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Abstract. A set W ⊆ V (G) is called a resolving set, if for each pair of distinct vertices
u, v ∈ V (G) there exists t ∈ W such that d(u, t) 6= d(v, t), where d(x, y) is the distance
between vertices x and y. The cardinality of a minimum resolving set for G is called the
metric dimension of G and is denoted by dimM (G). This parameter has many applications in
different areas. The problem of finding metric dimension is NP-complete for general graphs
but it is determined for trees and some other important families of graphs. In this paper,
we determine the exact value of the metric dimension of Andrásfai graphs, their complements
and And(k)�Pn. Also, we provide upper and lower bounds for dimM (And(k)�Cn).

Keywords: resolving set, metric dimension, Andrásfai graph, Cayley graph, Cartesian
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1. INTRODUCTION

Throughout this paper all graphs are finite, simple and undirected. Let G = (V,E) be
a connected graph with vertex set V and edge set E. The distance between two vertices
x, y ∈ V is the length of a shortest path between them and is denoted by dG(x, y), or
d(x, y) for convenience. The neighborhood of x isN(x) = {y ∈ V : d(x, y) = 1} and the
diameter of G is diam(G) = max{d(x, y) : x, y ∈ V }. It is well known that almost all
graphs have diameter 2. The notations G and Line(G) stand for the complement graph
and the line graph of G, respectively. For an ordered subset W = {w1, w2, . . . , wk} of
vertices and a vertex v ∈ V , the k-vector r(v|W ) := (d(v, w1), d(v, w2), . . . , d(v, wk)) is
called the metric representation of v with respect to W (the code of v, for convenience).
The set W is called a resolving set for G if distinct vertices of G have distinct metric
representations with respect to W . The cardinality of a minimum resolving set is the
metric dimension of G and is denoted by dimM (G). A graph with metric dimension
k is called k-dimensional. These concepts were introduced by Slater in 1975 when
he was working with U.S. Sonar and Coast Guard Loran stations and he described
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the usefulness of these concepts, [22]. Independently, Harary and Melter [12] discovered
these concepts. They have applications in many areas including network discovery
and verification [2], robot navigation [15], problems of pattern recognition and image
processing [16], coin weighing problems [21], strategies for the Mastermind game [9],
combinatorial search and optimization [21]. Determining the metric dimension of
different families of graphs, operations and products, or characterizing n-vertex graphs
with a specified metric dimension are fascinating problems and atracts the attention
of many researchers. The problem of finding metric dimension is NP-Complete for
general graphs but the metric dimension of trees can be obtained using a polynomial
time algorithm [15]. It is not hard to see that for each n-vertex graph G we have
1 ≤ dimM (G) ≤ n − 1. Khuller et al. [15] and Chartrand et al. [7] proved that
dimM (G) = 1 if and only if G is a path Pn. Chartrand et al. [7] proved that for
n ≥ 2, dimM (G) = n − 1 if and only if G is the complete graph Kn. The metric
dimension of each complete t-partite graph with n vertices is n− t. They also provided
a characterization of graphs of order n with metric dimension n− 2, see [7]. Graphs of
order n with metric dimension n− 3 are characterized in [14]. Béla Bollobás studied
the metric dimension of random graphs [5]. Cáceres et al. [6], and independently
Peters–Fransen and Oellermann [18], have studied this parameter for the Cartesian
product of graphs. They show that

dimM (G) ≤ dimM (G�Pn) ≤ dimM (G) + 1

and

dimM (G) ≤ dimM (G�Cn) ≤
{

dimM (G) + 1 n odd,
dimM (G) + 2 n even.

