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The aim of the present work is to devote a friendly approach based on Adomian

decomposition method (ADM) to find the numerical solution of the time-fractional

Newell-Whitehead-Segel equation. Newell-Whitehead-Segel equation plays an efficient

role in non-linear systems which describe the appearance of the stripe patterns in two

dimensional systems. The numerical results obtained by proposedmethod are compared

with exact solution for different values of fractional order α. Plotted graph illustrate the

efficiency and accuracy of the proposed technique.
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INTRODUCTION

Fractional calculus is a field of applied mathematics, three centuries old as the conventional
calculus. Fractional calculus deals with derivatives and integrals of arbitrary orders. During the last
decade, superb improvements have been visualized in the field of fractional calculus, very popular
amongst science and engineering community. In recent year, differential equation containing
fractional order derivatives has been contributed in various fields of science and engineering
[1–4] such as diffusion equation, polarization, electro-magnetic waves, visco elasticity, electrode-
electrolyte heat conduction, finance [5], control theory, biomedical engineering, biology [6] etc. In
order to achieve the goal of highly accurate solution, many authors illustrate various techniques
such as Adomian decomposition method [7], Finite difference method [8], Generalized differential
transform method [9], Finite element method [10], Fractional differential transform method [11],
Homotopy perturbationmethod [12, 13], Iterative methods [14], Variational iterationmethod [15],
Homotopy analysis method [16], Differential quadrature method [17], Homotopy perturbation
Sumudu transform method [18], Homotopy analysis transform method [19], Local fractional
homotopy perturbation Sumudu transform method and Local fractional reduced differential
transform method [20], Homotopy analysis Sumudu transform method [21] etc.

Recently various author used a new fractional derivative with Mittag-Leffler type kernel
by different numerical method like Laplace decomposition method [22] and iterative method
[23] etc.

The Newell-Whitehead-Segel equation model is the interaction of the effect of the diffusion
term with the non-linear effect of the reaction term. Fractional Newell-Whitehead-Segel equation
is written as

uα
t = kuxx + au− buq, t > 0, 0 < α ≤ 1, (1.1)
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where a, b and k > 0 are real numbers and q is a positive integers.
First term on the left hand side in Equation (1.1) uα

t represent
the variation of u(x, t) with time at a fixed location, first term
on the right hand side uxx represent the variation of u(x, t) with
spatial variable at a specific time and term au − buq takes into
account the effect of the source term. The function u(x, t) may be
non-linear distribution of temperature in an infinitely thin and
long rod or fluid flow as a velocity in an infinitely long pipe with
narrow diameter.

Mostly two types of patterns are observed. First is the roll
pattern in which cylinders form by fluid stream lines. These
cylinders may be bend and form spiral like patterns. Second
pattern is the hexagonal in which liquid flow is divided into honey
comb cells. The same patterns, stripes and hexagons appear
in different physical system. For example, stripes patterns are
notice in human fingerprints, on zebra skin and in a visual
cortex. Hexagonal patterns are obtained from the propagation of
laser beams through a non-linear medium and in systems with
chemical reaction and diffusion species [24].

Recently Newell-Whitehead-Segel equations were solved by
S. S. Nourazar, M. Soori, and A. Nazari-Golshan by homotopy
perturbation method [25], A. Prakash andM. Kumar [26] by He’s
variational iteration method. Also fractional model of Newell-
Whitehead-Segel were solved by Kumar et al. [27] and Prakash
et al. [28] by homotopy analysis Sumudu transform method
and fractional variational iteration method, respectively. But
fractional model of Newell-Whitehead-Segel has not been solved
by Adomian decomposition method. Adomian decomposition
method is very powerful and efficient numerical method for
handling non-linear fractional model. Adomian decomposition
method (ADM) demonstrates fast convergence of the solution
and therefore provides several significant advantages. This
method attacks directly on non-linear term, in a straightforward
fashion without using linearization, discretization, perturbation
or any other restrictive assumption. Many studies have shown
that few terms of decomposition series provide numerical result
of high degree of accuracy which makes the method powerful
when compared with other existing numerical techniques.

