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Abstract 

An integrated model considers all parameters and elements of different deficiencies in one problem. This paper 

presents a new integrated model of a supply chain that simultaneously considers facility location, vehicle routing 

and inventory control problems as well as their interactions in one problem, called location-routing-inventory 

(LRI) problem. This model also considers stochastic demands representing the customers’ requirement. The 

customers’ uncertain demand follows a normal distribution, in which each distribution center (DC) holds a 

certain amount of safety stock. In each DC, shortage is not permitted. Furthermore, the routes are not absolutely 

available all the time. Decisions are made in a multi-period planning horizon. The considered bi-objectives are to 

minimize the total cost and maximize the probability of delivery to customers. Stochastic availability of routes 

makes it similar to real-world problems. The presented model is solved by a multi-objective imperialist 

competitive algorithm (MOICA). Then, well-known multi-objective evolutionary algorithm, namely anon-

dominated sorting genetic algorithm II (NSGA-II), is used to evaluate the performance of the proposed MOICA. 

Finally, the conclusion is presented. 

Keywords: Multi-objective Imperialist Competitive Algorithm, Location-routing-inventory Problem, 

Probabilistic Routes, Multi Periods. 

1. Introduction 

In the last decades, industries figured out the effect 

of integration and coordination in supply chain 

management, on the superiority between all the 

competitors. In this competitive surrounding, 

companies have to increase their efficiency in their 

logistics’ operations because of their economic 

benefits. In general, an integrated supply chain 

network comprises three important elements, 

namely facility location, vehicle routing and 

inventory control decisions. These elements are 

highly related and changes on one of them affect 

deeply on the other one. Much research has 

concentrated on the integration of two of the above 

mentioned problems (i.e., location-routing, location-

inventory and inventory-routing problems). 

Recently, several papers have been published on 

LRIs; however, there are some areas focusing on 

have not yet been addressed.  

For the first time, Liu and Lee [1] studied a multi-

depot, single product location-routing problem with 

inventory control decisions and proposed a two 

phase heuristic method to solve the problem. Gaur 

and Fisher [2] proposed an inventory-routing 

problem in a supermarket chain; they considered a 

periodic policy in their problem. Liu and Lin [3] 

solved the same model of LRI problem, by a 

combined tabu search and simulated annealing 

algorithms. The first paper proposed LRI problem 
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and incorporated ternary integration costs with an 

approximate routing cost is Shen and Qi [4].They 

addressed a single-product, single-period problem 

and solved the LRI model by a Lagrangian 

relaxation based solution algorithm, their model was 

modified inventory–location model given in Daskin 

et al. [5]. Chanchan et al. [6] formulated a dynamic 

LRI problem in a closed loop supply chain and 

solved with a two-phase heuristic algorithm. In 

another research, Ahmadi Javid and Azad [7] 

developed the model presented by [4]. Their model 

simultaneously optimizes location, inventory and 

routing decisions without approximation, and 

solved by a hybrid tabu search and simulated 

annealing methods. Hiassat and Diabat [8] studied 

the LRI problem with perishable products through a 

single commodity, multi-period model. Bard and 

Nananukul [9] suggested a periodic inventory 

routing problem, in a specific time period 

furthermore backlogging is not permitted. They 

solved their model by a branch-and-price method. 

Abdelmaguid et al. [10] studied a multi-period 

inventory routing problem that shortage is permitted 

and solved by a developed constructive and 

improvement heuristics and obtained the solutions 

approximately. 

Recently Ahmadi Javid and Seddighi [11] extended 

the earlier work to a location-routing-inventory 

model with a multi-source distribution network. 

Their model considers the LRI model in a three-

level distribution network and a multiphase 

heuristic algorithm based on simulated annealing 

(SA) and ant colony system (ACS). Lee and Chang 

[12], however, reported on solving discrete location 

problems when the facilities are prone to failure. 

