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Abstract 

In this paper, we used WSN design, as a multi-objective optimization problem through Genetic Algorithm 

(GA) technique. We examined the effects of GA parameters including population size, mutation probability, 

and selection and crossover methods on the design. Choosing suitable parameters is a trade-off between 

different network criteria and characteristics. Type of deployment, effect of network size, radio communication 

radius, deployment density of sensors in an application area and location of base station are the WSN’s 

characteristics, which were investigated in this paper. The simulation results of this study indicate that the 

value of radio communication radius has direct effect on radio interference, cluster-overlapping, sensor node 

distribution uniformity and communication energy consumption. The optimal value of radio communication 

radius depends on network deployment density rather than network size and deployment type. Location of the 

base station affects radio communication energy, cluster-overlapping and average number of communication 

per cluster head. BS located outside the application domain is preferred over that located inside. In all the 

network situations, random deployment has better performance compared to grid deployment. 

Keywords: Wireless sensor network, cluster head, genetic algorithm, active sensor, base station. 

1. Introduction 

Wireless sensor networks (WSNs) have become an 

essential part of many applications over the past 

decades [1]. Compared to computer networks, 

WSNs are small, cheap but have lower power, 

limited processing, storage, and radio 

communication capabilities [2]. Depending on the 

application, one or more sensors are deployed to 

perform monitoring, tracking, or surveillance [3]. 

WSNs are used to monitor complex processes in 

different areas. They are densely scattered either 

inside or very close to a phenomenon being 

monitored [4]. Sensors are usually intended to last 

for a long period of time, such as months or even 

years [5]. The network operates when power is 

available [6].  

WSNs have attracted a lot of research attention in 

the recent years [7]. It offers a rich area of research, 

in which a variety of multi-disciplinary tools and 

concepts are employed [8]. Due to economic and 

technological reasons, most available wireless 

sensor devices are highly constrained in terms of 

computational, memory, power, and 

communication capabilities. It has been the focus 

of considerable research efforts in the areas of 

communications (protocols, routing, coding, and 

error correction), electronics (energy efficiency, 

miniaturization), and control (networked control 

systems, theory and applications) [9]. 

Size of network, radio communication radius, type 

of deployment, location of base station (BS), and 

density of deployment are some of the fundamental 

design issues of WSNs [10]. These issues, such as 

whether sensor nodes are to be deployed randomly 

or manually? Whether the location of BS is inside 

or outside the application area? are to be settled 

before topology initialization. Some of the most 

important parameters in WSN design are energy 

consumption, coverage, connectivity, data 

redundancy, and radio interference [11]. 

WSNs have dynamic topology. It varies over time. 

Design and construction of an efficient topology 

for WSNs is a multi-objective optimization 

problem [12]. Optimizing one or more parameters 

regardless of others may cause negative effects on 

the performance and lifetime of WSNs. For 

example, optimizing communication energy 
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consumption directly affects coverage, 

connectivity and radio interference.  

To solve and optimize a complex problem in the 

real world, different methods such as genetic 

algorithm [13], ant colony optimization [14], and 

imperialist competition algorithm [15-16] have 

been proposed. GA is a very simple and powerful 

simulation technique to optimize problems based 

on searching in multi-modal landscape. The main 

goal in GA is to generate and evolve solutions very 

close to the optimal solution. It is applied in many 

different domains such as engineering, 

computational science, and mathematics. GA is 

based on natural evolution. It includes different 

steps such as initialization, fitness calculation, and 

application of different operators such as selection, 

crossover, and mutation [17].  

We study WSN design in terms of network size, 

communication and operation energies, cluster 

distribution uniformity, radio interference, and data 

redundancy. In the first part of this paper, we try to 

tune GA parameters under the framework of our 

WSN model. In the second part of this paper, we 

study WSN parameters in terms of network size, 

communication and operation energies, cluster 

distribution uniformity, radio interference, and data 

redundancy and find near optimal values of these 

parameters based on fine-tuned parameters of GA. 

The paper is organized as follows: section 2 deals 

with WSN design issues, section 3 deals with our 

WSN model, section 4 deals with GA, section 5 

deals with results and discussion, and section 6 

concludes the paper. 