The outline of this paper is as follow. First section is
introductory, in the Basic Definition of Fractional Calculus the
basic definition of fractional calculus is discussed, in Proposed
Adomian Decomposition Method solution process of non-linear
Newell-Whitehead-Segel equation by Adomian decomposition
method is discussed, in Error Analysis of The Proposed Method
error analysis of proposed technique is discussed, in Application
of ADM to Fractional Newell-Whitehead-Segel Equation five
test examples of fractional Newell-Whitehead-Segel equation
are given to elucidate the proposed method ADM and in last
Conclusion of the work is drawn.

BASIC DEFINITION OF FRACTIONAL
CALCULUS

In this section, we will introduce the basic definitions
and properties of fractional calculus used to describe the
proposed schemes.

Definition 2.1. A real function f (t) , t > 0, is said to be in the
space Cα , ǫ αR, if there exists a real number p, (p > α), such
that f (t) = tpf1 (t) , where f1(t) ǫ C[0, ∞) and it is said to be in
the space Cm

α iff (m) ǫ Cα , mǫN
⋃

{0} .
Definition 2.2. The Riemann-Liouville fractional integral of

order α ≥ 0, of a function f (t) ǫCβ , β ≥ −1 is defined as
[29–31]:

Jα f (t) =
1

Ŵ (α)

∫ t

0

f (τ )

(t − τ)1−α
dτ =

1

Ŵ(α + 1)

∫ t

0
f (τ )(dτ )α ,

J0f (t) = f (t) .

For the Riemann-Liouville fractional integral, we have

Jαtβ =
Ŵ(β + 1)

Ŵ(β + α + 1)
tα+β ,

where Ŵ. is the well-known Gamma Function.
Definition 2.3. The Caputo fractional derivative of f (t) , f ∈

Cm
−1, m ∈ N, m > 0, is defined as [29–31]:

Dα f (t) = Im−αDmf (t) =
1

Ŵ(m− α)

∫ t

0
(t − x)m−α−1 fm (x) dx,

Wherem− 1 < α ≤ m.

PROPOSED ADOMIAN DECOMPOSITION
METHOD

In this section, we illustrate the basic idea of the Adomian
Decomposition method (ADM) for the time-fractional Newell-
Whitehead-Segel equation.

Consider time-fractional Newell-Whitehead-Segel equation as

uα
t = kuxx + au− buq, t > 0, 0 < α ≤ 1, (3.1)

where a, b and k > 0 are real numbers and q is a positive integers
with initial condition

u (x, 0) = f (x, t) .

Applying the operator Jαt on both sides of (3.1), we have

u (x, t) =
∑m−1

k=0

(

∂ku

∂tk

)

t=0

tk

Ŵ
(

k+ 1
)+Jαt f (x, t)

−Jαt
(

kuxx + au− buq
)

. (3.2)

Next, we decompose the unknown function u (x, t) into sum of
an infinite number of components given by the series

u (x, t) =
∑∞

n=0
un(x, t), (3.3)

and the non-linear term can be decomposed as

buq =
∑∞

n=0
An, (3.4)
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where An are Adomian polynomial, given by

An =
1

Ŵ(n+ 1)
[
dn

dλn
{b
∑∞

n=0
λiui (x, t)}

q
]λ=0, (3.5)

where n = 0, 1, 2, 3, . . . . . . .
Components u0, u1, u2, u3, u4, . . . . are determined by

substituting (3.3), (3.4), and (3.5) into (3.2) leading to

∑∞

n=0
un (x, t) =

∑m−1

k=0

(

∂ku

∂tk

)

t=0

tk

Ŵ
(

k+ 1
)+Jαt f (x, t)

−Jαt {k(
∑∞

n=0
un (x, t))

xx
+ a(

∑∞

n=0
un (x, t))+

∑∞

n=0
An}.

(3.6)

This can be written as

u0 + u1 + u2 + . . . =
∑m−1

k=0

(

∂ku

∂tk

)

t=0

tk

Ŵ
(

k+ 1
)+Jαt f (x, t)

−Jαt [k
(

(u0)xx + (u1)xx + (u2)xx + . . .
)

+ a(u0 + u1 + u2 + . . .)