They assumed that the facilities, such as fire station, 

emergency shelter, service center, 

telecommunication post, and distribution center 

would not provide services for whatever reason, 

such as maintenance, capacity limit, breakdown, or 

shutdown of unknown causes. Hwang [13,14] 

considered that the probability of a depot warehouse 

center is known. Hwang [13] developed stochastic 

set-covering location models for both ameliorating 

and deteriorating items. Hassanpour et al. [15] 

presented a new model of stochastic location-

routing problem that facilities and routes are 

available with the probability and applied a two 

phase heuristic method to solve the problem. 

In this paper, we introduce an efficient bi-objective 

model for LRI problem. In this multi-period model, 

the routes are available with probability of an 

interval (0, 1). In this condition, routes are not 

available or they are available along with risk. 

Examples might include crisis condition (e.g., 

natural disaster). 

2. Problem description and formulation 

In this paper, we focus on the LRI problem of a 

two-echelon logistic distribution system, which 

consist of customers and DCs. The model locates 

several DCs from a set of potential DCs and 

allocates customers to them.  

The associated model determines routes of vehicles 

to satisfy the customers’ demand and optimal 

inventory policy through periods of planning 

horizon. The objective of this model is to minimize 

the total cost and the probability of delivery to 

customers. Assumptions made in this study are 

given below. 

2.1. Assumptions 

The following assumptions are considered in the 

presented model. 

1. There is a 2-echelon distribution system. 

2. There are some distribution centers (DCs) for 

supplying customers. 

3. The LRI problem is multi-period one. 

4. Each customer has an uncertain non-negative 

demand that is independent and follows a 

normal distribution that must be satisfied in 

each time period. 

5. In each DC j, the (Qjt, Rjt) inventory policy is 

applied. In this policy, when the inventory 

level in period t at distribution center j gets to 

or below a reorder point Rjt, a fixed quantity 

Qjt is ordered to the supplier. Also, each 

distribution center holds amount of safety 

stock in each period.  

6. Locating and allocating decisions are made in 

strategic level and are not related to periods. 

7. The transportation cost includes traveling 

distance related cost and vehicle fixed cost 

for determining usage of vehicle v. 

8. Vehicle fleet is heterogeneous.  

9. Shortage is not permitted. 

10. Availability of routes is assumed to be 

probabilistic nature. 

The following notation is used in the formulation of 

the proposed model.
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Table 1. Sets. 

Symbol Description 

K  and L Set of customers 

J Set of potential distribution centers 

Nj Set of capacity levels available to distribution center j(jJ) 

V Set of vehicles 

M Aggregate set of customers and potential distribution centers ( )k j

T Set of periods along time horizon 

Table 2. Parameters. 

Symbol Description 

Mean of customer k demand in period t ( , )k K t T   

Variance of customer k demand in period t ( , )k K t T   

fj Establishing cost of  DC j ( , )j J n Nj   

Capacity   level for DC j ( , )j J n Nj   

dkl Transportation cost for traveling from node k to node l ( , )k l M 

Vv Maximum capacity of vehicle v ( )v V 

K Number of visits of each customer in a year 

Hjt Inventory holding cost in period t  at DC j ( , ) j J t T   

Cj

 
Fixed ordering cost to supplier by DC j ( ) j J 

Ltjt Lead time of DC j in period t ( , ) j J t T   

gj Fixed shipping cost for transferring products from supplier to DC j per shipment ( )j J 

aj Shipment cost for transferring from supplier to DC j ( ) j J 

B Number of customers contained in set K, (i.e.,  B K )
 

Prv Fixed usage cost of vehicle v ( )v V 

Pklt availability of path between arc k and l in time period t ( , , ) k l M t T  

 Level of service for customer orders that should be satisfied 

Z
Standard normal deviate such that ( )P z z 


 

 Weight factor associated with transportation cost
 

 Weight factor associated with the inventory cost 

qklt 1-Pklt 

Decision variables 

1 if   precedes  in a route of vehicle   in period  

0 otherwise
klvt

k l v t
X


 