 

2. WSN design issues 

Energy optimization is one of the most important 

issues in WSN design [18]. Unlike the wired 

network, WSN energy resources are much 

bounded. Sensor nodes are battery powered which 

have limited capacity and lifetime [19]. Recharge 

or replacement of sensors’ batteries is very difficult 

or impossible in some cases. When batteries are 

drained out, sensors are not able to stay alive and 

function. When some nodes of a WSN fail, the 

WSN has to reorganize and reroute the messages. 

Using optimized network topologies and suitable 

network protocols, WSN’s lifetime can be 

increased from months to years. Increasing the 

lifespan of WSN is an important design 

consideration.  

By reducing the radio communication range and 

minimizing data processing load in sensors, energy 

can be conserved in a WSN. More than 20% of 

sensors’ energy is consumed in radio 

communications [20]. Short radio communication 

range and limited bandwidth are important goals of 

WSN design.  

Type of deployment is also an important 

consideration in WSN design [21]. Deployment 

could be deterministic (where sensors are placed 

manually) or random (sensors are deployed 

randomly) [22]. The deterministic method is used 

for small size networks. Random method is used 

for larger networks with higher density of node 

deployment. If any sensor node fails, another close 

by sensor node compensates for the failure by 

taking additional work load. The network in such a 

situation functions with reduced performance. 

Network topology determines the way different 

devices on the network are arranged, and how they 

communicate with each other [23]. The main 

motivation behind topology design is to build a 

network that saves energy and preserves important 

characteristics such as connectivity, and coverage. 

WSN topology is dynamic and changes with time 

according to the network’s conditions. Large scale 

WSNs are, in general, homogenous and all the 

sensors have equal capabilities. Selection of 

suitable topology and implementation of efficient 

network protocols are other important design 

challenges. Reducing the transmission power of the 

nodes needs packet delivery through multiple hops. 

As the direct communication (single-hop) to the 

base station (BS) drains battery very quickly, all 

the sensors use multi-hop communication 

(hierarchical architecture) with short radio 

distances [24]. It reduces communication energy 

consumption and network traffic [25].  

In the hierarchical topology, the application 

domain area is divided into some sub-domains 

which are named clusters. Usually, the sensors with 

more energy and better geographical positions are 

eligible to be selected and act as cluster heads 

(CHs). Total number of CHs is generally in the 

range 5% to 15% of the number of sensors in the 

network [26]. The members of a cluster 

communicate with the BS via CHs, and CHs act as 

relay nodes to carry on data to the BS via single-

hop communication paths.  

After data are gathered from the cluster members, 

preprocessing of data is done in the corresponding 

CH. The CHs forward preprocessed data to the BS. 

In large scale WSNs, preprocessing of data in CHs 

reduce energy consumption and data redundancy. 

Also, clustering of nodes balances the network 

traffic load dynamically. Selecting suitable CHs 

and the way of organizing these clusters are still 

two basic problems in WSN design.  

Lack of connectivity and coverage are two 

undesirable effects of non-uniform cluster 
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deployment. Generally, it is assumed that all 

clusters are in circular shape with a cluster radius 

(RCH). How to find an optimal value of RCH is an 

important issue, as it determines the number of 

clusters in a deployment. To determine cluster 

uniformity, cluster-overlapping is a parameter to 

measure in a WSN domain.  

Radio interference is another issue in wireless 

communication leading to data inaccuracy and 

wastage of energy resources [27]. To simulate 

wireless communication and radio interference of 

wireless sensors, some radio models are proposed 

[28]. In the first radio model, it is assumed that the 

radio channel is symmetric so that the energy 

required to transmit a message from node A to node 

B is the same as the energy required to transmit a 

message from node B to node A. As all the sensors 

are homogeneous, every sensor node has equal 

radio capability with the same communication 

radius (Rrx). Optimizing the value of Rrx is essential, 

because it determines the extent of radio 

interference, accuracy of data communication and 

network connectivity.  

Data redundancy is another important 

consideration in WSN design [29]. Data 

redundancy wastes memory space, energy and 

other network resources [30]. In random 

deployment, sensors are deployed with high 

density. The sensing radius (Rsen) indicates the 

maximum sensing coverage area which is 

monitored by a sensor node. To reduce data 

redundancy, every CH performs data fusion of the 

received data from active sensors.  