+ (A0 + A1 + A2 + A3 + . . .)].

Adomian method uses the formal recursive relations as:

u0 =
∑m−1

k=0

(

∂ku

∂tk

)

t=0

tk

Ŵ
(

k+ 1
)+Jαt f (x, t) ,

un+1 = −Jαt {k(un)xx + aun + An}, n ≥ 0. (3.7)

ERROR ANALYSIS OF THE PROPOSED
METHOD

Theorem 4.1. If we can find a constant 0 < ε < 1 such that
∥

∥um+1(x, t)
∥

∥ ≤ ε
∥

∥um(x, t)
∥

∥ for each value of m. Moreover, if
the truncated series

∑r
m=0 um(x, t) is employed as a numerical

solution u(x, t), then the maximum absolute truncated error is
determined as

∥

∥

∥
u (x, t) −

∑r

m=0
um (x, t)

∥

∥

∥
≤

εr+1

(1− ε)
‖u0 (x, t)‖ .

Proof.We have

∥

∥

∥
u (x, t) −

∑r

m=0
um(x, t)

∥

∥

∥
=
∥

∥

∥

∑∞

m=r+1
um(x, t)

∥

∥

∥

≤
∑∞

m=r+1

∥

∥um(x, t)
∥

∥

≤
∑∞

m=r+1
εm
∥

∥u0(x, t)
∥

∥

≤ (ε)r+1
[

1+ (ε)1 + (ε)2 + . . .
] ∥

∥u0(x, t)
∥

∥

≤
εr+1

(1− ε)
‖u0 (x, t)‖ .

Which proves the theorem.

APPLICATION OF ADM TO FRACTIONAL
NEWELL-WHITEHEAD-SEGEL EQUATION

In this section, five test examples of fractional Newell-
Whitehead-Segel equation demonstrate the efficiency of
proposed ADM.

Ex. 5.1. We study the linear time-fractional Newell-
Whitehead-Segel equation

ut
α = uxx − 2u, t > 0, 0 < α ≤ 1, (5.1)

with initial condition

u (x, 0) = ex. (5.2)

Applying the operator Jαt on both side of above defined problem,
we have

u (x, t) =
∑1−1

k=0

(

∂ku

∂tk

)

t=0

tk

Ŵ
(

k+ 1
) + Jαt {uxx − 2u}.

This gives the following recursive relation:

u0 (x, t) =
∑1−1

k=0

(

∂ku

∂tk

)

t=0

tk

Ŵ
(

k+ 1
) ,

un+1(x, t) = Jαt {(un)xx − 2un}, n ≥ 0.

u0 = ex,

u1 = −ex
tα

Ŵ(α + 1)
,

u2 = ex
t2α

Ŵ(2α + 1)
,

u3 = −ex
t3α

Ŵ (3α + 1)
,

∞
∑

n=0

un (x, t) =ex − ex
tα

Ŵ (α + 1)
+ ex

t2α

Ŵ (2α + 1)

−ex
t3α

Ŵ (3α + 1)
+ . . . ,

Now, for the standard case when α = 1, we get u (x, t) =
ex−t , which is the exact solution of the classical Newell-
Whitehead-Segel equation as obtained by HPM [25] and VIM
[26]. Here the numerical results obtained by ADM upto eight
terms of approximation and exact solution as shown in Figures 1,
2 are almost identical. It can be observed that as the value of t
increases, u decreases, and as x increases, u also increases. Hence,
the accuracy of ADM can be enhanced by increasing the number
of iterations.

Ex. 5.2. We study the non-linear time-fractional Newell-
Whitehead-Segel equation

uα
t = uxx + 2u− 3u2, t > 0, 0 < α ≤ 1, (5.3)

with initial condition

u (x, 0) = η. (5.4)
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FIGURE 1 | Surface represents eight order approximate solution for α = 1, for

Ex. 5.1.

FIGURE 2 | Surface represents exact solution for α = 1, for Ex. 5.1.