( , , , )k l M v V t T   

1 if customer   is assigned to distribution center 

0 otherwise
jk

k j
Y


 


( , )j j k K   

1 if distribution center    is open

0 otherwise
j

j
U


 


( , )jj J n N   

Mkvt   Sub-tour elimination variable for customer k 

in route of vehicle v in period t 

( , , )k K v V t T     

2.2. Mathematical model 

1

2 2 2 2

min ( Pr

2 ( )

j j kl klvt v jlvt

j j v v k M l M t T j J M v v t T

jt j j kt jk j kt jk jt jt kt jk

j J k K t T t T k K t T k k

f f U K d X X

h C g Y a Y h z lt Y



       

        

      

   

 
   
  

   

     
                                    

(1) 

2 max ( )klt klvt

v V t T k K l L

f P X
   

   (2) 

kt
2
kt

jL
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s.t.
 

1klvt

v v l M

X

 

 t T k k    (3) 

n n

lt klvt v

l k k M

X V

 

  ,t T v V    (4) 

( ) 1kvt lvt klvtM M B X B     , ,t T k l k v V      (5) 

0klvt lkvt

l M l M

X X

 

   ,t T k M v V      (6) 

1jkvt

j J k k

X

 

 ,t T v V    (7) 

1klvt jlvt jk

l M l M

X X Y

 

    ,  ,  ,  t T j J k K v V        (8) 

kt jk j j

k k

Y L U


 ,  t T j J    (9) 

1jk

j J

Y


 k K  (10) 

{0,1}jkY  ,j J k k    (11) 

{0,1}jU  j J  (12) 

{0,1}klvtX  , , ,t T k l M v V      (13) 

free variablekvtM , ,k k v v t T      (14) 

Objective function (1) minimizing total costs 

consists of locating allocating, vehicle routing and 

inventory control costs. Objective function (2) 

maximizes the probability of delivery to customers. 

Equation (3) ensures that each customer can serve at 

most one vehicle (route) in each time period. 

Equation (4) is the vehicle capacity constraint and 

bound the total delivery to each customer in each 

period of time. Equation (5) ensures sub-tour 

elimination.  

Equation (6) guarantees route continuity. Equation 

(7) ensures that a rout contains a distribution center 

node in a time period. Equation (8) states that a 

customer can be allocated to a distribution center in 

each period of time only if there is a route passed by 

that customer and originated from that distribution 

center.  

Equation (9) is distribution center capacity 

constraint. Equation (10) states that each customer 

can be assigned to only one distribution center over 

a planning horizon. Equation (11) to (14) are the 

domain constraints on variables.  

2.3. Interpretation of the second part of the 

objective function 
Multiplication of objective function (2) can be 

changed to summation and from the minimum to 

the maximum. In this objective function, the 

probability Pklt is between (0, 1) and variable Xklvt is 

zero or one. To solve this problem, maximizing 

f2=f(x) is equivalent to the maximization of f3 = 

f2+A. 

(13) 

So we will have: 

1, 0
1

, 1

klvt
klt klvt klvt

klt klvt

X
P X X

P X


   



    
(14)                                                                                                                   

 

Instead of maximizing f3, we can maximize f4 = 

Ln(f3): 

4 max ( ( 1 ))klt klvt klvt

t T v V k K l L

f Ln P X X

   

  
   

  
   

(15)

Or, 

4 max ( ( 1 ))klt klvt klvt

t T v V k K l L

f Ln P X X
   

    (16)

By applying Ln to f4, the multiplication will be 

changed to the summation.  

4 max ( 1 )klt klvt klvt

t T v V k K l L

f P X X
   

          (17)

3 max ( ( 1 ))klt klvt klvt

t T v V k K l L

f P X X
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For convincing the optimization problem, we 

multiply f4 by -1. 