WSNs are designed for specific applications and 

usages. In addition to the important issues such as 

energy consumption, coverage, and connectivity, 

some parameters of the specific application should 

also be taken into account in considering a design.  

 

3. WSN Model 

This section describes the WSN model studied and 

used in the rest of the paper. In our proposed model, 

we assume that all the sensor nodes are stationary 

and identical in capabilities. A sensor node can 

function in two modes: (i) a cluster head (CH), (ii) 

an active sensor (ACS), depending on the role 

assigned to a sensor node dynamically. The model 

deals with radio communication, data sensing, 

energy consumption, sensor placement, and 

topology aspects of WSN. Sensor nodes can be 

deployed manually or randomly in the application 

area. We use a cluster-based topology with single-

hop transmission. It is assumed that remote BS can 

always communicate with all the sensors directly. 

CHs are required to communicate over relatively 

longer distances; therefore, their batteries drain 

more quickly than those of other sensor nodes. CHs 

have to gather data from the members of the 

corresponding clusters, preprocess the data, and 

forward it to the BS after data fusion. 

The main issues in a WSN design are reducing 

energy consumption, optimizing deployment of 

sensors, reducing radio interference, enhancing 

network coverage and network connectivity.  

Radio communication and sensing coverage areas 

of the sensor nodes are in a circular shape. Every 

sensor node has a sensing coverage radius (Rsen) 

and radio communication radius (Rrx) associated 

with it. The overlapping of sensing areas, 

intersection of clusters and overlapping of radio 

coverage of two sensor nodes can be obtained by 

Eq. (1).  

2 1 2 21
2 cos ( ) 4           

2 2

d
A R d R d

R

    
(1) 

where R represents the clusters, sensing or radio 

communication radii and d is the Euclidean 

distance between two sensor nodes. Sensor nodes 

consume energy for sensing, processing, and radio 

transmission. A major part of energy is used for 

radio communication. In the first radio model, ACS 

communicates over short radio distances [26]. Data 

transmission energy consists of transmitting (ETx) 

and receiving (ERx) energies [30]. Thus, to transmit 

a k-bit message over a distance of d using the first 

radio model may be given by Eq. (2). 
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where d0 is the threshold distance defined as 

0
fs

mp
d




 , ԑ fs is the energy loss to send  1-bit 

message by transmitter amplifying circuit in 

elemental area in free space model, and ԑ mp is the 

energy to send 1-bit message by transmitter 

amplifying circuit in multi-path fading model,    

ETx-elec is the energy spent by the transmit circuit, 

ETx-amp is the energy-cost of the transmission 

amplifying circuit, ERx-elec signifies the energy-cost 

of the receiving circuit, and Eelec is the energy 

expense to transmit or receive 1-bit message by the 

transmitting or the receiving circuit. The energy 

spent in receiving data can be given by Eq. (3). 

   ,          Rx Rx BFE k d E E k    (3) 

 

where EBF is the beam forming energy. Not only do 

distances transmit, but the number of transmit and 



Hosseinirad & Basu/ Journal of AI and Data Mining, Vol. 2, No .1, 2014 

88 
 

receive operations for each message also has to be 

minimized. The energy consumption for data 

fusion (Eda-fus) is represented by Eq. (4). 

 

 ,            da fus daE k d k E    (4) 
 

Total energy which a sensor node consumes for 

communication (ECE-Sen) may be represented by Eq. 

(5). 

       , , , ,     CE Sen Tx Rx da fusE k d E k d E k d E k d   

 

(5) 

WSN’s total energy consumption for 

communication can be represented by Eq. (6). 
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Operation energy (OE) is different for different 

nodes. In the present model, OE of a node in CH 

mode is assumed to be ten units of operation energy 

and an active sensor consumes two units of 

operation energy. The exact value of OE is related 

to electro-mechanical characteristics of a sensor 

node. The OE of sensors is calculated by Eq. (7) in 

this study. 

 10  2       CH ACSOE N N     (7) 

where NCH is the total number of CH nodes and 

NACS is the total number of ACS.  

Network connectivity has to cover all sensor nodes. 

If an ACS cannot access its CH within its radio 

coverage, it is disconnected from the network. This 

sensor node becomes out of range and is represent 

by ACSout. Total number of out of range sensors 

(NACSout) is obtained by counting how many ACSout 

are there.  