Bailey and Cameron [1] have computed the exact value of the metric dimension for
diameter 2 Kneser and Johnson graphs. Fijavž and Mohar studied this parameter
for Paley graphs [11]. Chau et al. in [8] determined dimM for some circulant graphs
and their Cartesian products. Salman et al. studied this parameter for the Cayley
graphs on cyclic groups [20]. In [17] and [10] the metric dimension of Cayley digraphs
for the groups which are direct product of some cyclic groups is investigated. Imran
studied the metric dimension of barycentric subdivision of Cayley graphs in [13]. Each
cycle graph Cn is a 2-dimensional graph. In [23] some properties of 2-dimensional
graphs are obtained. All of 2-trees with metric dimension two are characterized
in [3], 2-dimensional Cayley graphs on Abelian groups are characterized in [24] and
2-dimensional Cayley graphs on dihedral groups are characterized in [4]. For more
results in this subject or related subjects see [1].

Recall that the Cartesian product of two graphs G1 and G2, denoted by G1�G2,
is a graph with vertex set V (G1) × V (G2) := {(u, v) : u ∈ V (G1), v ∈ V (G2)}, in
which (u, v) is adjacent to (u′, v′) whenever u = u′ and vv′ ∈ E(G2), or v = v′ and
uu′ ∈ E(G1). Note that the vertex set of G1�G2 can be arranged in |V (G2)| rows
and |V (G1)| columns. Also if G1 and G2 are connected, then G1�G2 is connected.
Let H be a group and let S be a subset of H that is closed under taking inverse
and does not contain the identity element. Recall that the Cayley graph Cay(H,S) is
a simple graph whose vertex set is H and two vertices u and v are adjacent in it when
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uv−1 ∈ S, see [19]. For any integer k ≥ 1, the Andrásfai graph And(k) is the Cayley
graph Cay(Z3k−1, S) where Z3k−1 = {1, 2, . . . , 3k − 1 = 0} is the additive group of
integers modulo 3k − 1 and S = {1, 4, 7, . . . , 3k − 2} is the subset of Z3k−1 consisting
of the elements congruent to 1 modulo 3. Note that And(1) is a path with two vertices,
And(2) is isomorphic to the 5-cycle and And(3) is a Möbius ladder. It is well known
that And(k) is a reduced (twin free), circulant, vertex transitive, triangle-free and
k-regular graph whose diameter is two for k ≥ 2.

In this paper, we determine the exact value of the metric dimension of
Andrásfai graphs, their complements and And(k)�Pn. Also, we prove that
k ≤ dimM (And(k)�Cn) ≤ k + 1.

2. MAIN RESULTS

Note that if W is a resolving set for G, then for each v ∈ V \W the set W ∪ {v}
is a larger resolving set for G. Also, when G is a graph with diameter 2, then W ⊆ V
is a resolving set for G if and only if for each pair of distinct vertices u, v ∈ V \W
there exist w ∈W such that {d(w, u), d(w, v)} = {1, 2}.

Theorem 2.1. Let k ≥ 1 be an integer. Then, the metric dimension of the Andrásfai
graph And(k) is k.

Proof. By investigation, it is easy to see that dimM (And(k)) = k for k ∈ {1, 2, 3}.
Hence, we assume that k ≥ 4. Note that And(k) = Cay(Z3k−1, S) where
S = {1, 4, 7, . . . , 3k − 2}. Since 1 ∈ S, And(k) contains the Hamiltonian cycle
1, 2, 3, . . . , 3k − 1 and we can consider a drawing of it in such a way that vertices
are consecutively ordered clockwise around a cycle. Hereafter, all of vertex numbers
will be considered in modulo 3k − 1. It is straightforward to check that the vertex
0 = 3k − 1 is adjacent to every vertex in S and each vertex x 6= 0 has at least one
non-adjacent vertex in S. Consider the subset {t, t+ 3} of S with 1 ≤ t ≤ 3k − 5. We
have d(t + 1, t) = 1 = d(t + 2, t + 3) and d(t + 1, t + 3) = 2 = d(t + 2, t). Also, for
each vertex y /∈ {t, t+ 1, t+ 2, t+ 3} we have d(y, t) = 1 if and only if d(y, t+ 3) = 1
(because in modulo 3k − 1, we have t− y ∈ S if and only if t+ 3− y ∈ S). Therefore,
r(t+ 1|S) 6= r(t+ 2|S), r(y|S) 6= r(t+ 1|S) and r(y|S) 6= r(t+ 2|S). This means that
two vertices t+ 1 and t+ 2 have unique codes among the vertices of And(k). Since for
each vertex 0 6= x /∈ S there exists 1 ≤ t ≤ 3k − 5 such that x = t + 1 or x = t + 2,
the code of x is unique. Hence, S is a resolving set for And(k) and this implies that
dimM (And(k)) ≤ |S| = k.