5 min ( 1 )klt klvt klvt

t T v V k K l L

f P X X
   

    (18)

Or, 

5 min ( 1 )klt klvt klvt

t T v V k K l L

f P X X
   

         (19)

By replacement of Pklt=1-qklt, we have: 

5 min ( (1 ) 1 )klt klvt klvt

t T v V k K l L

f q X X
   

    
(20)

5 min ( )klt klvt

t T v V k K l L

f q X A
   

  (21) 

By eliminating the constant part, f5 will be changed 

to f6 as follows: 

6 min klt klvt

t T v V k K l L

f q X
   

         (22)

After applying changes, the first and second 

objective functions are (1) and (22), respectively. 

3. Proposed algorithm 

Location-routing-inventory problem is NP-hardness 

[7]. In this paper, a multi-objective imperialist 

competitive algorithm (MOICA) is proposed to 

solve the multi-objective model. Additionally, we 

presents NSGA-II (non-dominated sorting genetic 

algorithm II) to compare the numerical results 

generated by the proposed MOICA. 

3.1. Multi-objective imperialist competitive 

algorithm 

A multi-objective imperialist competitive algorithm 

(MOICA) is a multi-objective meta-heuristic 

evolutionary algorithm inspired by the human social 

evolution for its optimization strategy [16].  

The MOICA methodology, in the first step, 

produces initial solution as countries. After 

generating countries, a non-dominance technique 

and a crowding distance are used to rank and select 

the population fronts and the members of front one 

are saved in an archive. To calculate the cost value 

of each imperialist the normalized cost value of 

each imperialist  

( nCost ( is calculated by the summation of the 

normalized value of the i-th objective function as 

shown below: 

,

1

r

n i n

i

Cost Cost


 (23) 

The best solutions are selected as the imperialists 

and the remaining countries are considered as 

colonies. The total power of an empire is mostly 

influenced by the power of the imperialist country 

not by the power of the colonies of an empire. This 

power is calculated by: 

 

.      ( )

  (     )

n n

n

TPof Emp Total Cost I mperialist

mean Total Cost Coloniesof Empire




(24) 

Imperialists made their colonies to move toward 

themselves along different axis by assimilation 

function. Afterward, colonies share their 

information between themselves by crossover 

operation and then each imperialism affects by 

mutation operation.  

In the imperialistic competition, gradually the 

power of the stronger emprise will increase and the 

power of the weaker emprise will reduce, in which 

the strongest imperialists picking colonies of other 

less powerful imperialists and the powerless 

empires will eliminate. The stopping criteria of the 

imperialistic competition are remaining just one 

emperor. The pseudo code of the proposed MOICA 

is presented in figure 1. 

3.2. Non-dominated sorting genetic algorithm II

The non-dominated sorting genetic algorithm II 

(NSGA-II) [19] applies a non-dominance technique 

and a crowding distance to rank and select the 

population fronts. The crossover and mutation 

operators are used to produce new solutions. The 

current populations and new generated populations 

are combined together and the best solutions are 

selected by means of non-dominance and crowding 

distance.  

Non-dominance technique: A multi-objective model 

has n objective functions, solution x1 and x2 are 

placed in the same front when do not dominate each 

other, in which x1dominate x2 if: 

1. For all the objective functions, solution x1 is 

not worse than another solution x2. 

2. For at least one of the n objective functions, x1 

is absolutely better than x2.  

Front 1 is made of all solutions that are not 

dominated by any other solutions. Front number 2 

encompasses all solutions that only dominated by 

solutions in front number 1.  

Crowding distance: It approximates the density of 

solutions surrounding a specific solution. Having 

lower value of crowding distance are preferred over 

another solutions.  