Every CH should have some nodes belonging to the 

cluster; otherwise, it becomes a useless cluster head 

(CHuseless). In our study, we try to minimize number 

of useless clusters. The total number of useless 

cluster heads represented by NCHuseless is obtained 

by counting how many CHuseless are there. 

For every CH, a predefined number of nodes are 

allocated depending on the hardware and 

communication capabilities of the nodes. If a CH 

provides services for more than the maximum 

number of ACSs, it is called an overloaded cluster 

head (CHoverload). We also assume in our model that 

every CH can provide services to ten ACSs at most. 

Total number of overloaded cluster heads 

(NCHoverload) is obtained by counting how many 

CHoverload are there.

 4. Genetic Algorithm 

Genetic algorithm is a search heuristic which was 

proposed by John Holland and his students in 

Michigan University in 1975 [13]. GA does 

searching through a population of points. A large 

number of points increase the number of 

calculations and decrease speed. GA works with 

coded parameters not with parameters itself. Genes 

are used to represent the coded parameters. 

Representing and encoding of parameters in GA 

can be done in different ways such as binary, 

decimal or any other base. A predefined collection 

of genes is named chromosome. GA deals with a 

population of individuals, where each individual is 

a potential solution represented as a chromosome. 

Each population evolves through a number of 

generations. A fitness function is applied to each 

member (chromosomes) of the population. 

Chromosomes are selected for recombination 

based on fitness. Better chromosomes have higher 

chances of being carried to the next generation 

(elitist). In the crossover step, two different 

chromosomes (parents) are selected for 

recombination from which two children are 

created. To prevent premature convergence to local 

optima, mutation operator is used. In this set up, 

WSN design reduces to multi-objectives 

optimization. This multi-objective optimization is 

defined by Eq. (8). 
9
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J1 through J9 represents the objective parameters 

and W1 through W9 represents the weight of each 

parameter in the objective function      (Table 1). 

To represent WSN parameters in a chromosome, 

we use binary encoding scheme: 1 for cluster head 

and 0 for active sensor. For example, a 

chromosome ‘101000…101’ means “CH, ACS, 

CH, ACS, ACS, ACS, …, CH, ACS, CH”. The 

length of every chromosome is determined by the 

number of WSN’s sensors alive. For example, a 

WSN with 100 sensor nodes alive, the length of 

every chromosome is 100. We use elitist GA, that 

is, a chromosome with the highest fitness value is 

retained in the next generation. The fitness function 

is defined by Eq. (9). 
1

... 
CH CHACS 1 CH 2 3 4

1
   

CH ACS5 6 7 8 9

f
N W N W W Woverlap overload
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(9) 

Based on normalization, the final values of the 
weighing coefficients of fitness function are 
determined as shown in Table 2. The final values 
of the coefficients are trade-off between energy 
management, and network connectivity.  

5.Results and Discussion 
In the first part of this paper, we examined the 
effects of GA-parameters on simulation and 
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optimization of WSNs under the framework of the 
proposed model. We first fixed the values of the 
GA parameters through fine-tuning. To begin the 
simulation study, we used the values of different 
GA parameters given in Table 3 and selected a 
suitable mutation probability based on network size 
shown in Table 4.  
We used five different sizes of the monitoring area: 
10m×10m, 15m×15m, 20m×20m, 25m×25m, 

30m×30m. We assumed that the initial values for 
communication energy were as shown in Table 5. 
We optimized the number of cluster head sensors 
(NCH), subject to optimal number of active sensors  
(NACS) for coverage, minimize cluster-overlapping 
(CHoverlapp), cluster head overloading (CHoverload), 
radio interference (Rradio), operation energy (OE), 
communication energy (CE), cluster without any 
member node (CHuseless), and the number of active 
sensors out of coverage (ACSout). 

 

Table 1. Correspondence between optimization parameters and objectives. 

Objective Optimization Parameter GA Symbol 

J1 Total number of active sensors  NACS 

J2 Total number of cluster heads NCH 

J3 Total amount of cluster heads overlapping CHoverlapp 

J4 Total number of CHs overloaded NCHoverload 

J5 Total value of radio interference Rradio 

J6 Total value of operation energy OE 

J7 Total value of communication energy CE 

J8 Total number of CH without any member NCHuseless 

J9 Total number of  ACSs out of coverage  NACSout
 

Table 2. Weighing coefficients of fitness function. 

