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Abstract. The aim of this note is to advance the refining of the Erdős-Kelly result on graphical
inducing regularization. The operation of inducing regulation (on graphs or multigraphs)
with prescribed maximum vertex degree is originated by D. König in 1916. As is shown by
Chartrand and Lesniak in their textbook Graphs & Digraphs (1996), an iterated construction
for graphs can result in a regularization with many new vertices. Erdős and Kelly have
presented (1963, 1967) a simple and elegant numerical method of determining for any simple
n-vertex graph G with maximum vertex degree ∆, the exact minimum number, say θ = θ(G),
of new vertices in a ∆-regular graph H which includes G as an induced subgraph. The number
θ(G), which we call the cost of regulation of G, has been upper-bounded by the order of G,
the bound being attained for each n ≥ 4, e.g. then the edge-deleted complete graph Kn − e
has θ = n. For n ≥ 4, we present all factors of Kn with θ = n and next θ = n− 1. Therein
in case θ = n − 1 and n odd only, we show that a specific extra structure, non-matching,
is required.
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1. ON THE ERDŐS-KELLY RESULT

Let G be a simple n-vertex non-regular graph with maximum and minimum vertex
degree ∆ and δ, resp. Hence δ < ∆.
Definition 1.1. Let H be a ∆-regular graph which contains an induced subgraph
isomorphic to G and has the minimal order possible. Then we call H to be an intrinsic
regularization of the graph G (since any such H seems to be the most natural inducing
regularization).

If v is a vertex of G, the difference ∆− degG v is called the deficiency of v in G.
Hence ∆− δ is the maximum deficiency among vertices. Let s =

∑
v(∆− degG v) be

the sum of all deficiencies.
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An improved version of the original theorem (as in [13] and next in [9, 14]) follows.
Theorem 1.2 (Erdős and Kelly [13, 14]). The necessary and sufficient condition that
n+ t be the order for an intrinsic regularization H of G is that t is the least positive
integer such that
(1) t∆ ≥ s,
(2) t2 − (∆ + 1)t+ s ≥ 0,
(3) t ≥ ∆− δ,
(4) (t+ n)∆ is an even integer.
Moreover, t ≤ n, and for each n ≥ 4 there exists a graph G such that t = n, e.g.
G = Kn − e, where e is an edge of the complete graph Kn.
Notes on Theorem 1.2.
1. Since the minimal t depends on G, the original phrase in [13] “maximum value of t

is n” is replaced above by the correct inequality t ≤ n as in [9, 14].
2. Only n ≥ 4 is considered above because otherwise trivially n = 3, and then either
G = P3 and H = C4 or G = P3 and H = 2K2. Hence, if n = 3 then t(G) = 1 only.

3. Each of conditions (1)–(4) is proved to be both necessary and independent from
remaining ones.

4. Sufficiency is proved by presenting the operation of regulation G 7→ H, i.e. by the
construction of a supergraph H of G.

Definition 1.3. The minimum value of t in question, denoted by θ = θ(G), will be
called the cost of the intrinsic regulation G 7→ H of G.

2. A REFINING OF THE ERDŐS-KELLY RESULT

In the first part we list n-vertex graphs G for which n > ∆ > δ and the intrinsic
regulation cost θ = θ(G) = n = |G|. Actually we characterize Gs as factors of the
complete graph Kn, G = Kn−Ek obtained from Kn by removal of a subset of k edges
under the requirement that, depending on n and k, ∆ is n− 1 or n− 2.

We now show that neither condition (1) nor (3) can contribute to making θ = n.
Lemma 2.1. Both conditions (1) and (3) hold for t = n− 2.
Proof. The sum s of deficiencies is the largest possible if one vertex (of degree ∆) has
deficiency 0, each of its ∆ neighbors has degree 1, deficiency ∆− 1, and the remaining
vertices are isolated. Consequently, s ≤ ∆(∆− 1) + (n− 1−∆)∆ = ∆(n− 2), i.e. (1)
holds for t = n − 2. Since clearly ∆ − δ ≤ n − 2 if either ∆ = n − 1 or ∆ ≤ n − 2,
condition (3) also holds for t = n− 2.