Tournament selection operator: This process 

includes both the crossover and mutation operators. 
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NFC (number of function calls)  0 

set the parameters of MOICA (n-Pop, N-imp, ξ, , P-Assimilation, P-Crossover, P-Revolution, n-Archive)  

Generate the initial countries (Randomly) n-Pop 

Evaluate fitness of each country 

update the NFC 

Form the initial empires: 

a) Choose most powerful countries as the imperialistsN-imp 

b) Assign other countries to imperialists based on imperialist power (pop1) 

terminate false 

while (terminate = false) do at each Imperialist 

Move the colonies of an empire toward the imperialist (pop2) P-Assimilation (PA),  

Crossover some colonies with empire (pop3) P-Crossover (PC) 

Revolution among colonies (pop4) P-Revolution (PR) 

Evaluate fitness of each country 

Update the NFC 

Merge all created population 

Update colonies 

Update archive n-Archive 

if (Cost of colony is lower than its own Empire) then 

Exchange the positions of the imperialist and a colony 

end 

Calculate the total power of the empires ξ 

Perform imperialistic competition 

Eliminate the powerless empires (the imperialist with no colony) 

if (NFC = predefined value) then

terminate = true

end if 

end while 

Figure 1. Pseudo code of the proposed MOICA. 

At first, in this method, two solutions of the 

population size are selected. If the two populations 

selected are from same front, the solution with the 

highest crowding distance is selected and if they 

become from the different fronts, the lowest front 

number is selected. 

4. Computational results 

In this section, the performance of the proposed 

MOICA and NSGA-II, which discussed in the 

previous section, is compared with each other. 

4.1. Comparison metric 

To validate the proposed MOICA, we propose two 

comparison metrics, namely quality metric (QM) 

and spacing metric (SM).  

The QM method gathers the non-dominated 

solutions obtained by algorithms and computes the 

portion of the Pareto solution of each algorithm. 

Higher value of this metric shows a higher 

performance for the solutions of this metric [17]. 

The SM method computes the uniformity of the 

extension of the non-dominated set solutions [18]. 
1

1

( 1)

n

ii
d d

SM
n d









 (25) 

Where di is the Euclidean distance between seriate 

solutions in the obtained non-dominated set of 

solutions and  d is the average of that. As the value 

of this metric reduces the uniformity increases and 

shows the higher performance of algorithms. 

4.2. Comparison of meta-heuristic solution 

methods 

In this section, we carry out two set of experiments 

to evaluate the performance of two proposed meta-

heuristic algorithms according to two suggested 

comparison metrics.  

Tables 3 and 4 consist of solving 15 test problems 

with MOICA and NSGA-II based on the QM and 

the SM, respectively. 

In these tables, we illustrate the summary of 

numerical result associated with the problems 

designed above and tested through using NSGA-II 

and MOICA.  

We report that the proposed MOICA is more 

efficient than the NSGA-II in all 15 test problems. 
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Table 3. Comparison results between the NSGA-II and MOICA according to the QM. 

Problem No. Period No. Customer No. DC No. Vehicle No. NSGA-II MOICA 

1 3 10 5 3 0.07 0.9 

2 3 15 5 3 0.2 0.65 

3 3 30 5 3 0.05 0.81 

4 5 50 5 3 0.03 0.88 

5 5 70 5 3 0.09 0.75 

6 5 100 5 3 0 0.98 

7 7 10 5 3 0.09 0.85 

8 7 15 5 3 0.01 0.75 

9 7 30 5 3 0.25 0.7 

10 3 50 5 3 0.2 0.9 

11 3 70 10 4 0 0.66 

12 3 100 10 4 0.01 0.78 

13 5 10 5 3 0 0.93 

14 5 15 10 4 0.12 0.65 

15 5 30 10 4 0.16 0.82 

Table 4. Comparison results between the NSGA-II and MOICA according to the SM.