Weights 
Up to 25 
Sensors 

Up to100 
Sensors 

Up to 225 
Sensors 

Up to 400 
Sensors 

Up to 625 
Sensors 

Up to 900 
Sensors 

W1 10-4 10-2 10-3 10-2 10-3 10-4 

W2 102 102 102 102 105 107 

W3 102 102 102 102 108 108 

W4 1 1 1 1 1 1 

W5 102 102 103 103 10-4 10-4 

W6 104 105 106 107 1010 1010 

W7 105 107 107 108 108 108 

W8 1 1 1 1 1 1 

W9 1 1 1 1 1 1 

 

Table 3. Initial values for GA parameters. 

Parameters Description Values 

Pselection Selection probability 0.07 

Pcrossover Crossover probability (0.00035×No. of Generation)+0.4465 

NGE Number of generation 500 

Npopulation Number of individuals 50 

Selmethod Selection method rank 

Crmethod Crossover method Two-point crossover method 

 

Table 4. Mutation Probability. 

Network Size Probability of Mutation 

Up to 25 Sensors 
No. of Generation

1 Size of Network0.01 e

  

Up to 100 Sensors 
No. of Generation

3 Size of Network0.01 e


  
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Up to 225 Sensors 
No. of Generation

5 Size of Network0.01 e


  

Up to 400 Sensors 
No. of Generation

5 Size of Network0.01 e


  

Up to 625 Sensors 
No. of Generation

6 Size of Network0.01 e


  

Up to 900 Sensors 
No. of Generation

7 Size of Network0.01 e


  

 

Table 5. Initial values for communication energy. 

                                                                                                                                                                                                                                                                                                                                  Description Values 

Rsen Sensing coverage radius 5m 

ETx Transmission energy 50nJ/bit 

ERx Receiving energy 50nJ/bit 

BFE Beam forming energy 5nJ/bit 

Eda Energy consumption for data fusion 5pJ/bit 

ɛ amp Transmitter amplifier energy 100pJ/bit 

ɛ fs 
energy to send 1-bit message by transmitter amplifying 

circuit in elemental in free space model 
10pJ/bit/m2 

ɛ mp 
energy to send 1-bit message by transmitter amplifying 

circuit in multi-path fading model 
0.0013pJ/bit/m2 

 

 

Figure 1. Cluster-overlapping (A), no. of clusters without any member (B), radio interference (C), and communication energy 

(D) versus network sizes with different population sizes. 

 

To study the effect of population size, we did 

simulation with three different sizes of population 

50, 100, 200 for different network sizes and 

deployments. Increasing or decreasing the number 

of chromosomes in the population does not affect 

cluster-overlapping (Figure 1A), radio interference 

(Figure 1C) and communication energy (Figure 

1D). The number of member-less cluster heads 

depends on the type of network deployment. 

Compared to grid deployment, we find more 

cluster heads without any member in random 

deployment, which increases with the increasing 

size of the network (Figure 1B). Deciding an 

appropriate population size is a trade-off between 

WSN and GA parameters. Increasing the number 

of chromosomes in the population increases the 

CPU time. 

To study the effect of selection methods in GA, we 

used two selection methods: rank and tournament 

with different type of deployments and WSN sizes. 

Figure 2(A) illustrates that the tournament 

selection has lower value of communication energy 
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compared to the rank selection for random and grid 

deployments when the size of network is small. 

With larger size networks, the rank selection has 

lower value of communication energy compared 

with the tournament selection for random and grid 

deployments. The rank selection has lower value of 

cluster-overlapping compared with the rank 

selection for random and grid deployments in all of 

the network sizes (Figure 2B). Compared with the 

rank selection, tournament selection has lower 

radio interference in all the sizes and types of 

networks shown in Figure 2(C). By using rank 

selection, we can minimize operation energy for all 

the network sizes and deployment types (Figure 

2D). We use rank selection for the sake of energy 

minimization. Energy optimization in a WSN 

increases the network lifetime and improved the 

network coverage for small sized networks with 

tournament selection. When the size of a network 

is large, rank selection gives better results. 

