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Abstract 

The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed 

sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. 

One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). 

Most existing methods in the literature attempt to optimize a randomly initialized matrix with the aim of 

decreasing the amount of required measurements. However, these approaches mainly lead to sophisticated 

structure of measurement matrix which makes it very difficult to implement. In this paper we propose an 

intermediate structure for the measurement matrix based on random sampling. The main advantage of block-

based proposed technique is simplicity and yet achieving acceptable performance obtained through using 

conventional techniques. The experimental results clearly confirm that in spite of simplicity of the proposed 

approach it can be competitive to the existing methods in terms of reconstruction quality. It also outperforms 

existing methods in terms of computation time.  

 

Keywords: Compressed Sensing, Sparse Recovery, Signal Processing, Random Sampling, Matching Pursuit, 

Measurement Matrix. 

1. Introduction 

Recently, the new theory of compressed sensing 

(CS) [1, 2] has emerged and brings on new 

findings regarding signal sampling. This theory 

states that for certain type of signals one can 

recover the original samples from fewer 

measurements than those required by Nyquist-

Shannon theory [3, 4]. Compressed sensing is 

valid for signals with underlying sparse structure. 

A sparse signal has merely few non-zeros. The CS 

experts originally showed that random 

measurement matrices are suitable for compressed 

sensing problem. However, later it shows that a 

carefully designed measurement matrix improves 

the performance. Generally, the maturity of a 

sampling strategy for CS can be judged in the 

following aspects:   

 Optimality of the sampling process: the 

required number of measurements for exact 

recovery is desired to be as small as possible. 

Although random sampling can lead to an 

exact recovery, the required number of 

measurements is not optimal yet; 

 Low complexity and simplicity for hardware 

implementation: the complexity and required 

memory space in sampling techniques should 

be minimized to become suitable for large-

scale problems ; 

 Universality: the random measurement 

matrices are universal and can be obtained 

non-adaptively. This means that their 

performance does not vary with changing the 

sparsifying matrices. Any designed (or 

optimized) measurement matrix should also 

have this property. 

Two categories of algorithms have been proposed 

for improving the signal sampling in CS 

framework; First, the family of algorithms which 

attempts to propose a particular structure (e.g. by 

exploiting prior knowledge about the signal of 

interest) for sampling the signals. Second, those 

approaches which attempt to improve the structure 

of an initially random measurement matrix using 

optimization techniques [5-10]. In this paper, the 

first family of approaches is addressed.   
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In [11], which is an application to magnetic 

resonance imaging (MRI), the authors define an 

incoherence criterion based on point spread 

function (PSF) and propose a Monte Carlo 

scheme for random incoherent sampling of this 

type of data. They believe that a pure random 

sampling of k-space in all dimensions is not 

generally practical due to hardware 

implementation issues.  

In short, k-space is a special representation of data 

points in Fourier transform of the MR images. 

Hence, they design an incoherent sampling 

technique (still by following the existing 

incoherence properties of random undersampling) 

to allow rapid data collection. Based on their 

observations, a better performance is achieved by 

less undersampling near the k-space origin and 

more in the periphery of k-space. Other related 

techniques for MRI acquisitions can be found in 

[12, 13]. 

Wang et al. [14] proposed a variable density 

sampling strategy by exploiting the prior 

information about the statistical distributions of 

natural images in the wavelet domain. Their 

proposed method is computationally efficient and 

can be applied to several transforming domains. In 

another work [15], Wang et al. show that if the 

spectral characteristics of the underlying signal 

are not expected to be uniform, then, the less 

number of measurements is required compared 

with when using conventional compressed 

sensing. They first propose to generate colored 

random projections using a bandpass filter when 

the spectral profile of the signal to be sampled is 

known, and then propose an adaptive scheme to 

generate colored random projections when such a 

priori is not available. 

In this paper, a novel random sampling scheme 

for compressed sensing framework is proposed. 

The aim is to propose a technique which can offer 

at least the same reconstruction performance as 

that exists for the conventional compressed 

sensing, but allows a simpler implementation and 

less required storage for the measurement matrix. 