Applying the operator Jαt on both side of above defined problem,
we have

u (x, t) =
∑1−1

k=0

(

∂ku

∂tk

)

t=0

tk

Ŵ
(

k+ 1
) + Jαt {uxx + 2u+ An}.

This gives the following recursive relation:

u0 (x, t) =
∑1−1

k=0

(

∂ku

∂tk

)

t=0

tk

Ŵ
(

k+ 1
) ,

un+1(x, t) = Jαt {(un)xx + 2un + An}, n ≥ 0.

u0 = η

u1 = η(2− 3η)
tα

Ŵ(α + 1)
,

u2 = 2η (2− 3η) (1− 3η)
t2α

Ŵ(2α + 1)
,

u3 = 2η (2− 3η) (18η2 − 12η + 2)
t3α

Ŵ(3α + 1)

−3η2(2− 3η)2
Ŵ (2α + 1)

Ŵ (α + 1)2
t3α

Ŵ (3α + 1)
,

u4 = −12η2 (2− 3η)
(

18η2 − 12η + 2
) t4α

Ŵ (4α + 1)

+18η3(2− 3η)2
Ŵ (2α + 1)

Ŵ (α + 1)2
t4α

Ŵ (4α + 1)

−12η2 (2− 3η)2 (1− 3η)
Ŵ (3α + 1)

Ŵ (α + 1) Ŵ (2α + 1)

t4α

Ŵ (4α + 1)

+4η (2− 3η) (18η2 − 12η + 2)
t4α

Ŵ(4α + 1)

−6η2(2− 3η)2
Ŵ (2α + 1)

Ŵ (α + 1)2
t4α

Ŵ (4α + 1)
+ . . .

∞
∑

n=0

un (x, t) = η + η (2− 3η)
tα

Ŵ (α + 1)

+2η (2− 3η) (1− 3η)
t2α

Ŵ (2α + 1)

+2η (2− 3η)
(

18η2 − 12η + 2
) t3α

Ŵ (3α + 1)

−3η2(2− 3η)2
Ŵ (2α + 1)

Ŵ(α + 1)2
t3α

Ŵ (3α + 1)

−12η2 (2− 3η)
(

18η2 − 12η + 2
) t4α

Ŵ (4α + 1)

+18η3(2− 3η)2
Ŵ (2α + 1)

Ŵ(α + 1)2
t4α

Ŵ (4α + 1)

−12η2(2− 3η)2 (1− 3η)
Ŵ (3α + 1)

Ŵ (α + 1) Ŵ (2α + 1)

t4α

Ŵ (4α + 1)

+4η (2− 3η) (18η2 − 12η + 2)
t4α

Ŵ(4α + 1)

−6η2(2− 3η)2
Ŵ (2α + 1)

Ŵ(α + 1)2
t4α

Ŵ (4α + 1)
+ . . .

In particular when α = 1, we get the solution in the form

u (x, t) = η + η (2− 3η) t + 2η (2− 3η) (1− 3η)
t2

Ŵ (3)

+2η (2− 3η)
(

27η2 − 18η + 2
) t3

Ŵ (4)

+12η (2− 3η)

(

−54η3 + 54η2 − 14η +
2

3

)

t4

Ŵ (5)
. . . . . . ,
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FIGURE 3 | Comparison of approx. sol. for different values of α and exact sol.

at α = 1, for Ex. 5.2.

Which converge to the exact solution of the classical Newell-
Whitehead-Segel equation very fastly [25, 26].

u (x, t) =
−2
3 ηe2t

− 2
3 + η − ηe2t

.

Figure 3 shows the comparison of approximate solution for
different value of fractional order α = 0.25, 0.50, 0.75, 1
and exact solution at α = 1, when η = 1. It is observed
from the Figure 3 that there is a good agreement between
exact solution and approximate solution at α = 1. It is also
noticed that solution depends on the time-fractional derivative.
Accuracy and efficiency can be enhanced by increasing the
number of iterations.

