM; B) and

visuospatial working memory training tasks (VSWM; C) separately (N = 90).
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TABLE 5 | Performance for pre-test outcome measures for three trajectory groups (from GMM in VSWM training tasks).

Pretest outcome measures Class 1 (U-shaped curve) Class 2 (inverted U-shaped curve) Class 3 (high inverted U-shaped curve)

M (SD) M (SD) M (SD)

WM global 0.76 0.11 0.73 0.09 0.71 0.07

Counting span 0.51 0.24 0.47 0.21 0.44 0.24

Set switching 0.87 0.12 0.81 0.14 0.89 0.06

Spatial STM 0.91 0.09 0.91 0.06 0.82 0.12

Flanker −3.10 252.81 79.50 331.34 244.61 228.84

BRIEF global 61.08 19.04 53.90 24.35 63.79 26.41

Behavioral regulation 21.93 11.06 20.64 11.30 24.57 12.71

Metacognition 40.14 15.79 35.38 16.06 41.00 18.16

Knowledge/global 0.40 0.80 0.38 0.63 0.17 0.63

Maths 0.40 1.24 0.65 0.47 0.54 0.54

Reading 0.35 1.03 0.38 0.95 0.10 0.91

Writing 0.46 0.99 0.11 0.84 −0.12 0.74

IQ 24.64 3.71 25.21 4.03 23.14 5.27

Pretest measures: Test of Working Memory Capabilities (WM Global score and subscale scores: Counting Span, Set Switching, Spatial Short Term Memory), Attentional Control (Flanker

Conflict Score), Behavior Rating Inventory of Executive Function (BRIEF) Questionnaire (Global and Behavioral Regulation and Metacognition Subscale Scores), Test of Knowledge and

Competences (Global and Maths, Writing and Reading skills subscale scores) and IQ (Raven’s Colored Progressive Matrices).

increased metacognitve skills in learning and therefore may be
more aware of the potential benefits of their efforts. Alternatively,
children may have a limited ability to acquire new mnemonic
strategies, and while existing techniques allow them to learn
quickly at the beginning of training, this limitation may prevent
them from developing further as the training progresses. This
explanation is consistent with the development of short term
memory, which highlights that it is not until middle childhood
(around 7 years of age) that children will typically start to utilize
mnemonic strategies to enhance performance in memory tasks
(Cowan, 1997). Further studies into the potential moderators
of outcome, for example, an exploration of the function of
mnemonic techniques and metacognitive awareness in learning
would allow for further delineation of children whomight benefit
most from training.

The results also highlighted training in themost complex tasks
revealed a different pattern of learning efficiency. Specifically,
they indicated that a small subgroup of children who performed
less well at pre-test benefitted most from training and achieved
the highest change score (T1T2) in complex spatial WM tasks
(showing a high inverted U-shaped training curve). This finding
highlights most benefit for this group of children on near
transfer tasks, i.e., those that tap working memory function
(vs. attentional control more broadly; see also Oberauer et al.,
2008). The current study did not reveal benefits to executive
functioning more broadly or to parent reports of daily behavior
and educational achievement, see also Chacko et al. (2014) for
similar results. In addition, one further group of children in
the current study did not show any benefit of training. While
the lack of transfer to distant, non-trained tasks in the current
study might reflect the decline in learning over the course of
the program, this result is consistent with recent reviews of WM
training which suggest that WM training has most impact on
tasks that are most similar to those that are trained (Shipstead

et al., 2010). In the current paper, the results suggest that children
who show difficulties with WM benefitted most from training.
Future research should be focused more carefully on identifying
further sub-groups that might benefit fromWM training.

The current study revealed that most children were able to
show improvements in WM tasks during training and where
this increase was most effective for 15 sessions of training (with
stability and decrease thereafter). In addition, it highlighted that
children who experienced the lowest scores onWM tasks showed
most learning and broader benefits post-training in similar non-
trained WM tasks. There was no evidence of broader benefits
in attention tasks or on parent-reported daily functioning
and educational achievement. Future research should focus on
possible enhancement of the capacity working memory through
training and the possibility of far transfer (e.g., academic skills).
Further studies into the potential moderators of outcome, for
example, an exploration of the function of mnemonic techniques
and metacognitive awareness in learning would allow for further
delineation of children who might benefit from training. The
results indicate that those young children who show difficulties
with tasks that require attentional control in an educational
context might benefit from WM training, and further research
should focus on understanding whether there are longer term
benefits of enhancing working memory skills in the short term.
In addition, the research field would benefit from the use of
standardized and reliable and valid tests to assess executive
functions and evaluate the effectiveness of training tasks. This
could facilitate a more accurate analysis of cognitive training
effectiveness and the stability of its effects over time.

The present study had several limitations. In order to
understand potential change associated with time or the active
nature of this intervention, the study would have benefitted
from a placebo intervention group, as well as a passive control
group. In addition, WM training was conducted via the Internet
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and the children participated under parental supervision,
consequently, we were not able to monitor treatment integrity
across the intervention. Moreover, a diagnostic approach that
generated a continuous measure of ADHD would have enabled
a comprehensive profile of symptoms across the entire sample.
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