The rest of this paper is as follows. Next section 

describes the basics of compressed sensing theory. 

Section 3 gives an example of the advantages of 

random undersampling and applying CS recovery 

methods over linear recovery. The proposed 

method is then described in section 4. The 

simulation results and concluding remarks are 

drawn in sections 5 and 6, respectively. 

 

2. Compressed sensing 

The basic compressed sensing scenario can be 

expressed as follows. Assume a one-dimensional 

signal x ∈ ℝn which can be represented sparsely 

in a known transform domain (e.g. Fourier, or 

wavelet). Although x can be sparse in the current 

domain (e.g. time, or pixel), we always assume 

that x is sparse in a known transform domain, 

unless otherwise stated. The sparsifying transform 

can be expressed in matrix form denoted by Ψ ∈
ℝn×m, with Ψ containing m columns vectors 

{ψi}i=1
m  of length n ≤ m. The case of n < m is 

treated as overcomplete sparse representation. 

Considering the above notations, the signal x can 

be expressed as: 

x = ∑ si

m

i=1

ψi = Ψs 
(1) 

 

where, s ∈ ℝm is a column vector of sparse 

coefficients, having merely k ≪ m non-zero 

samples. Clearly, x is the representation of the 

signal in non-sparse domain (e.g. time, space) and 

s is the representation in sparse domain (e.g. 

wavelet, frequency). The signal x is called k-

sparse since it can be generated as a linear 

combination of only k vectors from Ψ. Here, the 

signal s is called exact-sparse since it has k non-

zeros and the rest of the elements are exactly 

equal to zero. However, there might be some 

cases where the coefficient vector s includes only 

few large components and many small 

coefficients. In this case, x is treated as a 

compressible signal and sparse approximation 

methods are applied. 

Now the acquisition process is defined as follows, 

where the measurements y ∈ ℝp with p < n are 

computed as a set of linear measurements from x. 

This process is mathematically expressed as: 

y = Φx = ΦΨs = Θs (2) 
 

where, Φ ∈ ℝp×n is called the measurement 

matrix (or sensing matrix) and y is treated as 

measurements.  

 
Figure 1. Graphical schematic of the basic compressed 

sensing model. 

 

Figure 1 depicts a graphical representation of the 

basic CS model, which clearly implies that y of 

length p < n is a compressed version of x. It is 

important to note that CS model is non-adaptive. 
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It means that the measurement matrix does not 

basically depend on the signal x. This has the 

advantage of universality of this sampling 

method. However, the minimum possible number 

of measurements p and the structure of Φ are two 

critical factors which should be determined based 

upon some specific criteria [1, 2]. 

Assume sampling of a signal using the above 

scheme and then transmitting the measurements y 

via an available media. The second crucial task (at 

the receiver) is to recover (decode) the original 

samples x with the knowledge about the 

measurements y and the measurement matrix Φ. 

The recovery problem is ill-conditioned since the 

number of available measurements p is less than 

the number of unknown samples n. However, 

several methods have been proposed to tackle this 

problem. 

 

3. Random undersampling  

In order to demonstrate the effectiveness of 

random undersampling (sub-Nyquist–Shannon) 

for compressed sensing problem here, we present 

a simple example. Consider the following periodic 

signal comprised of three harmonics: 

x(t) = cos ( 2πt) + cos ( 10πt)

+ cos ( 40πt), 

(3) 

The aim is to downsample the above signal using 

a random scheme, and then reconstructing it using 

CS techniques. The maximum frequency in the 

above signal, related to cos ( 40πt), is fmax = 20 

Hz. Based on the Nyquist–Shannon rule the 

sampling frequency must obey fs ≥ 2fmax = 40 

Hz. However, we do not follow the Nyquist–

Shannon rule and undersample the above signal 

by taking only p = 50 (equivalent to fs = 10 Hz) 

random samples in the time interval of t ∈ [0 5] 
seconds. Note that p is called the number of 

measurements (equivalent to length of vector y). 