Ex. 5.3. We study the non-linear time-fractional Newell-
Whitehead-Segel equation.

uα
t = uxx + u− u2 = 0, t > 0, 0 < α ≤ 1, (5.5)

With initial condition,

u (x, 0) =
1

(1+ e
x√
6 )

2
. (5.6)

Applying the operator Jαt on both side of above equation, we get

u (x, t) =
∑1−1

k=0

(

∂ku

∂tk

)

t=0

tk

Ŵ
(

k+ 1
) + Jαt {uxx + u+ An}.

This gives the following recursive relation:

u0 (x, t) =
∑1−1

k=0

(

∂ku

∂tk

)

t=0

tk

Ŵ
(

k+ 1
) ,

un+1(x, t) = Jαt {(un)xx + 2un + An}, n ≥ 0.

u0 =
1

(1+ e
x√
6 )

2
,

u1 =
5

3

e
x√
6

(1+ e
x√
6 )

3

tα

Ŵ(α + 1)
,

u2 =
25

18
(
e

x√
6

(

−1+ 2e
x√
6

)

(

1+ e
x√
6

)4
)

t2α

Ŵ(2α + 1)
,

u3 = {
25

18

1
(

1+ e
x√
6

)5
[
8

6
(e

x√
6 )2 − 4(e

x√
6 )3

+

(

8

6
(e

x√
6 )

2
−

(e
x√
6 )

6

)

(

1+ e
x√
6

)

+
4

6
(e

x√
6 )

2
−

16

6
(e

x√
6 )

3
+
(

2(e
x√
6 )

2
− e

x√
6

)

(

1+ e
x√
6

)

+
−20
6 (e

x√
6 )

3
+ 40

6 (e
x√
6 )

4

(

1+ e
x√
6

)

−2(
(−e

x√
6 )

1
+ 2(e

x√
6 )

2

(

1+ e
x√
6

) )]}
t3α

Ŵ (3α + 1)
−

25

9

(e
x√
6 )

2

(

1+ e
x√
6

)6

Ŵ (2α + 1) t3α

Ŵ (3α + 1) Ŵ (α + 1)2
.

∞
∑

n=0

un (x, t) =
1

(

1+ e
x√
6

)2
+

5

3

e
x√
6

(

1+ e
x√
6

)3

tα

Ŵ (α + 1)

+
25

18







e
x√
6

(

−1+ 2e
x√
6

)

(

1+ e
x√
6

)4







t2α

Ŵ (2α + 1)

+{
25

18

1
(

1+ e
x√
6

)5
[
8

6
(e

x√
6 )

2
− 4(e

x√
6 )

3

+

(

8

6
(e

x√
6 )

2
−

(e
x√
6 )

6

)

(

1+ e
x√
6

)

+
4

6
(e

x√
6 )

2
−

16

6
(e

x√
6 )

3
+
(

2(e
x√
6 )

2
− e

x√
6

)

(

1+ e
x√
6

)

+
−20
6 (e

x√
6 )

3
+ 40

6 (e
x√
6 )

4

(

1+ e
x√
6

)

−2(
(−e

x√
6 )

1
+ 2(e

x√
6 )

2

(

1+ e
x√
6

) )]}
t3α

Ŵ (3α + 1)
−

25

9

(e
x√
6 )

2

(

1+ e
x√
6

)6

Ŵ (2α + 1) t3α

Ŵ (3α + 1) Ŵ (α + 1)2
+ . . .

In particular when α = 1, we get the solution in the form
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FIGURE 4 | Comparison of approx. sol. for different values of fractional order

α and exact sol. at α = 1, for Ex. 5.3.

u (x, t) =
1

(

1+ e
x√
6

)2
+

5

3

e
x√
6

(

1+ e
x√
6

)3

t

1

+
25

18







e
x√
6

(

−1+ 2e
x√
6

)

(

1+ e
x√
6

)4







t2

2

+







125

216

(e
x√
6 (4
(

e
x√
6

)2
− 7e

x√
6 + 1)

(

1+ e
x√
6

)5







t3

3
+ . . . .

Which converge to the exact solution of the classical Newell-
Whitehead-Segel equation very fastly [25].

u (x, t) =
1

(

1+ e
x√
6
− 5

6 t
)2

.