To study the effect of crossover method in WSN 

design, we used one-point and two-point crossover 

methods. 

We use variable probability of crossover, Pcrossover 

= (0.00035×No. of Generation) + 0.4465. 

Compared with two-point crossover, one-point 

crossover is more effective in minimizing the value 

of cluster-overlapping (Figure 3A). Type of 

crossover does not affect the communication 

energy; the values of communication energy are 

very close as shown in Figure 3(B). Network radio 

interference is minimized with two-point crossover 

compared with that of one-point crossover shown 

in Figure 3(C). Figure 3(D) indicates that the type 

of crossover does not affect CHuseless, but it depends 

on the size and type of deployment in the network. 

Since two-point crossover gives better results than 

one-point crossover, we use two-point crossover 

for the rest of the study. 

Mutation is an important step in GA. A small 

change in mutation probability affects the result 

strongly. To study the effect of mutation 

probability in WSN design, we use (i) probability 

of mutation constant (Pmutation = 0.001), and (ii) 

exponential probability of mutation varying with 

the generation number and the network size. 

 

Figure 2. Communication energy (A), cluster-overlapping (B), radio interference (C), and operation energy (D) versus 

network sizes under different selection methods. 
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Figure 3. Cluster-overlapping (A), communication energy (B), radio interference (C), and no. of clusters without any member 

(D) versus network sizes for different crossover methods. 

When the mutation probability is changed, the 

fitness function weights are tuned again. Table 2 

shows the fitness function weights for exponential 

mutation probability and Table 6 shows the 

different values of the fitness function weights for 

constant mutation probability.  

Figure 4(A) shows that variable probability of 

mutation is more effective in optimizing cluster-

overlapping in both deployment types and sizes of 

network compared with those with constant 

probability of mutation. Mutation probability does 

not affect the average number of communications 

per cluster (Figure 4B). 

Constant probability gives better performance in 

radio interference compared with variable 

probability (Figure 4C). 

Using variable probability, one can better optimize 

the communication energy of networks of different 

types and sizes (Figure 4D). Using exponential 

mutation probability leads to cluster deployment 

uniformity, increases in network coverage and 

lifetime optimization of network communication 

energy consumption, and decreases in network 

radio interference. 

For finding optimal WSN design parameters and 

minimizing CPU time, we use population of size 

50, rank selection, two-point crossover, variable 

probability of crossover, and exponential 

probability of mutation, which changes with 

generation for random and grid deployments.  

Radio communication radius (Rrx) is dependent on 

the characteristics of WSNs such as hardware 

limitation, density, deployment. It is optimally 

fixed with respect to network connectivity, and 

radio interference. When the value of Rrx is 

decreased, the network connectivity goes down as 

well. Increasing the value of Rrx leads to more 

consumption of network energy.  

 

Table 6. Weighing coefficient of fitness function for constant mutation probability. 

Weights 
Up to 25 

Sensors 

Up to100 

Sensors 

Up to 225 

Sensors 

Up to 400 

Sensors 

Up to 625 

Sensors 

Up to 900 

Sensors 

W1 10-4 10-2 10-3 10-2 10-3 10-4 

W2 10-2 104 106 106 107 108 

W3 10 102 103 104 108 108 

W4 1 1 1 102 1 1 

W5 103 102 102 102 10-2 10-4 

W6 105 105 107 109 1010 1010 

W7 105 105 105 106 108 109 

W8 1 102 102 102 1 1 

W9 1 1 1 102 1 102 
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Figure 4. Cluster-overlapping (A), avg. no. of communication/CH (B), radio interference (C), and communication energy (D) 

versus network sizes for different mutation probabilities. 

 

The simulation results shown in Figure 5 indicate 

that irrespective of the network size and 

deployment, the optimal value of Rrx is 5 m for the 

proposed WSN model (Figure 5A), and increasing 

the value of Rrx increases radio interference (Figure 

5B), and decreasing its value increases the number 

of sensors out of range affecting connectivity 

(Figure 5A).  

To study the effect of deployment on WSN design, 

we studied two types of deployment: grid and 

random for five network sizes. Radio interference 

in random deployment is less than that of the grid 

deployment shown in Figure 6(A). The value of 

operation energy in random deployment is much 

lower than that of grid deployment when the size 

of the network is small. When the size of the 

network is increased, these values are very close 

shown in Figure 6(B).  