The random sampling is carried out simply by 

taking samples from x(t) at random locations 

which follow a Gaussian distribution. Note that 

this way of random sampling differs from the 

conventional CS where a set of linear 

measurements should be taken rather than the 

actual samples. However, for illustrative purposes 

and to show the strength of CS, we use such a 

simple scheme. 

Consider DCT transform of x(t) where only three 

major components exist (Figure 2 (a)). Three 

different methods are applied to the undersampled 

vector of length p to approximate the components 

of the original signal. The first method is 

(nonlinear) OMP, the second is linear 

interpolation and the third method is a simple zero 

padding. The linear interpolation is applied as the 

concatenation of linear interpolants between each 

pair of data points of y(t). Zero padding is simply 

carried out by inserting zero at random locations 

within the components of y(t) until its length gets 

equal to x(t). The corresponding resulted signals 

in DCT domain are shown in figure 2 (b), (c) and 

(d), respectively. It is clearly illustrated that OMP 

can successfully recover the major components 

from the random undersampled signal, while 

linear interpolation and zero padding fail to do so. 

This shows the influence of random 

undersampling and using CS techniques to 

recover the original signal. Next, we propose a 

new sampling technique with less required storage 

for the measurement matrix. 

 

 
Figure 2. From top to bottom: Original signal, the result 

of compressed sensing reconstruction, the result of linear 

interpolation, and simple zero padding. All the signals are 

shown in the DCT domain and the amplitudes are 

normalized. 

 

4. The proposed method 

In conventional compressed sensing, the 

measurement matrix Φ of size 𝑝 × 𝑛 is normally 

selected randomly. However, dealing with this 

matrix in large scale problems is challenge and 

requires large size memory. In order to alleviate 

this problem, we propose a different random 

sampling scheme which requires less memory for 

storing the measurement matrix. 

In spite of conventional random samplers in CS 

framework which takes 𝑝 linear measurements 

from the input signal 𝒙, we propose to break 𝒙 

into 𝑀 segments of length 𝐿, and then take 𝑝𝑖 <
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𝐿, (for 𝑖 = 1,2, … 𝑀) random projections from 

each segment, independently. This can be 

equivalently defined as: 

𝒚𝑖 = Φ𝑖𝒙𝑖  for 𝑖 = 1, … 𝑀, (4) 

 

where Φ𝑖’s are measurement matrices of size 𝑝𝑖 ×
𝐿. Now, if we concatenate all 𝒚𝑖’s, which are of 

length 𝑝𝑖, and create vector 𝒚 of length 𝑀(𝑝1 +
𝑝2 + ⋯ + 𝑝𝑀), the following equation can be 

obtained: 

𝒚 = Φ𝒙: [

𝒚1

𝒚2

⋮
𝒚𝑀

] = [

Φ1𝒙1

Φ2𝒙2

⋮
Φ𝑀𝒙𝑀

]

= [

Φ1 𝟎 ⋯ 𝟎
𝟎 Φ2 ⋯ 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ Φ𝑀

] [

𝒙1

𝒙2

⋮
𝒙𝑀

]. 

(5) 

 

Equation (5) is the mathematical representation of 

a sampling strategy proposed above. In fact, 

taking random projections from segments of input 

signal can be mathematically illustrated as 

multiplying a block-diagonal matrix Φ by full-

length input signal 𝑥. 

The main advantage of this scheme is that the 

measurement matrix Φ, comparing with the 

measurement matrix in conventional CS, is block-

diagonal and thus requires less memory for 

storage and lower transmission band. In addition, 

this block-wise strategy gives more flexibility so 

that one can use different measurements 𝑝1 ≠
⋯ ≠ 𝑝𝑀, per segment--a kind of variable density 

sampling. 

The above block-wise procedure can be seen as 

sliding a rectangular window across the signal and 

taking few random projections at each slide. 

However, in many applications we prefer to use 

overlapping windows to avoid any possible loss of 

information at the segment boundaries. Therefore, 

we introduce 𝜏 as the number of overlapped 

components and use such overlapping scheme in 

practice. Figure 3 demonstrates a random 

measurement matrix with overlapping blocks. It is 

obvious that such measurement matrix has many 

zero elements and can be stored with less effort. 