Consequently, in proofs which follow we disregard both conditions (1) and (3)
and refer only to the quadratic inequality (2) and the parity requirement (4). The
graph of the left-hand side of (2) is a convex parabola whose vertex has t-coordinate
tv = (∆ + 1)/2. Moreover, the equation t = tv represents the axis of symmetry.
Condition (2) is seen true for symmetric values t = 0, ∆ + 1. Thus we get the following.
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Corollary 2.2. Condition (2) is true for all t ≥ ∆ + 1.

Corollary 2.3. θ(G) can equal n for even n if ∆(G) = n − 1 only, for odd n if
∆(G) ≥ n− 2 only.

Theorem 2.4. Three lists A.j of graphs G with θ(G) = n follow together with relevant
proofs, j = 1, 2, 3.

A.1. For any even n ≥ 4, let 1 ≤ k ≤ n− 3 and let G = Kn−Ek such that ∆ = n− 1.
A.2. For any odd n ≥ 5, let 1 ≤ k ≤ (n− 3)/2 and let G = Kn − Ek.
A.3. For any odd n ≥ 5, let (n+ 1)/2 ≤ k ≤ n− 2 and let G = Kn − Ek, where Ek

covers all n vertices so that ∆ < n− 1.

Proof. Ad A.1. Then ∆ is odd whence, due to (4), the cost θ must be even. Moreover,
each of k removed edges contributes 2 to the sum s in G whence s = 2k. Therefore,
condition (2) reads as t(t − n) + 2k ≥ 0 whence tv = n/2 and the condition is seen
false for symmetric even t = 2, n− 2 and true for t = n, as required.

Ad A.2. Then G has three or more vertices of degree ∆ = n− 1 (which is even).
Hence each of k removed edges contributes 2 to the sum s in G, whence s = 2k.
Therefore condition (2) reads as t(t− n) + 2k ≥ 0 whence tv = n/2 and the condition
is seen false for symmetric t = 1, n− 1 and true for t = n, as required.

Ad A.3. Since k < n, ∆ = n− 2, which is odd. Hence, due to (4), the cost θ must
be odd, too. Moreover, the degree sum of the induced subgraph 〈Ek〉 is
2k =: n+ s ∈ {n+ 1, n+ 2, . . . , n+ (n−4)}. Therefore the parameter s in the resulting
graphs G’s is among numbers 1, 2, . . . , n− 4 whence s < ∆ = n− 2.

Condition (2) reads as t(t−n+ 1) + s ≥ 0 whence tv = (n− 1)/2 and the condition
is seen false for symmetric odd t = 1, n− 2 and is true for odd t = n, whence odd cost
θ = n, as required.

Theorem 2.5. All n-vertex graphs G, G = Kn − Ek, with largest possible (intrinsic)
∆-regulation cost θ(G) = n are listed in Theorem 2.4 (in items A.j, j = 1, 2, 3).

Proof. Let Nk
n denote the number of nonisomorphic graphs Kn−Ek with θ = n. Then

if k = 1, N1
n = 1 for each n in question, n ≥ 4. Let k ≥ 2. Then n ≥ 5. By inspection of

the graph diagrams in Harary’s book [18] (wherein n ≤ 6), on referring to Theorem 1.2
and Corollary 2.3, we get N3

5 = 1 and Nk
6 = 2, 4 for k = 2, 3, resp. In fact, we find all

the corresponding induced graphs 〈Ek〉:
n = 5: k = 3, and 〈E3〉 = P3 ∪K2;
n = 6: if k = 2 then 〈E2〉 = P3, 2K2; if k = 3 then 〈E3〉 = P3 ∪K2, P4, C3, K1,3.
By inspection, none of the corresponding graphs G is exceptional, all of them are
listed in Theorem 2.4.