In order to complete the proof, it is sufficient to show that |W | ≥ k for each
resolving set W of And(k). Suppose on the contrary that there exists a resolving
set W of And(k) with |W | < k. By including some additional vertices to W (if it is
necessary) we can assume that |W | = k − 1. If there exists a subset of four (clockwise)
consecutive vertices T = {i, i + 1, i + 2, i + 3} such that T ∩W = ∅, then for each
vertex j /∈ T we have d(j, i) = 1 if and only if d(j, i + 3) = 1 (because, i − j ∈ S if
and only if i+ 3− j ∈ S). This implies that two vertices i and i+ 3 have the same
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metric representations with respect to W , which contradicts the resolvability of W .
Now, assume that W = {i1, i2, . . . , ik−1}, where

1 ≤ i1 < i2 < . . . < ik−1 ≤ 3k − 1.

For each ij ∈W (and with the assumption that ik = i1) let

Bij
= {ij , ij + 1, ij + 2, . . . , ij+1} \ {ij , ij+1}.

Note that Bij
= ∅ just when ij + 1 = ij+1 and that Bij

∩W = ∅ for each ij ∈ W .
Also, using previous facts we have

k−1⋃

j=1
Bij

= Z3k−1 \W, {|Bij
| : ij ∈W} ⊆ {0, 1, 2, 3}.

For each s ∈ {0, 1, 2, 3} let βs be the number of blocks Bij with |Bij | = s. Thus, using
the fact |W | = k − 1 we see that

β0 + β1 + β2 + β3 = k − 1

and

0β0 + 1β1 + 2β2 + 3β3 =
∣∣∣∣

k−1⋃

j=1
Bij

∣∣∣∣ = (3k − 1)− (k − 1) = 2k.

Therefore,

−2β0 − β1 + β3 = (0β0 + 1β1 + 2β2 + 3β3)− 2(β0 + β1 + β2 + β3)
= (2k)− 2(k − 1) = 2.

This implies that β3 = 2 + 2β0 + β1 ≥ 2. Specially, β3 > β0 + β1. Now the Pigeonhole
Principle implies that there exist two blocks Bij

, Bij′ of size 3 such that between them
in at least one direction (clockwise or counterclockwise) only blocks of size 2 (if any
exists) are located. Since And(k) is vertex transitive, without loss of generality and for
convenience, we can assume that ij = 1 (i.e. Bij

= B1) and Bij′ is located (in clockwise
direction) after ` ≥ 0 blocks of size two (when ` ≥ 1 they are B5, B8, . . . , B3`+2), i.e.
Bij′ = B3`+5. Note that for the case ` = 0 two blocks Bij = B1 and Bij′ = B5 are
consecutive. Therefore,

W ∩ {1, 2, 3, . . . , 3`+ 9} = {1, 5, . . . , 3`+ 5, 3`+ 9}.

Now consider two vertices x = 2 ∈ B1 and y = 3`+ 8 ∈ B3`+5. Since y = x+ 3(`+ 2),
for each z /∈ {1, 2, 3, . . . , 3`+ 9} we have d(z, x) = 1 if and only if d(z, y) = 1. Also, it
is straightforward to check that

N(x) ∩ {1, 5, . . . , 3`+ 5, 3`+ 9} = {1, 3`+ 9} = N(y) ∩ {1, 5, . . . , 3`+ 5, 3`+ 9}.