Due to such a special shape of the obtained 

measurement matrix, we choose the term “block-

wise” for the proposed approach.  

After applying the proposed sampling method, the 

projection vectors {𝒚𝑖}𝑖=1
𝑀  and the measurement 

matrices {Φ𝑖}𝑖=1
𝑀  should be transmitted to the 

receiver. At the receiver side, the actual 

measurement matrix, i.e. Φ, should be formed 

using small sub-matrices {Φ𝑖}𝑖=1
𝑀 . 

 

Figure 3. Illustration of a block diagonal 𝚽 resulted from 

applying the proposed segmented sampling. Notice the 

overlapping between the blocks for avoiding information 

loss. 

 

The knowledge about overlapping parameter 𝜏 is 

also required at this step. Then, the original sparse 

signal can be reconstructed by applying one of the 

common sparse recovery techniques [16-18]. 

Indeed, the recovery process should be carried out 

jointly over the entire random projections. Figure 

4 represents an illustrative block diagram of a 

send-receive paradigm using the proposed 

method. 

One important point which should be noted here is 

how one can choose 𝑀 and 𝐿. One feasible 

approach is based on characteristics of the input 

signal/image. For instance, depending on the 

amplitude/energy of the signal at specific 

intervals, appropriate 𝑀, 𝐿, and corresponding 𝑝 

are chosen. Based on this adaptive strategy, more 

emphasis is applied to parts of the signal which 

contain important information and vice versa. 

Such decision can also be made based on any 

other a priori about the signal. 

 

 

Figure 4. Block diagram of the proposed sampling 

method in a send-receive paradigm. 

 

5. Experimental results 

The first experiment was carried out by making a 

synthetic sparse signal x of length n = 100 and 

s = 15 non-zeros with random locations. In this 

experiment, we treated x as a sparse signal in the 

current domain and not with respect to a 

sparsifying matrix, i.e. Ψ = I. The proposed 

algorithm was then applied to x, with the 
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following parameters; the number of segments: 

M = 5, overlapping each segment: τ = 6, and 

measurements number per segment: pi =
10,  for i = 1,2, … M. We then reconstructed this 

signal by solving ℓ1-norm minimization problem, 

i.e. BP. The corresponding algorithm was taken 

from ℓ1-magic [19], which is a well-designed and 

simple MATLAB toolbox available online for 

solving the convex optimization problems mainly 

based on standard interior-point methods. Figure 5 

displays the recovery results along with SNR as 

the quality measure.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. The reconstruction results with corresponding 

SNRs when the proposed sampling method is used; (a) 

original signal, and those recovered using (b) BP, (c) 

OMP, and (d) SL0. 

 

Signal to noise ratio (SNR) is the measure of the 

ratio between signal power and the power of 

reconstruction error. It is mathematically defined 

as SNRdB = 20 log
10

‖x‖2

‖x̂−x‖2
, where x and x̂ are the 

original and estimated signals, respectively. We 

have also applied two other methods named OMP, 

taken from “SparseLab” toolbox [20], and SL0 

(smoothed ℓ0) [21], taken from [17], for 

reconstruction. SL0 is a fast optimization method 

which attempts to solve ℓ1-norm minimization 

problem by approximating the ℓ0-norm 

reconstruction using a smoothing function Fσ(. ), 

where σ determines the quality of approximation 

[21]. As it is seen from figure 5, the common 

recovery algorithms could successfully recover 

the underlying sparse signal when the proposed 

sampling strategy is applied. 

Due to block-diagonal structure of the obtained 

measurement matrix in the proposed method, we 

expected the reconstruction algorithm to perform 

faster. In order to verify this expectation, we set 

up an experiment in which the response times of 

three reconstruction methods (i.e. BP, OMP and 

SL0) were recorded. This experiment was 

repeated for different signal dimensions, 5 

segments, and total of 50 measurements. Table 1 

demonstrates the corresponding results. Table 1 

shows that the common recovery algorithms 

perform faster when the proposed measurement 

matrix is used compared with the conventional 

random measurement matrices. This is more 

noticeable at higher dimensions, especially for BP 

which is a more complicated algorithm among 

others. However, the computation times of 

different methods do not change significantly 

when the proposed scheme is used in low 

dimensions (e.g. the signal length of 100 in table 

1). In the second experiment, a fixed number of 

measurements p = 30 was selected for signals of 

length n = 120. 
 