It remains n ≥ 7. Due to Corollary 2.3, the relevant remaining graphs G split into
three classes, say B.j, complementing the above A.j. In order to complete the proof,
we simply show that conditions (2) and (4) in Theorem 1.2 are satisfied for some
t < n.
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B.1. Let n ≥ 8 be even, k ≥ n − 2 and still ∆ = n − 1 (which is odd as in case
A.1 above). Hence each of k removed edges contributes 2 to s in G, whence
s = 2k ≥ 2n− 4. Therefore (2) reads as t2 − nt+ 2k ≥ 0 which holds for even
and symmetric t = 2, n− 2.

B.2. Let n ≥ 7 be odd, k ≥ (n− 1)/2 and ∆ = n− 1 which is even. Hence condition
(4) is true and s = 2k ≥ n− 1. Therefore, (2) is true for t = n− 1.

B.3. Let n ≥ 7 be odd, k ≥ n−1 and ∆ = n−2 which is odd. Hence 2k = n+s ≥ 2n−2
whence s ≥ n − 2. Therefore, condition (2), namely t(t − n + 1)) + s ≥ 0, and
condition (4) are both true for odd t = n− 2.

We now pass on to the second part of refining wherein θ(G) = n− 1.

Theorem 2.6. All n-vertex graphs G = Kn−Ek with ∆-regulation cost θ(G) = n− 1
are the following. For odd n ≥ 5, (n − 1)/2 ≤ k ≤ n − 3, Ek is not a matching
(if k = (n − 1)/2), and ∆ = n − 1. For even n ≥ 6, (n + 2)/2 ≤ k ≤ n − 2 and
∆ = n− 2.

Proof. The proof (similar to what is above) is left to the reader. Note: It would be
θ = 1 for odd n if Ek in Theorem 2.6 were a (maximum) matching.

By inspection of graph diagrams in Harary [18] we find all induced graphs 〈Ek〉
for edge sets Ek which are listed in Theorem 2.6 if n = 5, 6, 7.
n = 5: k = 2, and 〈Ek〉 = P3;
n = 6: k = 4, and 〈E4〉 = P4 ∪K2, K1,3 ∪K2, 2P3;
n = 7: if k = 3 then 〈E3〉 = P4, C3, P3 ∪ K2, K1,3; if k = 4 then 〈E4〉 is as
in case n = 6, or 〈E4〉 = C3 ∪K2, C4, K1,4, P5, or else is C3 with a hanging edge or
K1,3 with a subdivided edge.

Hence, it follows that the smallest graphs Gn with θ = n− 1 (and 5 ≤ n ≤ 6) are
G′

5 := C5 ∪P4, where the path P4 comprises three chords of the cycle C5 and next are
the three 6-vertex graphs G6 = K6 −E4 with ∆ = 4. Moreover, there are exactly 13
such graphs of order n = 7 with ∆ = 6.

Remark 2.7. Only numerical requirements are imposed on graphs G in Theorems
1.2, 2.4 and 2.5 above. A structural requirement (non-matching) is imposed in an odd
part of Theorem 2.6 only.

Problems 2.8.

1. Characterize n-vertex graphs Gn with a smaller θ, e.g. θ = n− 2.
2. Estimate the number of graphs Gn with a fixed intrinsic regulation cost θ. (The set

of complements of those graphs Gn with θ = n includes almost all forests on
n-vertices.)

3. In general, study the statistics of the distribution of graphs Gn among classes
comprising graphs with θ = 0, 1, . . . , n.
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3. CONCLUDING REMARKS

Related results on inducing superstructures are presented in [3, 10, 12, 15–17, 20].
A generalization of the above Erdős-Kelly result in case of r-regulation (r ≥ ∆ as in
König [21,22]) is presented in the authors papers [15–17]. For non-inducing regulations
(which are described briefly in [17]), see [1, 2, 4–8,19].
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