Clusters in the network with grid deployment are 

more flexible and have better cluster distribution 

uniformity compared with that of random 

deployment when the size of the network is small, 

but by increasing the size of the network, clusters 

with random deployment become more flexible and 

have better uniformity in cluster distribution 

compared with that of grid deployment shown in 

Figure 6(C).  

Grid deployment requires more communication 

energy than random deployment shown in Figure 

6(D). Thus, WSN with random deployment lasts  

 

 

 

longer than a WSN of equal size with a grid 

deployment.  

In WSN design, location of the BS can be inside or 

outside of an application area. Figure 7(A) 

illustrates that outside located BS reduces the value 

of cluster-overlapping compared with BS located 

inside. Therefore, clusters in a WSN with outside 

located BS are distributed more uniformly. The 

average number of communications per cluster for 

all network sizes and types are equal when the BS 

is located inside. It is less than those in the cases 

when the BS is located outside. It means that the 

network can be designed with less number of CHs 
when the BS is located outside (Figure 7B). But 

with inside located BS, the radio interference is 

lower than outside located BS for all different 

network types and sizes (Figure 7C). Outside 

located BS affects the value of communication 

energy of the network (Figure 7D). 

To study the effect of density, we define unit 

density as one sensor per meter because the Rsen is 

1 meter. We experiment with three different 

densities: 0.5, 1 and 1.5.  

If the area size is 100 m2, we deploy 50 (density is 

0.5), 100 (density is 1) and 150 (density is 1.5) 

sensors in the area. Radio interference (Figure 8A), 

cluster-overlapping (Figure 8B), and the number of 

clusters without any member (Figure 8D) all 

increase with increasing density of deployment, 

but the number of active sensors out of range 

(Figure 8C) decreases.  
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Figure 5. No. of ACSs out of range (A), and radio interference (B) versus radio communication radius. 

 

Figure 6. Radio interference (A), operation energy (B), cluster-overlapping(C), and communication energy (D) versus 

network sizes under grid and random deployments. 

 

Figure 7. Cluster-overlapping (A), avg. no. of communication/CH (B), radio interference (C), and communication energy (D) 

versus network sizes for two possible locations of BS. 
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Figure 8. Radio interference (A), cluster-overlapping (B), no. of ACSs out of range (C), and no. of clusters without any 

member (D) at different densities.  

6. Conclusion 

We study WSN design through GA by first 

studying and fixing the GA parameters and then 

using these values for near optimal WSN design. 

There are trade-off among different criteria and 

parameters of WSNs. The algorithm is coded in 

MATLAB version 7 on Intel® core i5 CPU 650 3.2 

GHz running Windows 7 professional. With 

increasing sizes of network, optimization time 

increases.  

The simulation results of this study indicate that 

deciding an appropriate population size is a trade-

off between WSN parameters and GA parameters. 

In small sized networks, to optimize energy, to 

increase the network’s lifetime and to improve the 

network’s coverage, tournament selection is more 

efficient. When the size of a network is large, rank 

selection has better performance. Also, two-point 

crossover’s performance is better than one-point 

crossover for the proposed model. Exponential 

mutation probability increases a network’s 

coverage and lifetime, and decreases network 

communication energy consumption and radio 

interference. 

By increasing the size of a network, optimization 

time is increased. The simulation results of this 

study indicate that the value of radio 

communication radius directly affects radio 

interference, cluster-overlapping, and uniformity 

in distribution, communication energy, and number 

of sensors out of range and CHs without any 

member. The optimal value of radio 

communication radius is not dependent on network 

size and type of deployment, but dependent on the 

density of network deployment. Outside located 

BS reduces the value of cluster-overlapping 

compared with the case when the BS is located 

inside.  

The average number of communications per cluster 

for all network sizes and types are equal when the 

BS is located inside. With inside located BS, radio 

interference value is lower than when the BS is 

located outside for all deployments and sizes. 

Outside located BS affects communication energy. 

Outside located BS is preferred over inside located 

BS. Sensing radius determines density of a 

network. Density affects radio communication 

radius strongly. In all the network situations, 

random deployment has better performance 

compared with grid deployment. Future research 

will focus on WSN design using other optimization 

methods. 
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