Then, we varied the non-zeros of 10000 sparse 

signal ensembles from 1 to 10 and applied the 

proposed method. In this experiment the proposed 

method was used with M = 5, pi = 6 for i =
1,2, … M and the segments had 50% overlap. 

Finally, we applied several recovery methods to 

reconstruct the sparse signals and evaluated the 

recovery performance. The results of this 

experiment are depicted in figure 6. As expected, 

the recovery error increases with increasing the 

number of non-zeros. In addition, figure 6 

demonstrates that the degradation in the 

reconstruction performance is negligible, when 

the proposed sampling scheme has been used. 

Also, less recovery error of the proposed method, 

observed in figure 6 (a) and (c) for large number 

of non-zeros, cannot be fairly explained since the 

performance of recovery techniques are not 

reliable at these dimensions. 

In the third experiment, we evaluated the 

performance of the proposed algorithm against 

variations in the number of measurements. 
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(a) 

 
(b) 

 
(c) 

Figure 6. The reconstruction error against number of 

non-zeros when (a) BP, (b) OMP and (c) SL0 used as the 

recovery method. 

 

In order to do this, we computed the average 

recovery error for 1000 signal ensembles of length 

120 and 15 non-zeros. This experiment was 

carried out while we varied the total number of 

measurements from 10 to 80. The results are 

given in figure 7 when different numbers of 

segments were chosen in the sampling stage. The 

parameter η in the graphs, represents the 

percentage of free space (zeros) in the 

measurement matrix.  

As the graphs in figure 7 show, increasing the 

number of measurements leads to smaller 

recovery error in all curves. However, the 

resulting curves behave slightly different for 

different segment numbers (i.e. M). Obviously, 

more segments mean more percentage of zero 

components (η) in the corresponding 

measurement matrix (based on the model in (5) 

and in Figure 3). This means the overall block-

diagonal measurement matrix requires less 

memory which is desired.  

However, figure 7 shows that choosing very large 

number of segments causes degradation in 

performance, which is a disadvantage. This 

behavior can be because of the fact that choosing 

large number of segments (for a signal of fixed 

length) leads to very small segment-size, and 

consequently, the segments cannot convey much 

information about the signal. In fact, there is a 

trade-off between the number of segments and the 

recovery performance and the number of 

segments and their sizes (compared with the total 

length of signal) should be obtained empirically. 

 

 
Figure 7. Average recovery error versus number of 

measurements. 𝑴 denotes the number of segments and 

𝜼 indicates the percentage of zero components in 𝚽 . 

 

Like the last experiment, we used the proposed 

method for compression and reconstruction of an 

MR image of size 230×180. Conventionally, we 

first applied Haar wavelet transform to the image 

in figure 8 (a). Then, detailed coefficients 

(horizontal, vertical and diagonal) were 

rearranged into a single sparse vector x of length 

7830. This vector was then multiplied by the 

measurement matrix Φ, leading to the 

measurements y = Φx. Two types of 

measurement matrices were chosen for this 

experiment; traditional random Gaussian Φ of size 

2100×7830, and proposed block-diagonal Φ 

where M = 30, pi = 70 and τ = 100.  

The results of reconstruction using BP are given 

in figure 8. These results were obtained after 

reconstruction of sparse vector and taking inverse 

wavelet transform.  

Figure 8 shows that the achieved SNR using the 

proposed method is higher than that obtained 

using traditional CS.  
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Figure 8.  MRI reconstruction results: (a) input image. 

The reconstructed image using (b) traditional CS, and (c) 

the proposed method.  

 

6. Conclusions 

A new and simple method to design the 

measurement matrix in compressed sensing has 

been presented in this paper. The proposed 

method obtains random linear measurements by 

dividing the input signal into several overlapping 

segments.  