Problem No. Period No. Customer No. DC No. Vehicle No. NSGA-II MOICA 

1 3 10 5 3 0.68 0.454 

2 3 15 5 3 0.41 0.345 

3 3 30 5 3 0.553 0.385 

4 5 50 5 3 0.598 0.473 

5 5 70 5 3 0.659 0.445 

6 5 100 5 3 0.559 0.382 

7 7 10 5 3 0.559 0.27 

8 7 15 5 3 0.598 0.335 

9 7 30 5 3 0.79 0.483 

10 3 50 5 3 0.86 0.26 

11 3 70 10 4 0.554 0.568 

12 3 100 10 4 0.92 0.509 

13 5 10 5 3 0.884 0.405 

14 5 15 10 4 0.624 0.466 

15 5 30 10 4 0.77 0.404 

5. Conclusion 

In this paper, we have outlined a formulation of bi-

objective location-routing-inventory problem. The 

model shows how the customers allocate to the 

opened DCs, how a vehicle selects routes to serve 

the customer demands in each period and the 

frequency to reorder at a DC and what level of 

safety stock to maintain. The objective functions 

minimize the total costs and maximize the 

probability of delivery to customers. We presented 

two multi-objective meta-heuristic solution 

approaches namely, NSGA-II and MOICA. We 

have solved 15 test problems with these two meta-

heuristics. The results have shown that the proposed 

MOICA has been more efficient than the proposed 

NSGA-II based on two proposed comparison 

metrics, namely quality and space metrics. The 

considered problem can be developed to a closed-

loop supply chain by adding some reverse logistic 

system assumptions. Furthermore, developing other 
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meta-heuristics for the given problem is an 

interesting future research direction. 
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بب  هوجودی چند هدفه -هسیریببی -یببیستعوبری چند هدفه: یک هسئله هکبىالگوریتن رقببت ا عوکرد

 هسیرهبی احتوبلی

 

 1وحیدرضب قضبوتیو  2رضب توکلی هقدم، 1نجوه نکوقدیرلی
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 چکیده:

ی جذیذ اس یک سًجیزُ ِ، یک هذل یکپبرچِایي هقبل هختلف را در یک هسئلِ در ًظز بگیزد. عٌبصزی پبراهتزّب ٍ هذلی است کِ ّوِ یکپبرچِیک هذل 

ّب بز یببی تجْیشات، هسیزیببی ٍسیلِ ًقلیِ، کٌتزل هَجَدی اًببر ٍ اثزات هتقببل آىی هکبىکِ بِ صَرت ّوشهبى سِ هسئلِرا ارائِ هی دّذ تأهیي 

شَد. ّوچٌیي ایي هذل تقبضبّبی هشتزیبى را بِ صَرت احتوبلی هَجَدی ًبهیذُ هی -هسیزیببی -هکبًیببیی هسئلٍِ گیزد رٍی یکذیگز را در ًظز هی

کٌذ، ًگْذاری هیرا دی اطویٌبى ّز هزکش تَسیع یک هقذاری هَجَ ٍ تقبضبی ًبهشخص اس یک تَسیع ًزهبل پیزٍی هی کٌذکِ ایي  گیزددر ًظز هی

. دٍ اًذشذُای گزفتِ  علاٍُ هسیزّب ّویشِ در دستزس ًیستٌذ. تصویوبت در یک افق بزًبهِ ریشی چٌذ دٍرُبِ  ،ببشذدر هزاکش تَسیع هجبس ًوی کوبَد

کٌٌذ. در دستزس بَدى احتوبلی هسیزّب هذل را بِ هسبئل ی کل را کویٌِ ٍ احتوبل تحَیل بِ هشتزیبى را بیشیٌِ هیّشیٌِ ،ّذف در ًظز گزفتِ شذُ

تن تکبهلی چٌذ ّذفِ سپس یک الگَری ،ل ارائِ شذُ بب یک الگَریتن رقببت استعوبری چٌذ ّذفِ حل شذُ استجْبى ٍاقعی شبیِ تز هی کٌذ. هذ

 .شَدگیزی ارائِ هیًتیجِ ،ًْبیتدر  ارائِ شذُ استفبدُ شذُ است. MOICAالگَریتن  بزای ارسیببی عولکزد NSGA-II هعزٍف بِ ًبم
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