This means that r(x|W ) = r(y|W ), which is a contradiction. Therefore, |W | ≥ k and
this completes the proof.
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Note that And(1) is a 2-vertex path and hence, its complement And(1) is discon-
nected. And(2) is a 5-cycle and its metric dimension is 2. Also, for each k ≥ 3 the
complement of And(k) is a connected (2k − 2)-regular graph and its diameter is two.

Theorem 2.2. For each k ≥ 2 we have dimM (And(k)) = k.

Proof. Let W be a non-empty ordered subset of Z3k−1 and let v ∈ Z3k−1 be an
arbitrary vertex. Assume that the metric representation of vertex v with respect to
W in And(k) is r(v|W ) = (w1, w2, . . . , wk) and the metric representation of v with
respect to W in And(k) is r̄(v|W ) = (w̄1, w̄2, . . . , w̄k). Since both graphs And(k) and
And(k) have diameter two, for each i ∈ {1, 2, . . . , |W |} we have

w̄i =





0 wi = 0,
1 wi = 2,
2 wi = 1.

This means that for each vertex u we have r(v|W ) = r(u|W ) if and only if
r̄(v|W ) = r̄(u|W ). Thus, there is a one-to-one correspondence between the vectors
{r(v|W ) | v ∈ V (And(k)} and the vectors {r̄(v|W ) | v ∈ V (And(k)} by a switching on
non-zero components. In the proof of Theorem 2.1 we see that S is a minimum resolving
set for And(k) and hence, |{r(v|S) | v ∈ V (And(k)}| = |V (And(k)|. Therefore, S is
a minimum resolving set for And(k) and the result follows.

In the following theorem we determine dimM (And(k)�Pn) and dimM (And(k)�Pn).

Theorem 2.3. For each k ≥ 1 and n ≥ 2 we have

dimM (And(k)�Pn) = dimM (And(k)�Pn) = k.

Specifically, the metric dimension of the prism generated by And(k) or its complement
is k.

Proof. Assume that V (Pn) = {v1, v2, . . . , vn} and E(Pn) = {v1v2, v2v3, . . . , vn−1vn}.
Hence,

V (And(k)�Pn) =
n⋃

t=1
{(1, vt), (2, vt), . . . , (3k − 1, vt)}

and the induced subgraph of And(k)�Pn on the set {(1, vt), (2, vt), . . . , (3k − 1, vt)}
is isomorphic to And(k) for each t ∈ {1, 2, . . . , n}. Using Corollary 3.2 in [6] and
Theorem 2.1 we see that

k = max{dimM (And(k)),dimM (Pn)} ≤ dimM (And(k)�Pn).

Let
W = {(1, v1), (4, v1), (7, v1), . . . ., (3k − 2, v1)} = S × {v1}.
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We want to show that W is a resolving set for And(k)�Pn. For each i, j ∈ Z3k−1 and
for each t, t′ ∈ {1, 2, . . . , n} it is easy to see that

dAnd(k)�Pn
((i, vt), (j, vt′)) = dAnd(k)(i, j) + |t− t′|,

which implies that

r((i, vt)|W ) = r(i|S) + (t− 1, t− 1, . . . , t− 1).