The resulting measurement matrix has a block-

diagonal structure which is more efficient in terms 

of required memory storage and transmission 

costs. In addition, the overlapped segments avoid 

possible loss of information at the segment 

boundaries. Our simulation results revealed that 

by using the proposed method, one can achieve 

similar recovery performance as that obtained 

when conventional random sampling is used. 

Furthermore, the recovery time is reduced when 

the proposed scheme is used due to simpler 

structure of the proposed measurement matrix. 

However, more investigation is required to 

improve the recovery performance as well as 

optimizing the sampling process. 

Another important aspect of the proposed 

approach is its applicability for real-world 

scenarios. There exist numerous applications 

which can benefit from this approach. For 

example, in compressed sensing based MRI, 

generating a fully random measurement matrix is 

a challenging issue.  

Therefore, the proposed mitigated technique could 

be practical. Also, in terahertz imaging systems 

[22] achieving a simple acquisition operator is of 

interest. All these applications and other related 

problems can be further investigated and studied. 

 

 

Table 1. Computation time (in second) per iteration for different methods for M=5 segments. 

  Signal length 

  100 1000 4000 7000 10000 

Random 

Sampling 

BP 0.0077 3.0271 10.0603 20.7773 41.1924 

OMP 0.0031 0.0043 0.0060 0.0102 0.0113 

SL0 0.0021 0.0189 0.0353 0.0521 0.747 

Proposed 
Sampling 

BP 0.0076 1.2730 4.8648 12.9129 21.3821 

OMP 0.0032 0.0039 0.0057 0.0082 0.0107 

SL0 0.0022 0.0154 0.0252 0.0418 0.0575 
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 روشی مبتنی بر نمونه برداری تصادفی محلی در حسگری فشرده

 

 2سعید صانعی و 1سعیده فردوسی، *1وحید ابوالقاسمی

 .شاهرود، ایراندانشگاه شاهرود، ،  دانشکده مهندسی برق و رباتیک 1

 .، انگلستاندفیزیک، دانشگاه ساری، گیلدفورعلوم دانشکده مهندسی و  2

 80/82/6800؛ پذیرش 62/80/6802ارسال 

 چکیده:

از یک سییگاال ییا تییویر را    گیرد. در حسگری فشرده تحت شرایط خاص میتوان نمونه برداری حسگری فشرده مورد بررسی قرار می در این مقاله مساله

هیای  روش اکثیر برای نیل به این ماظور طراحی عملگر نمونه بردار از اهمیت بیاییی برخیوردار اسیت.    با فرکانسی کمتر از فرکانس نایکوییست انجام داد. 

ایین   ،ایین حیال   باشاد. بیا نظر میال موردموجود در این زمیاه به دنبال بهیاه کردن یک ماتریس نمونه بردار تیادفی جهت بهبود کیفیت بازسازی سیگا

در این مقالیه سیاختاری   سازی سخت افزاری آنها بسیار دشوار خواهد بود. شوند که پیادههایی با ساختار پیچیده میماتریستولید ماجر به عمدتاً ها روش

ز تعیدادی  ک ماتریس نمونه بردار بیزر  ا بطوریکه به جای استفاده از یگردد. ساده بر مباای نمونه برداری تیادفی مبتای بر بلاک )زیر ماتریس( ارائه می

سیازی  سادگی پیاده ،روش مبتای بر بلاک بزرگترین مزیت نمونه برداری باگردد. شانی نیز داشته باشاد استفاده میتواناد همپونمونه بردار کوچک که می

. کااده این مسیاله اسیت  مقاله تایید شبیه سازی ارائه شده در ایننتایج  باشد.می های موجودو در عین حال نتیجه بازسازی قابل قبول در مقایسه با روش

   باشد.های موجود بایتر میتر ایاکه سرعت اجرای الگوریتم پیشاهادی در مقایسه با روشمهم

 .ونه بردارمفی، ماتریس نحسگری فشرده، بازسازی تاک، پردازش سیگاال و تیویر، نمونه برداری تیاد :کلمات کلیدی

 