Figure 4 shows the comparison of third order approximate
solution for different value of fractional order α = 0.25, 0.50,
0.75, 1 and exact solution at α = 1, for x = 1. It is observed
from the Figure 4 that there is a good agreement between
exact solution and approximate solution at α = 1. It is also
noticed that solution depends on the time-fractional derivative.
Accuracy and efficiency can be enhanced by increasing the
number of iterations.

Ex. 5.4. We study the non-linear time-fractional Newell-
Whitehead-Segel equation

uα
t = uxx + u− u4 = 0, t > 0, 0 < α ≤ 1, (5.7)

with initial condition

u (x, 0) = (
1

1+ e
3x√
10

)

2
3

. (5.8)

Applying the operator Jαt on both side of above equation, we have

u (x, t) =
∑1−1

k=0

(

∂ku

∂tk

)

t=0

tk

Ŵ
(

k+ 1
) + Jαt {uxx + u+ An}.

This gives the following recursive relation:

u0 (x, t) =
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k=0

(
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∂tk

)

t=0

tk

Ŵ
(

k+ 1
) ,

un+1(x, t) = Jαt {(un)xx + un + An}, n ≥ 0.
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2
3

,
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7

5
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e
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10 )

5
3

)
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,
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e
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(
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,
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∞
∑
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Taking α = 1, we get the solution in the form

u (x, t) =

(

1

1+ e
3x√
10

)
2
3

+
7

5
(

e
3x√
10

(
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FIGURE 5 | Comparison of approx. sol. for different values of α and exact sol.

at α = 1, for Ex. 5.4.
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+ . . . .,

Which converge to the exact solution of the classical Newell-
Whitehead-Segel equation very fastly [25, 26].

u (x, t) = [
1

2
tanh

(

−
3

2
√
10

(

x−
7

√
10

t

))

+
1

2
]

2
3

.

Figure 5 shows the comparison of third order approximate
solution for different value of fractional order α =
0.25, 0.50, 0.75, 1 and exact solution at α = 1 for x = 1.
It is observed from the Figure 5 that there is a good agreement
between exact solution and approximate solution at α = 1.
It is also noticed that solution depends on the time-fractional
derivative. Accuracy and efficiency can be enhanced by increasing
the number of iterations.

Ex. 5.5. We study the nonlinear time-fractional Newell-
Whitehead-Segel equation of the form

uα
t = uxx + 3u− 4u4 = 0, t > 0, 0 < α ≤ 1, (5.9)

with initial condition

u (x, 0) =
√

3

4

e
√
6x

e
√
6x + e

√
6
2 x

. (5.10)
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Applying the operator Jαt on both side of above defined problem,
we have

u (x, t) =
∑1−1

k=0

(
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∂tk

)

t=0

tk

Ŵ
(

k+ 1
) + Jαt {uxx + 2u+ An}.

This gives the following recursive relation:
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Ŵ
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FIGURE 6 | Comparison of approx. sol. for different values of fractional order

α and exact sol. at α = 1, for Ex. 5.5.
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Taking α = 1, we get the solution in the form

u (x, t) =
√
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which converge to the exact solution of the classical Newell-
Whitehead-Segel equation very fastly [25, 26].

u (x, t) =
√

3

4

e
√
6x

e
√
6x + e(

√
6
2 x− 9

2 t)
.

Figure 6 shows the comparison of third order
approximate solution for different value of fractional order
α = 0.25, 0.50, 0.75, 1 and exact solution at α = 1, for

x = 1. It is observed from the Figure 6 that there is a good

agreement between exact solution and approximate solution at
α = 1. It is also noticed that solution depends on the time-
fractional derivative. Accuracy and efficiency can be enhanced by
increasing the number of iterations.

CONCLUSION

In this article, we have successfully applied the ADM to
obtain the approximate analytic solutions of fractional model
of Newell-Whitehead-Segel equation. The plotted graph and
numerical result shows the accuracy of proposed method.
We observed an excellent agreement between ADM and
the exact solution. The results reveal that ADM is an
efficient and computationally very attractive approach to
investigate non-linear fractional model. Therefore, ADM can
be further applied to solve various types of linear and
non-linear fractional model arising in the field of science
and engineering.
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