Note that except the vertex (0, v1) whose metric representation with respect to W is
the all 1 vector (1, 1, . . . , 1), the metric representation of each vertex (i, v1) has at least
one component equal to 2 and we have r((i, v1)|W ) ∈ {0, 1, 2}k. Similarly, for each
t ∈ {2, 3, . . . , n}, except the vertex (0, vt) whose metric representation is (t, t, . . . t), the
metric representation of each vertex (i, vt) has at least one component equal to t+1 and
r((i, vt)|W ) ∈ {t−1, t, t+1}k. By the proof of Theorem 2.1, S is a minimum resolving set
for And(k). Note that by Lemma 3.1 in [6] the projection ofW onto each copy of And(k)
in And(k)�Pn (i.e. the induced subgraph on each row) resolves the vertices of that
copy (row). Therefore, each pair of distinct vertices (i, vt) and (j, vt′) (with t = t′ or
t 6= t′) have distinct metric representations with respect toW . Hence,W is a minimum
resolving set for And(k)�Pn and dimM (And(k)�Pn) = k. Using an argument similar
to the proof of Theorem 2.2, we can show that dimM (And(k)�Pn) = k.

Let n ≥ 3 be an integer. Using Theorem 8.6 and Theorem 8.4 in [6] we see that

dimM (And(1)�Cn) = dimM (K2�Cn) =
{

2 n is odd,
3 n is even

and
dimM (And(2)�Cn) = dimM (C5�Cn) = 3.

Proposition 2.4. If k ≥ 3 and n ≥ 3, then k ≤ dimM (And(k)�Cn) ≤ k + 1.

Proof. Corollary 3.2 in [6] using Theorem 2.1 implies that

k = max{dimM (Cn),dimM (And(k))} ≤ dimM (And(k)�Cn).

For the upper bound, assume that

V (Cn) = {v1, v2, . . . , vn}, E(Cn) = {v1v2, v2v3, . . . , vn−1vn, vnv1}

and let

W ′ = {(1, v1), (4, v1), (7, v1), . . . , (3k − 2, v1)}, W = W ′ ∪ {(1, v2)}.

Using the structure of the Cartesian product of two graphs, for each i, j ∈ V (And(k))
and for each t, t′ ∈ {1, 2, . . . , n} we have

dAnd(k)�Cn
((i, vt), (j, vt′)) = dAnd(k)(i, j) + min{|t− t′|, n− |t− t′|}.
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Note that (using the proof of Theorem 2.1 and Lemma 3.1 in [6]) the projection of
W ′ onto each copy of And(k) in And(k)�Cn (i.e. the induced subgraph on each row)
resolves the vertices of that copy and the projection of W ′ onto each copy of Cn

in And(k)�Cn (each column) resolves its vertices. Also, for each i and for each
1 ≤ t ≤ bn

2 c we have

r ((i, v1+t)|W ′) = r ((i, v1)|W ′) + (t, t, . . . , t) = r ((i, vn−t+1)|W ′) .

Thus, distinct vertices in {(i, vt) | i ∈ V (And(k)), 1 ≤ t ≤ bn
2 c + 1} have distinct

metric representations with respect to W ′ (and hence, with respect to W ) and dis-
tinct vertices in

{
(i, vt)| i ∈ V (And(k)), t ∈ {1, n, n− 1, n− 2, . . . ,

⌈n
2

⌉
+ 1}

}

have distinct metric representations with respect toW ′ (and hence, with respect toW ).
These facts imply that for each i and for each 1 ≤ t ≤ bn

2 c the metric representation
of the vertex (i, vt+1) with respect to W ′ in And(k)�Cn is just equal to the code of
(i, vn−t+1) and no other vertex (note that when n is even and t = n

2 the vertex (i, vt+1)
coincides with (i, vn−t+1)). Since

dAnd(k)�Cn
((i, vt+1), (1, v2)) = dAnd(k)(i, 1) + t− 1

and

dAnd(k)�Cn
((i, vn−t+1), (1, v2)) = dAnd(k)(i, 1) + min{n− t− 1, t+ 1}

for distinct vertices (i, vt+1) and (i, vn−t+1) we have

r((i, vt+1)|W ) 6= r((i, vn−t+1)|W ).

Hence, W is a resolving set for And(k)�Cn and dimM (And(k)�Cn) ≤ k + 1.
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